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J. R. Pierce has recently proposed a system for synchronizing an arbi-
trary number of geographically separated oscillators, and, under the as-
sumption of zero transmission delays between stations, has shown that a
certain linear model of the system 1is stable in the sense that all of the station
frequencies approach a common final value as t — .

T'his paper reports on some resulls concerning the dynamic behavior of
Pierce’s linear model. The results take into account transmission delays.
More explicitly, we prove that if a certain set of simple inequalities in-
volving the delays s satisfied, then the system is stable and the oscillator
frequencies approach their common final value at an exponential rate.
These inequalities have the property that they are always satisfied for
sufficiently small delays. This paper presents a simple example showing
that the system can be unstable when the inequalities are not met. In addi-
tion, we present some information concerning the rate of decay of the
natural modes of stable systems, discuss an alternative stability criterion
not involving the transmission delays and derive an explicit expression
for the final frequency. Finally, we discuss the mathematical relationship
between Pierce's model and earlier models of synchronizaiion systems.

I. INTRODUCTION, DISCUSSION, AND SUMMARY OF RESULTS

1.1 The Model
It is well known that the problem of synchronizing the frequencies
of geographically separated oscillators is of importance in connection
with the detection and switching of pulse-code-modulated signals.
J. R. Pierce has recently proposed a system for synchronizing digital
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transmission networks® The system uses oscillators of adjustable rate
of change of frequency, buffers which accept pulses at an incoming
rate and which produce corresponding output pulses at the local clock
rate, and adequate delay at each station to enable PCM frames to
be properly aligned in time.

In Pierce’s model the content by of the buffer at station 7 which
accepts pulses from station j is assumed to satisfy the equation,’

5-‘:‘ =fi—F (1)
in which f; and f; are the frequencies at stations j and 1, respectively,

and the overall system of coupled oscillators is assumed to be governed
by the equations

fi = eifo: — £2) + fz_‘: @ibi; 1=12 - ,n 2

for £ = 0, where n is the number of stations, each ¢, is a positive constant,
fo: is the center frequency of the oscillator at station ¢, and each a,;
is nonnegative and satisfies a;; = a;; .

In his discussion of equations (2), Pierce assumes that the trans-
mission delay between stations ¢ and j can be neglected for all z # j,
in which case equation (1) ean be interpreted as

bii(t) = 1:(8) — f:(0), t=z0 (3)

instead of as
bii(®) = ;¢ — 7i5) — f:(D), £z 0 (4)
with each r; a nonnegative constant. Under the natural assumption
that there is some path from each station to every other station,

Pierce has shown, by directing attention to a passive RLC net-
work analog of the equations, that the system is stable in the

* The system is described in an unpublished memorandum_which, after this
paper was written, was considerably expanded and then published ! Since the
memorandum did not explicitly consider the “C’ = 0 system” of Ref. 1, it is not
mentioned above. A nonlinear version of the “C = 0 system” is considered in
some detail by. this writer in a paper to be published.

t A dot over a mathematical symbol denotes the derivative with respect to
time.

The number be;(¢£) denotes, to within an additive constant, an approximation
to the product of a fixed constant and the number of pulses stored in the 1jth
buffer at time ¢.

tIn the Laplace-transform domain, the equations can be written as the
system of equations sF + CF 4 s!AF = @, in which F is the transpose of the
Laplace transform of (fi, fa, . . ., fa) and (with a set of common-ground node-
voltage equations analogy in mind) C and A may be interpreted as a diagonal
conductance parameter matrix and an elastance parameter matrix, respectively.
The “source vector” G takes into account initial conditions, the values of the
center frequencies, and the values of the constants c:.
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sense that each frequency f; approaches the same final frequency as
t —> o.*

1.2 Ezample of An Unstable System

We wish to show now that if transmission delays are taken into ac-
count, then the system described above need not be stable. Consider
the equations of a two-station system with ¢, = ¢, = ¢, a2 = a2 = @,
and 7, = 7o, = 7(¢, a, 7 > 0):

