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This paper considers the deterioration in performance of angle-modulated
systems resulting from interchannel interference. We show that with band-
limited white gaussian noise modulation (simulaiing modulation by a
frequency division multiplex signal), we can derive an explicit expression
for the spectral density of the baseband interchannel interference when two
or more PM waves interfere with each other.

We show that, if the interference is co-channel, maximum inlerference
occurs at the lowest baseband frequency presenl in the system and we can
derive upper and lower bounds to this minimum baseband signal-to-
interference ratio. For high enough modulation index, we show that this
minimum signal-to-interference ratio is proportional to the cube of the
modulation index and that phase modulation can be used with advantage in
interference limited systems. We do not consider the effects of linear filters
on angle-modulated systems, but give some results about the effect of adjacent
chanmel interference when the interference is in the passband of the receiver.

I. INTRODUCTION

The properties of frequency and phase modulation with respect to
exchanging bandwidth for signal-to-noise ratio are well known,** but
the type of noise considered is almost always limited to be random
gaussian noise. In the design of any system, where the noise is likely to
be interference limited, it is necessary to consider other kinds of dis-
turbances such as co-channel and adjacent channel interference cor-
rupting the desired received signal.

Consider the following situation. In the frequency bands above 10
GHz where the signal attenuation resulting from rain could be very
severe, close spacings of the repeaters are almost always mandatory
for reliable communication from point-to-point and for all periods of
time.®* If low noise receivers are used in the system, it is possible
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that the total interference power received by the system may be very
much larger than the noise power in the system. For all practical
purposes, the performance of such a system is determined by the
interchannel interference.3* It is therefore desirable to evaluate the
effect of co-channel and adjacent channel interference on the per-
formance of any modulation system like FM or PM (or PCM) so
that its advantages in combating interference can be determined, and
any system parameters (such as rms phase deviation, channel separa-
tion, and so on) can be properly chosen to keep the baseband inter-
ference below a certain desired level. (It is possible to reduce ad-
jacent channel interference by using suitable receiving filters, but
co-channel interference occupies the same band as the signal.)

The problem of interference in angle-modulated systems has been
considered by many authors.>? In the analysis, most of these authors
have given an approximate expression (the first term in the power
series expansion) for the baseband interchannel interference, and have
shown that it can be expressed as the convolution of the spectral
densities of the angle-modulated waves. The accuracy in this ap-
proximation has not been determined previously. Also, in the calcula-
tion of interchannel interference in high index FM and PM systems,
most of these authors use the quasistatic approximation, the accuracy
of which is unknown.

We first consider a general method of evaluating the baseband inter-
channel interference when two angle-modulated waves interfere with
each other. We assume that an ideal angle (frequency or phase) demod-
ulator is used in the system. (An ideal angle demodulator does not respond
to any variations in the amplitude of the wave. This can be achieved in
practice by using an ideal limiter at the front end of the receiver. If
A(t)e'™*" is the input to an ideal limiter, its output is given by 4,e'**"
where A4, is a constant.)

We obtain a general expression for the baseband interference when
the modulating wave is gaussian. This expression can be utilized even
when the baseband signal is passed through a linear network (such
as a pre-emphasis—de-emphasis network) .

We are specifically interested in calculating the baseband inter-
channel interference between two or more waves phase modulated
(without pre-emphasis) by band-limited white gaussian random
processes. It has been found in practice that such a random gaussian
noise of appropriate bandwidth and power spectral density ade-
quately simulates (for some purposes) a variety of signals such as a
frequency division multiplex (FDM) signal, a composite speech
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signal, and so on.'® Since the determination of the power spectrum is
fundamental to the evaluation of baseband interference, first we re-
view briefly the methods of obtaining this spectrum for a wave phase
modulated by band-limited white gaussian noise.

In the case of band-limited white gaussian noise modulation, if
the bandwidths of the modulating waveforms for the desired and
interfering carriers are the same, we show that the determination of
baseband interference power is relatively simple, and requires only
the computation of the spectral density of a phase-modulated carrier
for a variety of values of rms phase deviation. For small values of
interference and for band-limited white gaussian noise modulation,
we also show that the first term in the series gives most of the con-
tribution to the baseband interference, and that this first term can be
used as a good approximation.

