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Certain Nonbinary BCH Codes
and Some Applications
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(Manusecript received March 20, 1969)

This paper is a compendium of results based on a simple observation: two
information symbols can be appended to certain monbinary BCH codes
without affecting the guaranteed minimum distance of these codes. We give
two formulations which achieve this resull; the second yields information
regarding the weights of coset leaders for the original BCH codes.

Single-error-correcting Reed-Solomon codes with the added information
symbols yield perfect codes for the Hamming melric. We use these lengthened
Reed-Solomon codes as building blocks for perfect single-error-correcting
codes in another metric.

I. INTRODUCTION

This paper is a compendium of results based upon a simple observa-
tion: two information symbols can be appended to the code words of
certain BCH codes without weakening the error correction capability
of these codes.

We define a class of BCH codes called “maximally redundant codes”
in Section II; for codes in this class a simple method is given for ap-
pending two columns to the check matrix which does not increase the
number of cheek symbols for the code nor decrease the error correction
capability of these codes. Section III gives the parameters for length-
ened Reed-Solomon codes and shows that such codes are perfeet for
single error correction. Section IV discusses a general decoding algo-
rithm for the lengthened codes and shows that these codes are in-
variant under certain permutation operations.

Section V discusses a method for constructing the lengthened codes
from cosets of the original code. We use this approach in Section VI
to determine the lower bounds on the number of high weight cosets
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for the original BCH codes. Section VII defines a new metric and gives
a procedure for constructing some perfect codes in this metric. These
codes are based upon the lengthened Reed-Solomon codes. The ap-
pendix shows that a necessary and sufficient condition for the non-
zero elements of GF(p) to be partitioned into mutually exclusive and
exhaustive four element subsets of the form

[3:1 Bz, —z, '—DBI}; B,xe GF(P)
is that there exists an integer ¢ such that
g* = —1(mod p).
II. BCH CODES
BCH codes are random-error-correcting codes for symbols from GF(q)
where ¢ is a prime (in which case ¢ is replaced by p) or a power of a
prime.'™ Let a be an element of G (¢g™) and let the order of a be n.

That is, &" = 1 and &’ # 1 for ¢ < n. The check matrix of a BCH code
with designed distance d ean then be given as

|_1 amn (am..)'_‘ . (ﬂm“)"_]
H _ 1 amn+l (amn+l)‘3 . (amn-l-l)n—] :.
1 amn +d=2 (amn+dv2)‘2 . (amn +d—2)n—1

The code words are all n-vectors, C, with entries from GF(q) which
satisfy the equation
HC = 0.

(Unless stated to the contrary, all vectors are eolumn vectors.)

The proof that such codes have minimum distance at least d follows
from demonstrating that all sets of d — 1 or fewer columns of H are lin-
early independent over GF(q). Actually, the proof shows more than this:
it shows that all sets of d — 1 or fewer columns of H are linearly indepen-
dent over any extension field of GF(g). To establish this linear inde-
pendence let us consider the columns 7, , j2 , -+ -, a—, and the determinant
of the corresponding (¢ — 1) by (d — 1) array of symbols from GF(¢™).
Then,

(arnn)h (anx«)r: . (amu)u—:
det (am.,+])1| (amn+l)1, - (amn+1)]d—|

(amo+d-2)i| (am;.+d—2)j, . (arnp+d—2):'u-|
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it ia fd=1
= anu(h-n';*"'*'u—.)det o « e a

@) @ @)

The latter determinant is a Vander Monde determinant and is known
to be nonzero if a'* # a'* for 7 # k. Since the elements of the matrices
in question are elements from GF(¢™), the nonvanishing of the determ-
inant ensures that any set of d — 1 columns of the check matrix are
linearly independent over GF(g™). The special case of m = 1 defines a
subset of BCH codes called Reed-Solomon codes.*

The number of check symbols in the code is upper bounded by
m(d — 1) since these are the number of rows in the check matrix after
each symbol from GF(q™) is replaced by an m-vector with elements
from GF(g). The reason that m(d — 1) is merely an upper bound is that
the number of check symbols is equal to the number of linearly inde-
pendent rows in the check matrix [when expressed in terms of elements
from GF(g)]; in general this number can be less than m(d — 1). In this
paper, codes for which the number of check symbols is equal to m(d — 1)
are called “maximally redundant” BCH codes. Binary codes (codes
for which ¢ = 2) are examples of nonmaximally redundant codes while
Reed-Solomon codes (codes for which m = 1) are examples of maximally
redundant codes.