ﬂ+wh+aL[Mﬂ—n&—fnm

ab,.(0) + cfo,

0521(0) + Cfaz

[

fo et o [ 1) = fir — A dr

for ¢ = 0. It is not difficult to verify that these equations posses a
solution

f1(t) = Re [v,e™’] f2(t) = Re [v,e™"]

fort =2 —7 with v, , v, , and w # 0 constants if and only if
—a Re [(1, — v ") (1)) = aby:(0) + ¢fo (5)
—a Re [0, — vie” ) ({w)™"] = @by, (0) + cfoz (6)

and Mv = @, in which v is the transpose of (v, vs), 8 is the zero
2-vector, and

u = lj—af + twe + a —ae T }
—ae” "7 —w® 4 twe + a

Thus if det M = 0 for some real value of @ # 0, then the system is
unstable in the sense that for some values of the right sides of equations
(5) and (6) there exists a pair of real-valued functions f,(-) and f.(-)
such that the equations are satisfied for all £ = 0, and at least one of
these functions does not approach a limit as ¢ — . Moreover, if
for example w® = @, ¢® = a, and w? = i, then det M = 0, which shows
that the two-station system ean be unstable if additional restrictions
are not imposed on ¢, a, and 7.t

* He has also exploited the network analogy further in order to obtain an
expression for the final frequency and to make assertions concerning the be-
havior of the system when certain elements are nonlinear. ) )

tNote that fi(¢) or fo(t) can be negative in this example. While it is cer-
tainly true that instantaneous frequencies are not negative, our analysis is in-
tended to show only that the solution of the equations can possess a sinusoidal
mode. Thus, the conclusion and the essential details of the analysis are unchanged

if we add a constant w to f1(¢) and f.(¢) provided that we subtract the constant
cu from the right side of equation (5) and the right side of equation (6).
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1.3 Summary of Resulis

The purpose of this paper is to report on some results conecerning
the dynamic behavior of Pierce’s model. The results take into account
transmission delays. In particular, we prove that the (assumed con-
nected) system is stable whenever

C; > Z a;,%(r,-,- + T,',‘) ’i = 1, 2, .. ,n. (7)
i
In fact we prove that if condition (7) is satisfied, then the frequencies
f; approach their final value p at an exponential rate® Concerning
the final frequency p, we derive the explicit expression

E cifos + Z Z a:;b:;(0) + E Z @is f:_’ 1) du

i 1 T 1 PR ]

a ZC.-—F ZZ“HTH

i FE

(8)

This paper also presents some material concerning bounds on the
rate of decay of transients in stable systems. More explicitly, we
derive a lower bound on the rate of decay of all complex natural
modes.

We prove also that the system is stable whenever

C;g(QZG,”)! 1:=1’2?."Jn (9)
i#d
and that if condition (9) is satisfied, then [as in the case of condition
(7)] the frequencies f; approach p at an exponential rate.

Unlike condition (7), condition (9) is obviously not always satis-
fied for sufficiently small delays. On the other hand, if condition (9)
is satisfied, then the system is stable independent of the values of the
ry. In this sense the results corresponding to conditions (7) and (9)
are complementary.

Our results described above are stated in a more precise manner
in Section II, and proofs are given in Section ITI.

1.4 The Relation to Earlier Work

The system governed by equations (2) and (4) is closely related
to synchronization systems which have been studied earlier. This re-
lation is made clear as follows. From equations (2) and (4)

* Of course in the vast majority of cases it is reasonable to assume that ri; =
7,1 for all 2 o« j. We have proceeded without this assumption in order to show
that our stability result is not eritically dependent on it.
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fo= oo = 1)+ Toa [ Ui = 7) = 1 dr
+ Z aiibﬁ(o) 1= 11 2! Tt (10)

for all £ = 0. We write equations (10) as
t
fi+edi = ; Qi _/; Uilr = ) — fu(0)] dr + eifus

+ Z a;;b;:;(0) 1=1,2,---,n (11)
PR

for all ¢ = 0. Then, treating the right sides of equations (11) as “driving
functions,” we can solve the = first-order differential equations (11)
to obtain

fi = j; exp [—c.(t — w)] E a;; j: Ui(r — 1) — fo(9)) dr du

+ 1.(0) exp (—cif) + f exp [t = e + 3 a,b,(0)] dr

for all 7 and all ¢ = 0. But

[ie=rpir= """ 10ar+ [ 10

—-Tij

for all j and all © = 0. Thus, with

p) = [ 1) dr

for all 7, we have (after some simplification)

po= [ k=0 T aulpt = r) — po) dr

+Ui+ui(t)) t=0 7‘:=112!--.)n (12)

in which each v; is a constant and each w;(t) approaches zero as
t — c0. More explicitly, k;(t) = exp(—cit),

U]
v = for + (€)™ Z a’-‘:‘[[ 1i(w) du + b!'i(o)] )
bR -Tij
and u;(£) = [fi(0) — v] exp(—cit).