For a co-channel interferer, we show that maximum interference
occurs at the lowest baseband frequency present in the system (we
assume that this lowest frequency is f = 0)* and that we can derive
upper and lower bounds to this minimum signal-to-interference ratio.
For sufficiently high modulation index, we show that these bounds are
proportional to the cube of the modulation index, and that phase
modulation can be used to advantage in combating interference.**

We show that maximum interference with an adjacent channel inter-
ferer occurs at the highest baseband frequency present in the system
if the carrier frequency separation f; between the two channels is
relatively large compared with the baseband bandwidth W. For a
set of values of fg/W and for different modulation indexes of the two
channels, we compute this minimum signal-to-interference ratio and
give the results in graphic form.

We then consider the case in which more than one interferer may
corrupt the desired received carrier and show that we can derive an
expression for the spectral density of the resulting baseband inter-
ference. This expression is in the form of an infinite series and for its
evaluation, in the case of band-limited white gaussian noise modula-
tion and equal modulation bandwidths, it is only necessary to be able
to compute the spectral density of a sinusoidal carrier phase modulated
by gaussian noise. In case all these interferers are co-channel and all
of them have the same (high) modulation index ®, we show that we
can derive upper and lower bounds to the minimum baseband signal-
to-interference ratio.

* We do not imply that maximum baseband interchannel interference always
oceurs at f = 0 for any general system angle modulated by gaussian noise.
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II. INTERFERENCE BETWEEN TWO ANGLE-MODULATED WAVES

We first assume that there is only one interfering wave corrupting
the desired received signal, and that both of them are angle modulated
by two independent gaussian random processes. Let the desired angle-
modulated wave be given by

s(1)

I

A cos [w,t + p(t) * o(1)] (1)
= Re A exp {jlw.t + p(t) * (1)1},

where 4 is the amplitude of the wave, f, = w,/27 its carrier frequency,
p(t) the impulse response of the pre-emphasis network, and
¢(f) is a stationary gaussian random process with mean zero, and
covariance function R,(r). (We only assume that p(t) is the impulse
response of a linear network through which ¢(f) may be passed. Only for
convenience, we refer to it as the impulse response of the pre-emphasis
network.) The notation 4 (z)*B(x) represents the convolution of function
A(z) with B(z).
Let the interfering wave %(f) be given by

() = R; A cos [w;t 4+ pi(f) * (1) + p:)
Re AR; exp {j[w.-i + Pf(t) * ‘P-‘(t} + #i]}:

where AR, is its amplitude (R, is the relative amplitude of the interfering
wave with respect to the desired wave), w; is its angular frequency, p;(f)
is the impulse response of its pre-emphasis network, and ¢.(t) is a
stationary gaussian random process with mean zero and covariance
funetion R, (7).

Since s(f) and #(¢) usually originate from two different sources, it
seems reasonable to assume that p; is a uniformly distributed random
variable with probability density m,,(x) where

@)

0=pu<22r

() = 42r 3

0 , otherwise.

Further, we assume that ¢(f) and ¢;(¢) are independent of each other
and independent of p;. (Reference 13 treats of the case in which p; is
a deterministic constant, and ¢(¢#) and ¢;(¢) are not independent of
each other.)

If we assume that s(f) and ¢(f) are both in the passband of the
receiver used in the system, the total signal r(t) incident at the re-
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ceiver is given byt

r(f) = Re A(exp {jlw,t + p() * ¢()]}
+ R; exp {jlwit + p:(1) * oi(t) + p:l})
= Re A(1 + R, exp {jl(w; — w)t + p:() *@:() — p(D) * o(8) + 1))
-exp {flw,t + p(t) * o(1)]}

= Re Aa()e™" exp {jlw.t + p(t) * o(D)]}

= Re Aa(l) exp {jlo.t + p(®) * () + MO, 4)
where

a()e™” =1 + R,

cexp {jl(w: — w)t + pilt) * oi() — p(1) * () + nd}. ()
Notice from equation (4) that the (excess) phase angle 7(t), as
detected by an ideal angle demodulator, is given by

7(t) = o) + MD). (6)
(The gain—or proportionality factor—of the phase demodulator has

been assumed to be unity.) Therefore, the spectral density of 5(£) can
be written as

S0 = [ R d, @
where Ry(r) is the covariance function of 4(t), and
R,(r) = (a@®n(t + 7). (8)

(The notation (x) represents the ensemble average of random variable
z.) If there is no interference, and if g(t) is the impulse response of
the de-emphasis network used in the system, the detected phase angle
Q(t) ecan be written as