Let us now consider appending two columns to the check matrix,
H, to form the new check matrix, H',

=

(1 0
00
mo-|l ol om|
00
0 1

Tt is now easy to see that any (d — 1) columns of H' are linearly inde-
pendent over GF(g"). [Determinants formed from (d — 1) columns,
excluding the first two columns, are (d — 1) by (d — 1) Vander Monde.
Determinants formed from (d — 1) columns, including one of the first
two columns, are (d — 2) by (d — 2) Vander Monde after expansion
about the column in question. Determinants formed from (d — 1)
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columns, including both the first and second column of H’, are (d — 3)
by (d — 3) Vander Monde after expansion.]

The number of symbols per block in the lengthened code is thus two
more than the corresponding number for the BCH code. The number of
check symbols may or may not be increased in accordance with
whether or not the number of linearly independent rows remains the
same after the addition of these two columns. One class of BCH
codes for which the number of check symbols does not increase is
the maximally redundant codes. This class includes all Reed-Solomon
codes as well as other codes.

It is possible that in some cases more than two columns can be ap-
pended to the parity check matrix while preserving the designed dis-
tance of the code. No general results have been found, however, for
such cases.* For example, if a column is appended which contains a
single 1 in the (I + 1)th position of the column vector, the resultant
determinant after expansion and factoring is of the form

1 1 e 1
a"l CI!“ P al'l—a
D; — (a:‘.)!—l (ai,)l—l . (a“_.)l—l .
(ail)in (ai.)t+1 . (ar'u-.)iﬂ
(ah)d—z (ai.)d—2 . (a:‘a-.)d-z

Such a determinant can be evaluated as

d-2

D, = ] (&' — &™) [sum of all products of (d — 2 — 1) distinet a’'].
>k

The latter sum of products can be zero even if all the a’' are distinct.

III. LENGTHENED REED-SOLOMON CODES
The Reed-Solomon codes codes with symbols from GF(gq) are BCH
codes formed by choosing the parameter m = 1. These codes have
parameters
block length n=gq-—1,
check symbols per block r = d — 1,

* An exception is d = 4 and g even where three columns can be appended to
the parity check matrix. The appended columns are then the 3 % 3 identity

matrix.



CODING SYMBOLS 2409

and correct any pattern of [(d — 1)/2] or fewer errors in a block of
length n. Any ¢ error-correcting linear code can have no fewer than 2¢
check symbols; this bound is achieved by the Reed-Solomon codes if
d is an odd integer. This is not to say that the codes cannot be im-
proved upon: in particular, the lengthened codes formed as described
in Section II represent a minor improvement.

The lengthened code has parameters:

block length n=q+1,
check symbols per block +' = (d — 1),

and corrects any pattern of [(d — 1)/2] or fewer errors in a block of
length n’' symbols. The lengthened codes are maximum distance
separable (MDS) in that they have the maximum possible minimum
distance for a given block length n’, and code size ¢ ™. These codes
complement the set of maximum distance separable codes given by
Singleton.® The weight distributions of the code words of maximum
distance separable codes are given by Berlekamp.’ The case of single
error-correcting lengthened Reed-Solomon codes (that is, d = 3) are of
particular interest in that they are perfect codes. That is, bounded
distance decoding results in the use of every syndrome. Specifically,
there are ¢° distinct syndromes. There are (¢ — 1) different errors which
can occur in any of the (¢ + 1) different positions resulting in ¢* — 1
different error patterns. The all zero error pattern (no errors) in addition
to the (¢ — 1)(¢ + 1) = ¢" — 1 single error patterns use all ¢” syndromes.