Equations of the same type as (12) have been studied extensively

in connection with linear models of synchronized networks, and many
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interesting and informative results have been obtained (see Refs. 2-6).
In particular, Bene§ has derived a sufficient condition for stability
(see Refs. 2 and 3). His condition does not depend on the delays and is
therefore of a very different type than condition (7). When applied
to our system of equations (10) via the relation between equations
(10) and (12), Bene¥’ condition reduces to our condition (9).* It
therefore does not yield Pierce’s result obtained via the network
analog.

As is often true of pioneering work, Bene¥’ proof is long and in-
volved. Our derivation of what amounts to his condition applied to
our system is relatively simple and is much less involved compared
with the rather long proof of our main result which asserts that if
condition (7) is satisfied, then the system is stable. To a consider-
able extent, the methods of proof used here are very different from
those of earlier writers concerned with the synchronization problem,
and they provide some grip on the problem of estimating the rate of
decay of the natural modes of the system. On the other hand, in this
paper we do not consider several other important practical problems
such as that of obtaining a useful upper bound on the contents of the
buffers or of predicting the effects of variable transmission delays (re-
sulting from temperature changes). There is a clear need for much
more work in this area, especially in connection with models which
take into account purposely-inserted nonlinearities.

II. STATEMENT OF RESULTS

2.1 Definilions and Assumpltions

Let M denote an arbitrary complex matrix. We denote by M* and
M* the transpose of M and the complex-conjugate transpose of M,
respectively. If M is not a row vector or a column vector, then (M);;
denotes the 7jth element of M. If M is a column vector then (M);
denotes the jth element of M. If M is square, then M7 denotes the
matrix obtained from M by deleting the jth row and column. The zero
element of complex Euclidean n-space is indicated by 4, and 1, denotes
the identity matrix of order n.

* Bene§ proves that a suitable equilibrium state is approached. He makes no
assertions concerning the rate at which it is approached. However, it is possible
to modify the alternative proof3 of Bene¥ result due to Gersho and Karafin to
show that the equilibrium state is approached exponentially under reasonable

additional assumptions. For example, it suffices to assume that each transfer
function H.(s) of Ref. 3 is a rational function of s. See the appendix.



DIGITAL TRANSMISSION SYSTEMS 2005

The statement “for all 7’ means for allz = 1, 2, .-+ , n in which n
denotes an arbitrary fixed positive integer (the number of geographically
separated stations) such that n = 2. If f; or F = (f; , fo, -+, )"

denotes a differentiable function of ¢ or a differentiable n-vector-valued
function of ¢, then f; or I indicates the derivative with respect to ¢ of
fi or F, respectively.

We assume throughout the paper that

(7) A is the real n X n matrix defined by
(A)i: = 2 ay; for all 7 (13)

(A)y; = —ay; for all ¢ 5 j (14)

in which a;; = a;; = 0, for all 7 # j.

(i3) det A™™ > 0 (15)
o) r; =0 forall §5j (16)

(%) the operator A is a mapping of the set of n-vector-valued functions
of ¢ into itself defined by the condition that if F(¢)=[f,(t), f.(t), --- ,
f.(®)]", then

[(Ar)@)]; = Z:, a;[f:(8) — fi(t — Dl (17)
for all <.
() ¢ = diag (¢, , ¢a, -+, ¢,) with ¢; > 0 for all §
(vi) A is the complex n X n matrix defined by
(A = X ay for all ¢ (18)
FEE]
(A);; = —aq; exp (—sry)) for all 7 ¢ j and all complex s (19)

(vit) A(s) denotes the determinant det [s°1, + sC + A].