(2] ri=0 = a(t) * p(t) * ¢(B). 9)

If R, == 0,
() = q() * p(®) * o) + &) * ). (10)
Now if we assume that the de-emphasis network is the inverse of
+In this paper we do not consider the effects of linear filters usually used in

receiving systems on the interchannel interference between two (or more) angle-
modulated systems.
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the pre-emphasis network, we have

q(t) * p(t) = 8(1), (11)

and
Q) = o(t) + q@) * 1), (12)
where §(¢) is the Dirac delta function.
From equation (5), we have
At = ImIn (1 + R; exp {jlwsd + pi(t) * @i(t)
= p) * o) + wil)),  (13)

where
Wy — wW; — W, . (14)
Notice that
m(l+2= D5, z)<, (15)
m=1

where z is any complex number.
Therefore, for R; < 1, we havet

(_ 1)m+1

M) =

L

, R,,.[exp {imlwd + p.(8) * 0:(t) = p(O) * o)) + wi]}
1 2j

exp {—jmwit + pi(t) * eit) — p(D) * (1) + p-.-]l:l
2j

( 1)m+1

R sin {mlwit + pi()) * 0:() — p(0) * o(0) + w).
(16)
Since ¢(t), ¢:(t), and p are statistically independent random vari-
ables and since (exp (jkp;)) = 0 with k %4 0, we can show from equa-
tions (6), (8), (13), and (16) that

] 2m

R7) = Byla) * By(r) + 3 G cos mar

m=1

P>

m=1

+eXp (_mz{[RwJ(O) - Rm:('r)] + [Rwivi(o) - RPHH(T)]})I (17)
+ For B¢ < 1, notice that a(t) > 0.
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where?
R = [ pliptt + 7 dt (18)
R = [ popte+ 0t (19)
Rg:'p('r) = R,(T) * Rv(f)) (20)
and
Rws‘p-(T) = RD.‘(T) * RP-‘(T)‘ (21)

Therefore, the spectral density of the output is given by

$u) = S+ [T oo e (= — )+ Tl + mfa), @2

where H, (f) is the Fourier transform of p (%), and

E:)

Tu) = [ exp (=m0 {[Roy(0) = Roy(r)]

+ [R«;im(o) - Rw;pi('r)]})e_ﬂ”f dr. (23)
From equation (23), we can show that

T.(f) = Un(f) * V.(f) (24)
where!

L]

Uu) = [ exp 1=m'(Ro(0) = Ro(lle ™ dr,  (26)

and

w0

V) = f exp {—m[R..,.0) — Ruou ()]} dr.  (26)

Equation (22) gives a general expression for the baseband inter-
channel interference when two angle-modulated waves interfere with
each other. To calculate this interchannel interference, equations (22)
through (26) show that it is essential to determine the RF spectral
density of a wave angle modulated by gaussian noise. Methods of

t Since () and ¢() are assumed to be gaussian, p(¢) * (1), and p:(1) * () are
also gaussian.21® Notice also that the Fourier transform of R,(7) is equal to | Ha( )3
if Hp(f) is the Fourier transform of p(t).

9 Notice that Un(f) and V..(f) are the RF spectral densities of waves angle
modulated by gaussian noise.
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calculating this spectrum for low and medium index modulation are
generally available, and the quasistatic approximation has been used
for high index modulation.>**% Since the accuracy in the quasistatic
approximation cannot often be determined, some rigorous methods
of evaluating this spectrum for high index modulation have recently
been developed.?*®

III. SPECTRAL DENSITY OF A PM WAVE

In this paper, we are specifically interested in determining the in-
terchannel interference between two or more waves phase modulated
by band-limited white gaussian random processes. Hence, we now
review briefly the methods of obtaining the RF spectrum of such a
wave. A sinusoidal wave of constant amplitude A phase modulated by
a signal n(¢) can be written as

w(t) = A cos [wot + n(t) + 6], (27)
Re 4 exp {jlwot + n(t) + 6]}, (28)

where f, = w,/2 is the carrier frequency of the wave, and 6 is a random
variable with probability density function

<
ro(8) = {1/275 0=<6<2r @)
0, otherwise.