IV. DECODING AND SYMMETRY OF LENGTHENED MAXIMALLY REDUNDANT
BCH CODES*

The columns of the parity check matrix are conveniently labeled:

’

< n —>
101 1 [
001 a (@ -+ (@ °
H=1001 & (@7 -+ @)
01 1 &7 @7 (a"'_;)"'_"‘_
label 0 © 1 « a’ a"'"?

* This section is based on suggestions from E. R, Berlekamp of Bell Telephone
Laboratories.
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where « is a primitive element of GF (¢™) and m, has been taken equal
to zero. If the second column were omitted from this matrix, the re-
sultant code would be an extension of a BCH code of designed distance
d — 1. That is, the resultant code is obtained by appending an overall
parity check digit to a BCH code of designed distance d — 1. The code
with the second digit omitted (block length n’ — 1) is called a “singly-
lengthened” BCH code. The code of block length »’ (which includes all
digits) is called a “doubly-lengthened” BCH code.

For d odd, one decoding algorithm for the correction of [(d — 1)/2]
or fewer errors for the doubly lengthened BCH codes is:

(1) Ignore the last syndrome digit (the only equation involving the
symbol in position labeled e) and decode as in Section 10.3 of Ref. 6
for extended BCH codes. Let D be the number of errors indicated by
the decoding algorithm. If D < (d — 1)/2, decode all positions ex-
cept the position labeled ¢ and then use the last parity check equation
to decode the position labeled oo,

(i) If D = (d — 1)/2, assume that the digit in position e is correct,
modify the syndrome accordingly, and decode as in Ref. 6 using all
digits in the modified syndrome.

The lengthened primitive BCH codes have interesting symmetry
properties. Since the singly-lengthened primitive BCH code is an ex-
tension of a primitive BCH code with designed distance one less, it is
invariant under the affine permutation group on GF(q), as Theorem
10.37 of Ref. 6 shows.

One might hope that the doubly-lengthened BCH code would be
invariant under the triply-transitive linear fractional group on
GF(g) \J = (page 358 of Ref. 6). This is not really the case since the
code is not invariant under the simple permutation * — 1/z. The
doubly-lengthened BCH code is invariant, however, under the multiply
and permute operation of order two specified:

(1) Exchange digits at 0 and 0.

(%) Multiply digit at o' by %2 and then move it to position o«

This operation transforms the H' matrix into the same matrix with the
rows listed in reverse order. Since this operation preserves Hamming
weights, it ensures considerable symmetry.

V. ALTERNATIVE FORMULATION OF LENGTHENED MAXIMALLY REDUNDANT
BCH CODES

We will now describe an alternative formulation of lengthened maxi-
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mally redundant BCH codes which is more complicated than that
deseribed in Section III. However, its real utility is that it gives in-
sight to the problem of determining the weight distribution of coset
leaders for the (unlengthened) BCH codes (a subject discussed in
Section V).

Consider an (unlengthened) maximally redundant BCH code [with
symbols from GF (g)] with check matrix

1 o™ (a™)* .- (@™)"!
mo+1 mg+1y2 - mo +1yn—1
g |l @) @yt
1 amo+d—2 (ami:d—z)2 : : : (am.,+d-2)n—l

where « is an element of GF(g™). Consider an n-vector X [with entries
from GF(g)] such that

251

0

Ta_|

where ¢, and o, are elements from GF(¢™). We now prove the following
inequalities regarding the weight of X, denoted W(X).

Inequality 1: If o, = 0, =0, W(X) 2z d for X #0.

Proof: The vectors X which satisfy HX = O are the code words of the
code with check matrix H and have minimum distance at least d. Thus
the weight of any nonzero code word is greater than or equal to d.

Inequality 2: If o, = 0 and o2 # 0 or if ¢y # 0 and o, = 0, then
W(X)=d-—1.