Assumption (77) is satisfied if there exists a path (not necessarily a
direct path) from each station to every other station.*

* This proposition is a special case of a known result in probability theory. A
simple proof is given in Ref. 3. A “network theoretic” proof is as follows. The
matrix A may be interpreted as the indefinite conductance matrix of a non-
negative element n-node resistance network, and A™ ™ is the node-pair con-
ductance matrix of the network obtained by grounding node . If the original
n-node network is connected, then the common-ground network possesses an
open-circuit resistance matrix, which means that det A™ ™ -£ 0. But, since the
network contains only nonnegative elements, det A™™ > 0.
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The equations of our system are
. ¢
fo= ellos = 19+ Lyas [ Uilr = 7 = fuA) dr
+ E ﬂ'ﬂ'bs‘:(o)r t g 0
PRt
for all 7. Therefore, with F = (f; , fa, +*+ , fa)'", We have
F+4+CF+AF =9, t=0.
2.2 Results
Theorem 1 is the principal result of this paper:
Theorem 1: Let F(-) be a twice differentiable n-vector-valued function
defined on [—7, =), in which 7 = max;.; {7::}, such that
F+CF+ AF =6, t=0%

If
c; > Z a3 (i + 750

=i
for all i, then there exist a constant p, positive constants 8 and v, and an
n-vector-valued function G(-) defined for t e [0, ) such that

[G@RL | =g, 120

for all i, and
F(t) = G(t) + P(]-) 1, .-, 1)”
forallt = 0.

Some information concerning the rate of decay of the complex natural
modes of the system, assuming that the stability condition of Theorem 1
is satisfied, is provided by the following theorem.

Theorem 2: Let t;; = 7;: for all © # j. If there exists a positive constant

8 such that
c; — Z Qi;Tij g é

i#=i
for all 7, and if A(s) = 0 with Im [s] # 0, then Re [s] £ —ay in which
ay 18 the solution of

—2ay + maxe; = [mfa,x c; — 8] exp (ao7)

* Questions concerning the existence and uniqueness of solutions of equations
of this type are discussed in Ref. 7.
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where ¥ = maxX;.; {ri;}.

An expression for the final frequency p of the system is given in
Theorem 3:

Theorem 8: If F(.) is differentiable on [—7, «) with ¥ = maX;.; {7:;}
such that for all 7

fo= e — 10+ X o [ U = 7 = 1 dr
+ Z a:;b:;(0), tz0

i
in which the fo; and the b;;(0) are constants, and if there exists a constant p
such that for all ©: (f; — p) = 0 ast — =, and (f; — p) s (absolutely
integrable on [0, =), then

Set T Dab+ T Dy [ g6

i i i i#1 —rij

o Tt XX aur

i j=i

Qur final result is as follows.

Theorem 4: The statement obtained from the statement of Theorem 1 by
replacing the condition that

¢ > Z a3 (ri; + 750 for all ¢

FER
by the condition that
e; = (2 > ay)t foralld

FETY

18 a theorem.

III. PROOFS

3.1 Proof of Theorem 1

Our proof consists of proving the following four lemmas.
Lemma 1: A(s) has a simple zero al s = Q.

Lemma 2: If

e > E aiik(ri; + 74)

i=a

fori =1,2 -+ nthen
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(z) A(s) £ 0forRe[s] >0
(77) there exists a posttive constant a, such that if A(s) = 0 with s =
—a + w (@, wreal; a = 0; w # 0), then a = ap .

Lemma 3: Let I'(-) be a twice differentiable n-vector-valued function de-
fined on [—7, ®), tn which ¥ = max,.; {r:;}, such that

F+CH+AF =06, t=0.

Let A(s) have a simple zero at s = 0, and with the exception of this zero
assume that A(s) = 0 for all Re [s] = —a, for some positive constant o .
Then there exist a constant n-vector K, positive constants 8 and v, and an
n-vector-valued function G(-) defined for t ¢ [0, ), such that

[[GW)]: | =B, t=20
for all 1, and F(t) = G(t) + K forallt = 0.
Lemma 4: If F(t) = G(t) + K satisfies
F+CF+AF =9, t20
with G(t) — 8 as t — o, and K a constant vector, then, for some constant p,
K =p(1,1,---,1)".

Proof of Lemma 1: The determinant A(s) is analytic throughout the
s-plane. It can be written as some power series

DS

n=0
which converges for all s. Since A(0) = det A = 0, & = 0. To prove
Lemma 1, it suffices to show that

lim 26 _ o
=0 s
for then £, # 0. We show this as follows.
We write s det [s’1, + sC + A] as det M in which
M = diag (s* + ¢:8, 8" + ¢o8, +++ , 8 + o8, s +¢,) + A’

where A’ is obtained from A by dividing each element of the nth row
of A by s. But, with M the submatrix obtained from M by deleting
the nth row and column,

det M = (s + ¢,) det M™™ 4 s7' det P

in which
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P=A 4 diag (" + e85, 8" + €28, -+, 8 + c,18, 0).
Since, by assumption, det A™™ > 0, we have

0 < lim (s + ¢,) det M ™™,

a—Q

The determinant of P is an analytie funetion of s for all 5. For s = 0,
it vanishes. Therefore its power-series expansion at 8 = 0 is of the form

- -]
2 pas.
n=1

We note that for s real and positive, det P > 0 because for s real and
positive P is strongly dominant in its first (n — 1) rows and at least
weakly dominant in its last row.* Thus p, is not negative, and

lims'detP = 0.