Il

If the modulating waveform is band-limited and white, its spectrum
8. (f) is given by (see Fig. 1)

P°/2W, < W,
S.(0) = { 20, 7] (30)
0, otherwise.
SPECTRAL DENSITY
IN RADZ2 PER Hz
.bz
2w
-W w FREQUENCY, f,
IN Hz

Fig. 1 — Spectral density of modulating wave.
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Notice that Ref. 16 treats, in detail, the methods of obtaining the spec-
tral characteristics of a sinusoidal carrier phase modulated by such a
signal. From equation (30) we can show that (see Fig. 2)

_ g2sin2rWr
B.(7) = @ 2aWr (1)

For & > 1 and for low frequencies, the quasistatic approximation
yields®"*®

) A exp (— & L2y [_ﬁi(i)“]. :

So(f) = exp (=) o) + 577 (52) o | =5 3 7 (32)
One can show that the approximation given by equation (32) is only
good at low frequencies and that it is too small for large f.*°

For large modulation indexes (® > 1.7432 rad) and for all frequen-
cies, we can show that?®

$0) = exp (=3 {30 + o (4G + V) = ualf W)]}

2 3 'n-h 8
+ —= 3 W exp [—2@ (cosh2 % — Siy.—y)]p., (33)
where
u_,(x) = {1’ z >0, (34)
0, otherwise,
2 2
S T
coshy, sinhy,  f
T 30
and
_sinhy, 2 _f .
‘42 - ya y, ‘I’zl'V- (‘37)

We can also show that € and D, appearing in equation (35), are less
than 8 per cent for @ > (10)* rad. Further, for all f, one can show
that'®

¢ <29, for & > 5Hrad, (38)

and

D <29 for & > Hrad. (39)
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4N\

Rn(7)
¢Z

o \T
/2'11'
-0.2
-0.4
0 1 2 3 4 5 6 7 8 9

2TWT

Fig. 2 — Covariance function R.(r). Since R.(r) is an even function of =, we
only show R,(r) for r = 0.

Hence, we can say that

() .
F~\e%4,/ (40)
and that the fractional error in this approximation is very much less
than unity (less than 2 per cent, ® > 5 rad).

For f = 0, from equations (33) through (37) we can show that

0.92 (i)i-l—— < Sy(f) — exp (— &%) a(f) < 1.08 (ﬂii
4 \or) W v exp P \or) W

& > (10)! rad. (41)

For any f and @®, the determination of the spectral density Sy (f)
from equations (33) through (40) is rather simple. For any given f,
&* and W, we calculate y, from equation (36), and A, from equation
(37). The spectral density Sy(f) is then calculated from equations
(33) and (40).
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IV. INTERFEREN CE BETWEEN TWO PM WAVES

We now assume that ¢(t) and ¢ (t) in Section II are band-limited
white gaussian random processes with the same bandwidth W and rms
phase deviations ® and &, We also assume that p(t) = pi(¢t) = 8(¢),
or that no pre-emphasis—de-emphasis networks are used in the sys-
tem. Therefore, we have

L asin 2aWr
R(r) = 2aWr “2)
and
_ osin 2zWr 21rWr
R, (r) = & o (43)
From equations (22), (23), (42), and (43) we can writef
where
Gm(f) = %[H.,,,(f - mfd) + Hm(f + m,fd)]l (45)
and

H,(f) = f_m exp l:—mz(CI)2 + CDE)(I - %)]gﬂ'“” dr.  (46)

Notice that G.(f) is the spectral density of a sinusoidal carrier (at
carrier frequency mf, , and having unit amplitude) phase modulated by
a band-limited white gaussian random process having mean square phase
deviation m*(®* + &°). Section III gives methods of obtaining this
spectrum for all values of f; hence, Sq(f) can easily be calculated.
In order to evaluate Sq(f) from equation (44), we must be able to
determine the spectral density of a earrier phase modulated by gaussian
noise for any arbitrary modulation index. In the case of band-limited
white gaussian noise modulation the technique presented in Ref. 16 is
very convenient to calculate this spectrum. The series method of
determining this spectral density can become rather tedious when & or
®; is large.

When there is no interference, the signal as detected by an ideal
phase demodulator is given by ¢(t), and its spectral density by S,(f).
Therefore, from equation (44), the spectral density S;(f) of the base-

t Notice that in this case Q1) = 5(t), since p(¢) = pi(t) = &(¢).
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band interchannel interference can be written as

S:(f) = Salf) — Sw(f)r (47)
or
s = S5 6.0, (48)

Figure 3 is a graph of S;(f) for f,/W = 0,1, and 5; ® = 3 rad, and
&; = 2 rad. Notice that, for fo/W = 1, 8;(f) is maximum at f = 0 or
that maximum interchannel interference occurs at the lowest baseband
frequency present in the system.