Proof: We first note that X £ 0 since either ¢, or o, is nonzero. Next
consider the case where o, # 0 and ¢, = 0 and form a new check matrix
H,,, obtained by deleting the first row of H. Now H(;,X = 0 so that X
is a code word corresponding to the check matrix H,y . But any (d — 2)
columns of H;, form a (d — 2) by (d — 2) Vander Monde determinant
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so that the weight of X is at least (d — 1). The proof for the case where
o, = 0 and o, # 0 follows similarly by noticing that X is a code word in
a code corresponding to a check matrix formed by deleting the last row
of H.

Inequality 3: If ¢, # 0 and o, # 0, then W(X) = d — 2.

Proof: Again X = 0 since both ¢, and ¢, are nonzero. Now consider a
check matrix formed by deleting the first and last rows of H. Since X is
in the null space of this new check matrix, every such nonzero vector
must have weight at least (d — 2).
-0
The lengthened eode is now formed of (n + 2)-tuples of the form | —a, |+
X

From before we see that all such nonzero vectors must have weight at
least d. It is easy to verify that the set of code words from a linear code
and indeed that such a linear code is the null space of the check matrix

1 0
00
H =|0 0 H|

01

VI. WEIGHTS OF COSETS OF MAXIMALLY REDUNDANT BCH CODES

In this section we digress from the main theme of this paper to pre-
sent some results on another problem: determining the weights of
cosets (that is, coset leaders) for maximally redundant BCH codes. It
should be emphasized that this problem differs from the widely re-
searched problem of determining the weights of the code words them-
selves.

The complete weight enumeration of the cosets is known only for a
very few classes of codes.® This knowledge is crucial to determining
the performance of codes using a complete decoding algorithm (that is,
maximum likelihood decoding).

In this section we are not able to determine the complete weight
enumeration for the codes under consideration. Rather we can only
give lower bounds to the number of coset leaders whose weight exceeds
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certain values. However, we believe that this knowledge is both new

and useful.
Specifically we are concerned with the weights of coset leaders of
maximally redundant primitive BCH codes. Our main result is:

[Number of coset leaders of weight = d — j]

2 (@"7NG+ Dg" — 4§l =1 for {jg !
2] < d.

This result shows that for a maximally redundant BCH code of
minimum (designed) distance d, in addition to having as coset leaders
all vectors of weight less than or equal to [(d — 1)/2], coset leaders exist
for all weights up to and including (d — 1). The actual minimum distance
of the code, d 4 ¢ 7, may exceed the designed distance d. If[(d4 cr — 1) /2] <
d — 1, the codes cannot be perfect codes and if [(dacr — 1)/2] < d — 2,
the codes cannot be quasiperfect. For Reed-Solomon codes dycr = d
and the codes are not perfect for any d and not quasiperfect for d > 3.

Proof: Consider a coset leader X’ corresponding to the syndrome, S,
where

HX =S = d 1 where o,¢GF(q™ 1=0,1,---,7.

T

Tis2

gy Y

Consider a new check matrix obtained by deleting the first « rows and
the last (j — %) rows of H. X’ must be a vector in the null space of this
new check matrix and will be nonzero unless o, = a = -+- = o; = 0.
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Furthermore every such nonzero vector must have weight at least
d — j since any set of d — 1 — j columns of this new check matrix forms
a Vander Monde determinant. A counting problem remains: counting
the number of distinet nonzero syndromes having a run of d — 1 — j
consecutive zeros. For 7 = j, there are (g™ — 1 such patterns corres-
sponding to the ¢™ different values for each o, (excluding ¢, = g, = - -~
= ¢; = 0). For each 7 < j, there are (¢" — 1)(¢")'™" such patterns
corresponding to the (¢" — 1) distinet nonzero values for o, and the ¢"
distinet values for all other o, , k ¥ 72 + 1. Counting in this fashion, if
2j < d we include each such pattern once and only once resulting in a

total of
@ =144 — D™ =@)7G+ D" —4—1

such patterns.
The above proof not only yields a bound to the number of high

weight coset leaders but also gives an easy way of recognizing their
occurrence from their respective syndromes. Thus if one were to use
bounded distance decoding (decoding only coset leaders of weight =
[(d — 1)/2]), many nondecodable cosets would be easily recognizable by
the form of the syndrome.

A tighter bound can sometimes be obtained by noticing that the
parity check matrix

Fl a™ (anu)z . (aHIn)ﬂ—l
1 c‘!m‘.h:n (ama+a)2 - (anuh:)n—l
H _ 1 amo+2¢: (am.,+2u)2 e (am..+2a)n—l
i ama + [.d--ﬂ)n (am.+(:i—2)n)2 : : : (am. + (d.—aln)n—IJ

yields a code with a minimum distance of at least d if @ and n are rela-
tively prime. Thus the zeros in the syndrome that signify a high weight
coset need not occur as a single burst but rather can oceur with a fixed

periodicity.

VIL. SOME PERFECT SINGLE-ERROR-CORRECTING CODES FOR ANOTHER METRIC
In this section we use the lengthened Reed-Solomon codes to construct

codes for a new metric. In particular, we consider the case where ¢ = p,

a prime, and we are interested in codes that correct errors of the form
41, &2, ---, £ T in a “single position” of a code word. In particular,
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codes are given for T = 1 and 7' = 2. For T' = 1, these codes are single-
error-correcting Lee metric codes.”

The lengthened Reed-Solomon code used in the construction of these
codes has a check matrix

— w=pt+l—>

H,=[1 011 1 --- 1}
01 1 a o -+ o°

where a is a primitive element from GF(p). The null space of this matrix
is a perfect single-error-correcting code for the Hamming metric. That is,
it corrects any error [£1, &2, - - -, ==(p — 1/2)] which occurs in any one
position in a code word.

Consider the case where it is required only to correct an error of the
form +1. Also consider the new check matrix

.(-—-?’L"z(pgl)n’ﬁp ";1

= &

H=[H °H’ 3H' - (p—; I)H’]-

To show that the null space of H” will correct any single error of the
form =1, we need only show that all columns of H aredistinct fromeach
other after multiplication by = 1. This follows immediately from noticing
that all pairs of columns of H' are linearly independent over GF(p).

We prove the code is perfect by noting that 2n”" + 1 = p® syndromes
are needed to correct a =1 error in each of the n'’ positions (plus the all
zero error pattern). But since H' has two rows, there are exactly p’
syndromes; every syndrome is used to correct the required error patterns.

The above code has the same block length, number of check symbols,
and error corrections capability as Berlekamp’s perfect megacyclic single-
- error-correcting Lee metric codes.”

The form chosen for H' with the first row consisting of all ones and a
single zero makes the decoding algorithm easy. Let

S = [Z’] where *@4;—1) o0 = 11:‘2__11 =1,2.
2

The algorithm is as follows.

(i) If o, = 0, the error is in position 2 + (| o2 | — 1)n” and has value
sgn (o).
(i) If o, = 0, the error is in position 1 + (| o, | — 1)n’ and has

value sgn (a,).
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(#22) If o, # 0 and o, # 0, let = be the solution to the congruence
7,0 = o mod (p). The error is then in position (z + 3) + (loy| — D)7’
and has value sgn (¢,).

As an example, consider the code for p = 5 with « = 2, a primitive

root. Then
H - [1 0 1 1}
01 2 4 3

H,,=[101111202222}
0112 43022431
Consider an error pattern resulting in the syndrome [7;]. Solving
for z [in accordance with (¢iz) above] we have
(—2)2° = 2 mod (5)
2" = —1 mod 5,
which has the solution z = 2. Thus we have an error in position
@+3)+ (o] - =@+3) +(—-2|—16=11
having the value —1.
A more interesting case arises when one desires to correct a single
error of magnitude +1, —1, +2, or —2. We give a construction pro-
cedure which results in perfect codes for the case where the prime p is

such that there exists a least positive integer ¢ which satisfies the con-
gruence

(S w—y
—t

and

2 = — 1 mod p.
Form the multiplicative subgroup
1248 ---2" = —1 Mt = _9 ... 287

Let ag = 1, and consider the coset table:

a4y 2a, 4a0 8a, - 2Man= —ao 42" = —2a, -+ (2" Nao

a 2a, 4a, 8a; - —a, —92a, cee (2% Nay

(17 2(]2 4:0:2 8(1;2 T — s —20,2 e (2‘““1)@2
a1 20y 44y, 8a;-, - — Q- —2a,_, (2“_1)01-1

where 4l = p — 1.