In practice the quantity of interest is usually the ratio of the aver-
age signal power to average interchannel interference power. In this
case this signal-to-interference ratio o (f) can be written as

_ 8.0 af _ 8.0
‘D=5 af T S0 (49

where Af is the spot frequency band of interest. Clearly, o(f) is a func-
tion of f and in designing an angle-modulated system one is usually

N
I I
INTERFERING

<57 SPIKE T~_
10-1“ T “
>< N
10-2 P k \\N

S5;(F)

3 104 \

10-% \
10”% \

1077

o] 2 4 6 8 10 12
f/w

Fig. 3 — Spectral density S:(f) of baseband interference. ® = 3 rad; ®: = 2 rad.
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interested in the minimum value of (f) for 0 < | f| £ W. We denote
the minimum value of this signal-to-interference ratio by S/I. In practice
a phase demodulator is followed by a linear low pass filter. We assume
that this filter is ideal and that it removes all the frequency components
outside the desired signal frequeney band 0 < | f| = W.

4.1 Interference Between Two Co-Channel PM Waves

In general, one can show (see Fig. 3) that S;(f) contains a (nonzero)
Dirac delta funetion (corresponding to a line spectrum) at the frequency
=+f; , and that the frequency division multlplex channel corresponding
to this frequency may not be usable.’ In case the interference is co-
channel, f; = 0, and the line spectrum lies at the frequency f = 0. In
systems usually encountered in practice, there is no frequency division
multiplex channel at de even though the lowest frequency present i m the
baseband signal may approach a frequency arb1trar11y close to zero.'

Notice from equation (48) and Fig. 3 that, in the case of co-channel
interference between two PM waves, maximum baseband interference
oceurs at the lowest frequency present in the system; we assume that
this lowest baseband frequency lies arbitrarily close to zero. In this
case the minimum signal-to-interference ratio therefore occurs at f =
0 and

1

SIT = 517 oy

(50)

where

S10) = S E () — exp [—m'(@ + )] 6Dy . G

m=1
Since the interference is co-channel we further assume that ® = @
so that the rms phase deviations in the two PM waves are the same.
We can now write

-1

Si0) = 3 L .0 — e (-20°8) 8]y . (52)

m=1

Consider the case ® > (5)* radians. In this case one can show that'®

1 (3\
— - N, P ~ 0 2
H) — oxp (—20°8) 01~ g () 69)
and that the error in this approximation is less than 8 per cent. Hence,

t We do not put any lower limit on the width of any frequency division multi-
plex channel present in the baseband signal.
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we have

0.23 (g)* °° Rm §10) < ( )* i&m &> (5) rad. (54)

PW A\ ¢IJW

It can be shown that

ZRM QR?) = foe,t_d;ﬁ- (55)

m=1

Therefore, the signal-to-interference ratio at f = 0 is bounded by

1 (”)% PS> (’T)i L &> (5 rad.  (56)
0.46 \3/ Q&) 0.54 \3) Q&Y' : :
For any value of R; < 1, equation (56) gives upper and lower bounds
to S/I. We shall now investigate whether we can derive simpler upper
and lower bounds to Q(R3).
From equation (55)

SR gy 3 oplom i O/RD, (57)

m

m=1 m=2

Now one can show (see Fig, 4) that

0 < Eexp[ mln(l/R <f exp [ ;th(l/Rz)]d

= m’

= Ey[In (1/R?)], (58)
wheref
Fa(e) = flw e;—:dt, 2> 0. (59)

We can show that for B; < 1, (In 1/R? > 0), (see Ref. 17)
R;

0 < By(n /RY) < 577 »

(60)
or

QRY < R?[l + M)] o

Since

t The function Exz) is tabulated in Ref. 17 (see pp. 228-248). Notice also the
inequality Ex(z) < e¢7*/(z +n — 1) on p. 220,
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/¥ _ExP [—xﬂn(w/Rﬁ)]
%7 —
o %

D

o 2 4 6 8 10 12 14
X

Fig. 4. — Function exp [—x In (1/R2)1/z* and Z*m=e Ri2™/m*. The area in the
shaded region is less than the area under the curve from z = 1.