CODING SYMBOLS 2417

Now again begin with the check matrix for the lengthened Reed-
Solomon single error-correcting code

«—n'=p+]l——

M o111 -+ 1
ol J
011 a o -+ o°
and form the new check matrix
H'' = [aH 2%aH 2%aH --- 22N H' aH' 2°%a,H’
22 | - g H 2%, H' - 2*¢=Vg, H'].

The block length of this code, n™”, is

-1 ,_p =1
r T 1

n'" = Un’ =

In order for the code to correct all single errors of the form +1, &2,
we would require 4n’” + 1 = p* syndromes. Since the code has two
check symbols, it has exactly p* syndromes available for error correction.
Thus the code will be a perfect code if we can prove that its error correc-
tion capability is as asserted.

Proof: We must prove that any column of H'"’, when multiplied by
+1, —1, +2, or —2, is distinct from any other column of H"’ when
multiplied by +1, —1, +2, or —2. If the two columns in question come
from two distinet columns of H’, then this is certainly the case since the
columns of H' are linearly independent over GF(p). Let the pair of
columns in question be derived from the same column of H', say h. One
such column is of the form 2 a; h and the other is of the form 2*'
a;,h where (0 < I,,l, =t —1)and (0 £ ji,j. =1 — 1). Nowlet z be

any member of one of the cosets. Then —z, +2z, and —2z are also

members of that coset; so we need only consider the case j; = j» . But
(D) = 2* (1)(22) = 2%
@)@ = 2+ @)@ = 9P
(=12 = 2700 (—1)(@) = 22+

(_2)(2211) —_ 22(h+t)+1 (_2)(22[.) — 22(l,+|)+1'

and no term in the left four equations can equal a term in the right four
equations for I, # 1;,0 £ 1, , o =t — 1. Thus the assertion is proved.
As an example, let p = 13 where 2 is a primitive element of order
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4t = 12. Thust = 3 and I = 1. The matrix H' can be taken as
H,=[101111111 11111}

0112 48 3 6 12 11 9 5 10 7

and H' is
H” = [H' 4H 3H/.

As a second example let p = 17. The coset table is

1 2 4 8 16=-1 15 13 9

3 6 12 7 14 11 5 10

The check matrix H'"' is

< 72 > 1
H' = [H' 4H’ 3H' 12H'] 2
l

where H’ is a two row by 18 column check matrie formed in the manner
deseribed. Berlekamp has given a code for p = 17 with block length
72 with Lee distance 5 that requires four check symbols.” The above
code requires only two check symbols but corrects only a small subset
of the class of errors correctable by Berlekamp’s code. Wyner has found
several classes of codes which correct two errors per block, each error of
the form ==1.° One such class has a block length of p and requires three
check symbols.

In the proof we have given a decomposition of the integers 1, 2, ---,
p — 2, p — 1 = 4m into disjoint sets S,S, - -+ S,, each containing four
elements, such that the elements of each set are of the form z, 2z, —z,
and —2x (mod p). A sufficient condition for this decomposition was

that there exists a least positive integer ¢ such that 2* = —1 (mod p).
The appendix shows that this condition is necessary for this decom-
position.

In particular we consider the following question in the appendix:
For which primes p and elements 8 from GF(p) is it possible to partition
the nonzero field elements (1, 2, --- , p — 1) into four element subsets,
S, , such that S; = {z:,Bz:, — ; — Bz:} (mod p), where each nonzero
field element oceurs in one and only one subset? We show that the
answer is: Such a partition ecan be achieved if and only if there exists a
least positive integer ¢ such that 8% = —1 (mod p). Stein has considered
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a more general version of this problem.” The results in the appendix
were proved independently of Stein.
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APPENDIX
On a Partitioning of the Nonzero Elements of GF (p)
By R. L. Graham and J. K. Wolf

A.1 Introduction
The problem we consider is: For which primes, p, and elements, 8,
from GF (p) is it possible to partition the nonzero field elements of
GF (p) into mutually exclusive and exhaustive four element subsets,
S;, such that
Si = {:Ci 3 Bxi y — i, _th'}r (mOd p)?
A necessary condition for the existence of such a partition is that

B #= {il mod p;
0

otherwise the subsets would not contain four distinet elements.

We will show that a necessary and sufficient condition for this parti-
tion is that there exists a ¢ such that 8* = —1 (mod p). Further we
will show that for a prime of the form p = 8kt 4 5 such a partition
always exists for 8 = 2.

A.2 Proof of Assertion

T'irst notice that a necessary condition for this partition to exist is
that p = 4m + 1 for some m = 1, since p — 1 must be divisible by
four. A second necessary condition is that

1
g #= 0 (modp).
-1

Let r be a primitive root of p so that +** = —1 (mod p). Define «
as the smallest positive integer such that »* = 8 (mod p). By assumption
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8 = —1 (mod p), so that o # 2m. The subset S; must then consist of
the four elements

S.‘ — {?‘B‘l’ Tg-.'+m’ ,ru.'+2m, ry.‘+2m+a}

so that an equivalent problem is to decompose the additive group
Z,,=10,1,2 ---,p — 2 = 4m — 1} into mutually exclusive and
exhaustive subsets of the form S} = {y.,y: + @, ¥;: + 2m, y; + 2m + «}
mod (4m)].

This problem can be viewed geometrically as that of covering the
vertices of a regular 4m-gon placed on a circle by translates of the
pattern {0, &, 2m, o + 2m}. This pattern is symmetric modulo 2m, so
the problem reduces to covering the vertices of a regular 2m-gon
placed on a circle by translates of the pattern {0, «}. This pattern
{0, a} can be viewed as a chord spanning « vertices. For example, for
m = 6 and « = 5, this covering is shown in Fig. 1 while for m = 6 and
« = 4, no such covering is possible.

Fig.1— A covering for m = 6 and « = 5.

In terms of sets, the problem now is to decompose the additive group
Zam into m mutually exclusive and exhaustive two-element subsets,
8!, of the form 8 = {y,, y; + «} (mod 2m).

In the following, we denote by [2m, «] a covering of the 2m-gon by
chords spanning « vertices. Letting 2m = 27(2v + 1) we now prove
the following theorem.

Theorem 1: A [2m, o] covering exists if and only if 27 t o. We prove this
theorem by first proving the following lemmas.

Lemma 1: A [2m, o] covering exists if *(2m, o) = 1.

* (z, y) = greatest common divisor of z and y.
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Proof: Let 8 = {2(i — 1)e, (2¢ — 1)a} (mod 2m),i = 1,2, --- , m.
Then the subset S}’ is of the proper form and it remains to show that
each element of Z,, appears in one and only one subset. Assume that
an element of Z,,, appears in more than one subset. Then for 0 = 7 =
.'i =2m — 1,

ia # jo (mod 2m)
or

(j — 2)a # 0 mod 2m.

But by assumption (2m, «) = 1 so 2m and « have no common factors.
Thus 2m | (j — %) which is impossible since (j — i) < 2m. We have
then shown that no element of Z., appears in more than one subset.
But there are 2m elements in the m subsets so that each element of Z,,,
must appear once and only once in those subsets.

The decomposition used in the proof of Lemma 1 can also be viewed
as taking alternate edges of the regular star of step size «. For ex-
ample, the covering in Fig. 1 can be viewed as taking alternate edges
of a star of step size . In Fig. 2, this star is shown for m = 6 and « =
5 with the alternate edges as solid lines.