o0 2m 0 2m
YA SE L ma-R),  am)<-ma-R). 62
m=1 m=1
We are thankful to W. T. Barnett for having suggested another upper
bound R}/(1 — RY) to Q(R3).
One can show that the bound given in equation (62) is tighter than
that given in equation (61) if

R, < R, = 0.695573. (63)
Let us write
1
14+ 5, Ry <R, <1,
U@ = 2 4+ In (1/R3) (64)
— R?
—hl(lizR’) y O0<R; <R,,
R;
so that
R < QRY) < RIU(RY), 0 <R <1. (65)

For carrier-to-interference ratio of 10 dB or for B} = 0.1

o 2m
R: < ZR" < 1.0536 R? . (66)

3
m=1 ™M
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From equations (56) and (65), we next write

1 z)* | (W)*Lj’f__
0.46 (3 RS>0\ R uEy

® > (5irad, R; < 1. (67)

Since the physical characteristics of elements used in a PM receiver
are far from being ideal, and since thermal noise (which is always
present) further deteriorates the performance of any PM receiver, we
often find that R? < 0.1 in systems currently in use. Equations (66)
and (67) show that the error introduced in truncating the series at
m = 11is less than 5.36 percent if 7 < 0.1. For any R; < 1, we therefore
need take only the m = 1 term in equation (54) to estimate the baseband
interference. Equation (67) gives upper and lower bounds to S/I for
any R; < 1. Also, note from equation (67) that co-channel interference
can be suppressed in PM systems by using a large modulation index &."*

4.2 Interference between Two Adjacent-Channel PM Waves

As mentioned in Section II we do not consider the effects of linear
filters on angle-modulated systems. We assume that the desired and
interfering wave are both in the passband of the PM receiver used in the
system, and that no filters are used to reduce the adjacent channel
interference.

In any multichannel angle-modulated system generally encountered
in practice there is usually both adjacent channel and co-channel
interference. Protection against adjacent channel interference is often
obtained by proper choice of the channel separation frequency and the
required (linear) filters generally used in such systems. The assumptions
made in this section are, therefore, a little unrealistic; hence, the results
given may serve only as a guide in the actual calculation of adjacent
channel interference.

For 0 < f,/W < 1, one can show that S;(f) contains a (nonzero)
Dirac delta function (eorresponding to a line spectrum) at the frequeney
+f, and that the frequency division multiplex channel corresponding
to f;/W may not be usable.

For f; # 0 we can show, from equations (44) through (46), that
o0 2m
S = S

2
m=1 M

Gn(f), (68)

where

Gu(f) = HHL( — mfs) + Ha(f + mfa)], (69)
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and

H.(f) = f exp [—mf(@g + @f)(l — M)]e_””’ dr. (70)
o 2rWr

For 0 = |f| < W, and |fs| > W, one can show (by numerical
methods) that S;(f) reaches its maximum at f = W, or that maximum
baseband interchannel interference occurs at the highest frequency
present in the baseband signal. For other values of channel separation
frequency, this maximum is to be determined from equations (68)
through (70).

For (®* + &) > (30/)! rad, the saddle-point method of calculating
@..(f) is very convenient;'® and this method can be applied in a straight-
forward manner to estimate S;(f). (Since one can show that the saddle-
point approximation reduces to the quasistatic approximation for
fo/ W < (8 + &%)} the quasistatic approximation may be used for
convenience if this condition is satisfied. However, the error introduced
as a result of the use of quasistatic approximation cannot often be
estimated.) For R; << 1, we can also show that we need take only the
m = 1 term in equation (68) to estimate S/I with a very small fractional
error (less than 5.36 percent for R; < 0.1).

For fs/W = 2, 4, 6, 8, and 10 and for a set of values of ® and @;, we
have calculated this minimum signal-to-interference ratio; TFigs. 5
through 9 give these results. For any value of f;/W and for any S/I,
the required values of ® and ®; may be obtained from these figures.
Since the effects of linear filters on adjacent channel interference has
not been taken into account in this paper, these values of ® and ®;
may serve only as a guide in the design of any angle-modulated sys-
tem.