Lemma 2: A [z, o] covering extsts if and only if a [kz, ka] covering exists,
where b = 1.

Proof: 1If a [z, «] covering exists, a [kx, ka] covering can be obtained
by simply interleaving the [z, ] covering k times. If a [kz, ka] cover-
ing exists, the chords must span exactly ko vertices. Thus deleting all

Fig. 2 — A star of step size 5 for m = 6.
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vertices except those congruent to zero modulo %, we have a [z, «]
covering,

Lemma 8: A [z, a] covering does not exist for x odd.

Proof: The covering problem is that of partitioning the integers
{0,1,...,z — 1} into two element subsets. For this to be possible two

must divide z.

Lemma 4: Let 2m = dM and « = dA, where (A, M) = 1. Then a
[2m, «] covering exists if and only if M is even.

Proof: From Lemma 2, a [2m, «] = [dM, dA] covering exists if and
only if a [M, A] covering exists. But from Lemma 3, a [M, A] cover-
ing will not exist if M is odd. If M is even, since (4, M) = 1, Lemma
1 insures the existence of a [M, A] covering.

Proof of Theorem 1: Let 2m = 2"(2v + 1) = dM and a = dA where
(4, M) = 1.If 2" | @, then 2" | d and M will be odd. By Lemma 4, a
[2m, a] covering will not exist if M is odd. Conversely, assume that
2" t a. Then 2| M and M is even and by Lemma 4, a [2m, o] covering
exists. QE.D.

Using Theorem 1 we now prove the main result, which is given as
Theorem 2.

Theorem 2: The nonzero elements of GF(p) can be partitioned into
mutually exclusive and exhaustive 4 element subsets, S;, such that S; =
{z:, Bz, —x:, 533 } (mod p) if and only if there exists a positive
interger t such that 8** = —1 (mod p).

Proof of Theorem 2: From Theorem 1, such a partition is possible
if and only if 27 } a. Let us first assume the existence of a positive
integer ¢ such that g* = —1 (mod p). But »* = 8 (mod p) so tha,t
7?2 = —1 (mod p). Since r’ = —1 (mod p) implies

5=t -1 = @+ D(252) = @+ nem,

for some [, then a2f = (21 4+ 1)(2m) = (21 4 1)(2v + 1)2”. Thus af =
2" (2l + 1)(2v + 1) and 27 £ e

Next assume that 2” } «. There exists a y such that »** = g*
—1 (mod p) if and only if

oy = (@_;_1)(2q +1) =2m@2q+ 1) = 2'@ + D + 1)
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for some ¢. But 2 } a, so y must have an even factor, that is 2|y.
Thus y can be written as y = 2t and 8 = —1 (mod p). Further notice
that the condition

"

87 0 (modp)
s
is subsumed by the condition 8 = —1 (mod p). Q.E.D.

A.3 A Special Set of Primes with the Desired Partition

Each of the two theorems in Section A.2 give a necessary and suf-
ficient condition for the desired partition. Either condition, however,
requires some calculation to discover whether p admits such a parti-
tion. The following discussion yields an easily recognizable class of
primes, p, for which the partition will always be possible if g8 = 2.

The Legendre symbol (a/p) is defined as

[ 1 if 2 = a has a solution in GF(p) (that is, a is a
quadratic residue mod p)

(a/p) =3 —1 if z* = a does not have a solution in GF(p) (that is,
l a is a quadratic nonresidue mod p)

0 if a=0.
Lemma 6: A sufficient condition for the partition to exist is (g/p)

Proof: By Euler’s eriterion

a”""”* = (a/p) mod p.
Since p — 1 = 4m, if (8/p) = —1 then g°” = —1 mod p, and the
partition is possible for that 8 and p.
One can show (p. 172 of Ref. 6) that (2/p) = —1if p = 8k + 5 for
some k. Thus if 8 = 2 and the prime p is of the form p = 8k + 5
such a partition can be achieved.
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