V. INTERFERENCE BETWEEN L+1 PM WAVES

We now assume that there are L interfering waves, and that all of
them are phase modulated by mutually independent gaussian random
processes.! Let the desired PM wave be given by

s(t) = Re A exp {jlwnt + o(®)]}. (1)
Let the kth interfering wave be represented as

%(t) = Re RuA exp {jloit + ¢0(® + welf, 1=k=L (72

t The analysis given in this section can suitably be modified for angle modula-
tion by general gaussian random processes (see Section II).
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Fig. 5 — Signal-to-interference ratio as o function of rms phase deviations and
channel separation for ; = 2 rad.

Since the L interfering waves are assumed to originate from L different
sources, we assume that the p.’s are independent of each other, and that
4y, 1 £ k = L has a uniform probability density function ,,(u) where

/2, 0€u<2r, 1=ksL,
i) = J[ /20, 0Zp <2 (73)

0 otherwise.

1

We further assume that ¢(t), the ¢,(f)’s, and the p,’s (with 1 = k = L)
are mutually independent random variables.

If s(t) and the % (f)’s are all in the passband of the PM receiver
used in the system, the total signal incident at the receiver can be writ-
ten as
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r(®) = s + 2 ()
= Re »"1(1 + J;l R, exp {jlwat + ealt) — o() + #k]})
-exp {jlwd + (8]}, (74)
where
Woe = W — Wo = Jar/2m. (75)

From equation (74), we can show that the output #(¢) of an ideal
phase demodulator can be represented as

8(f) = ¢(t) + Im In (1 + ER.—,, exp {jloat + ¢ul) — () + uk]})-

(76)
Next we write

In (1 + ,; R exp {j[wdkt + ﬁam(i) — o) + .uk]])

= S EU (S R exp tloat + euld — o) + )

m
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Fig. 6 — Signal-to-interference ratio as a function of rms phase deviations and
channel separation for d: = 4 rad.
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Fig. 7 — Signal-to-interference ratio as a function of rms phase deviations and

channel separation for &; = 6 rad.

L
D R. < 1.
k=1

By the multinomial theorem, we have

k=1

L

(ZL: R exp {jlwat + out) — Eﬂ(t)]})m

(77)

= > - (IR exp (jalont + ¢ol) — o) + w]},  (78)

where the a,’s are a set of nonnegative integers such that

a0
2 —d=1o__,.——-" ——T —1
[a] W /
e
’E: 6 //
0
’:i 25///7//:[/
L3 /
23 4 5 6 7 8 9 10

& IN RADIANS

Fig. 8 — Signal-to-interference ratio as a function of rms phase deviations and

channel separation for ®&; = 8 rad.
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Fig. 9 — Signal-to-interference ratio as a function of rms phase deviations and
channel separation for & = ®;x.

i a, = m. (79)

r=1
From equations (73) and (76) through (79), one can show that the
covariance function Ry (r) of #(¢) can he written as

Ro(r) = (6(D6(t + 7))

= R.(r) + i 2—??1;5 exp {—m’[R,(0) — R ()]}
’7 m! ILI RL:.'- ) L

D2 exp (* 2 wlR,.(0) — Rw(f)])
T T

r=1

L
ccos (+ S ) | (80)

If the random gaussian noise is band-limited and white, and if all the
modulating waveforms have the same bandwidth W, we have

. sin 20 W
R.(r) = & 550 (81)
and
5 sin 2r W r 9
R, (7) = & R 1<k<L. (82)

In this case, equation (80) can be written as
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= 1 in 27 W
Ri(r) = R, (7) + EW exp [—?n2¢2(1 — ﬂmf—rf)]

m=1

L

(m0* [ RY" - ;N\ L

S exp| —(1— MP_") 2 2:|
1 (@, e"p[ (1 - 55) B

a,!

r=1

r=]

- cos (1— i a,wdr) . (83)

r=1

Therefore, the spectral density of baseband interchannel interference
is given by

L
(mh?* [T R
o r=1
II (a1

S;(ﬂ = ,,.21 12 E

4m S

-[T,,..(J’ - Zaf) + Tm,(f + Zaf)] ) (84)

=1 =1

where

0 r g L )
T.00H = f exp |:——(l — Su;f%)(mzi’z + z af@f:‘)e i,
(85)

Next notice that the methods given in Section III can be used to
calculate T'(f) for all values of &, and &,,’s (with 1 = k = L); hence,
we can caleulate S;(f) for all values of R;,’s such that D, ., Ry < 1.
The minimum signal-to-interference ratio S/I can then be obtained
from equation (49).

Now assume that we have L co-channel interferers and that all have
the same rms phase deviation &, or

&, = P, 1=r =L (86)
In this case equation (84) yields
L
5 1 (m0)* [ R3
S = g |22 ], (87)

11 (@)

r=1
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where

e« o[- 3o+ £
(88)

From equations (87) and (88) and Refs. 2 and 16, one can show
that the continuous part of S;(f) reaches its maximum at f = 0, and
thatt

3\ 1 1 .
“'92(2#) [ E nwe < @O
w3 a)
r=1
3\ 1 1 )
<1 os(ﬂ) gy > ®'ad (89
(m + 2 a )
r=1

The expression G,,(0) in equation (89) does not include the delta
function contained in G, (f) at f = 0.

Since 2 a, = m, one can prove that
r=1
2

L
% = D> a=wm. (90)

From equations (89) and (90) we have

3 B2 st
0'46(.,,.) meW < G,,0) < 0.54 L+1) maw (91)

Next,

('m-!)z ﬁ R?: 3 1
S O ST
I (a)"

r=1

If all /s are nonnegative, one can show that

o< (20w (93)
Using equation (93), equation (92) yields

w0 < Son(®) (2 L
‘5’(0)<.§0'27(1r) L+1) st || 22 ’

t We consider only the continuous part of S:(f).
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L 2m
TS e A
U\ \L + 1) W = m® 94)
or
; i o, W4
S:i(0) <0 “7( ) ( L+ 1) PITAUCRE (95)
where
L 2
= (Z R.-,) < 1. (96)
r=1
We have shown in Section IV that
bZrn
E 5 < VUG, b <1, (97)

m=1
Therefore, the minimum baseband signal-to-interference ratio is
bounded by

1 L+ 1) 2’ .
ST > o5 (3) ( 5L ) PU@EH: 2> @rad, b <1 (98)
From equation (87) we can also show that
840) > 3 (E E: )Gu(ﬂ) (99)
Equations (89) and (99) yield
S,(0) > 0. 23( ) (Z RE) (100)
or
E 3
S/T < (E) 2 (101)
046 \3/ & , -
ZRir
r=1

Hence we have

1 (r\} @ 1 (E)*(L—l—l)* 3*
0.46 (3) & > 81> 5518/ \an ) vUGy

L
&> (B)irad, b= D R, <1. (102
k=1
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For any set of values of Ry’s, 1 £ k < L, and for any &, bounds to
the signal-to-interference ratio S/I can be calculated from equation
(102), and a proper ® can then be chosen to keep the baseband inter-
ference below any desired level.

Notice that the upper bound is a function of the total interference
power, and the lower bound a function of the sum of the amplitudes
of all the interfering carriers. In such cases, the distribution of Eu's
generally determines the closeness of the two bounds. However, it may
be observed that both these bounds are proportional to the cube of the
modulation index ® (for a high index system).

VI. RESULTS AND CONCLUSIONS

In this paper we consider the effect of interchannel interference on
angle-modulated systems. We also derive an expression for the base-
band interchannel interference when two (or more) waves angle mod-
ulated by gaussian noise interfere with each other. This formula can
be used even when the baseband signal is passed through a linear net-
work such as a pre-emphasis—de-emphasis network. We show that the
calculation of the RF spectral density is essential to the evaluation of
the baseband interchannel interference.

We then consider band-limited white gaussian noise modulation and
show that, in the case of co-channel interference, maximum baseband
interference occurs at the lowest baseband frequency present in the
system. For moderately high modulation index, we show that we can
derive upper and lower bounds to this minimum signal-to-interference
ratio and that these bounds are proportional to the cube of the modu-
lation index. It therefore follows that co-channel interference in PM
systems can be reduced by expanding bandwidth, and that phase mod-
ulation can be used with advantage in combating interference. We also
show that the first term in the power series expansion for the baseband
interchannel interference gives most of the contribution if the carrier-
to-interference ratio is greater than about 10 dB (the error is less than
5.36 per cent for a carrier-to-interference ratio greater than 10 dB).

In this paper we also give some results about the effects of adjacent
channel interference on angle-modulated systems. We assume that all
the incident signals at the receiver are in the passband of the PM re-
ceiver used in the system. This assumption is justified in the case of
co-channel interference, but is not realistic in the case of adjacent
channel interference. However, we feel that the results given in this
paper for the adjacent channel interference may serve as a guide in
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determining the deterioration in performance produced by adjacent
channel interference.
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