5—=0

Therefore
lim 57" det ['1, + sC + 4] > 0. O

80

Proof of Lemma 2: If s is such that A(s) = 0, then there exists a
nonzero complex n-vector x such that

(s?1, + sC + A)z = 0
and consequently
a*(s1, + sC + Az = 0.
With A, = (A 4+ A% and A5 = (A — A*), we have

z*Cx x*Aqr | x*Agx

S P T FY ERTFY (a 0
in which || z || = (z*x)},
(A):; = —3%ai;lexp (—sri;) + exp (—s*71,.)], forall 7 5 j
(A = g a;; , for all 4
and
(As)i; = —3aqlexp (—si;) — exp (—s*r;))], forall 7 == §

(gs)ii = 0, for all 7.

*In other words, for such values of s, det P > 0 because (for each such value
of s) there exists a diagonal matrix D = diag(1, 1, .. ., k) with & > 1 such that
PD is strongly row-sum dominant.
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Notice that both Az and (2) *As [¢ £ (—1) when not used as an index]
are hermitian matrices, and that

o* Ay o* A s
and
1E2IS =z [

are real and pure imaginary, respectively.
Sublemma 1: If A(s) = 0 with s = @ 4+ 7w and & = 0, then

w' = a + amineg; . (21)

Proof: From

2 z*Cx e*A x| Az
2 Z = 0 22
ST IE TP @2)

for some nonzero x corresponding to the assumed value of s = a + 1w,
we have

:U*C':U 'l:*gyﬂ:

2 ; + TArT — g,
S TP LR TN

But for & = 0, A is both at least weakly row-sum dominant and weakly
column-sum dominant. Thus 4 j is at least weakly dominant and hence
nonnegative definite (that is, 2*A zz = 0). Therefore

z*Cx

ST

2
w

v

IV

o+ a m_'m c; . O
Sublemma 2: If
¢ > D ay; max (r , 7i4)

i

for all 7, then A(s) # 0 for Re [s] > 0.

Proof: Sublemma 1 implies that A (s) has no zeros on the positive-real
axis. Assume now that s = a 4+ 7w with @« > 0 and w # 0. Then, using
equation (20),

) . a*Cx a*A gz
2] =
..a'bw-f—'w”x“z—i—“x”z 0

or

o*Cx o) Asle .
SN [ [ [ [ @
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Let m,; denote the 7jth element of (7w) *As . Then m,; = 0 for all 1,
and for 7 # j:
m;; = —}a;;(iw) '[exp (—ar;;) exp (—iwr,;) — exp (—ar;;) exp (wwr;.)]
= —}a;; exp (—ar;;)(iw) '[exp (—iwr;,) — exp (lwr;,)]
+ 3a;;(iw) " [exp (—ar;;) exp (iwr;;) — exp (—ari;) exp (lwr;))]
= a;; exp (—ar;;) exp [twi(r;: — 7.,)]@)7 sin [3(ri; + 7;:)0]
+ 3a;; exp (fwr;)(iw) ' [exp (—ar;) — exp (—ary)].
It follows that
| mi; | £ aidlry + 730) + 3ai; |0 ' [exp (—ar;) — exp (—ar)] |.

But, from inequality (21), »® = & so that

| w™'[exp (—ar;) — exp (—ar))] |
= |a'[exp (—ar;) — exp (—ary)] |
and, as can easily be verified,
| & '[exp (—ar;;) — exp (—ar)] | < | 750 — 745 |-
Therefore, for 7 # j,
[ My | = ayd(ri; 4+ m10) + agl | 70 — 7o | = ag; max (ry; , ;0.
However, by the hypothesis of the sublemma,

€; > E a;; max (ri; , 744)
FEE)
for all 7, and thus ¢ 4 (iw)'A; is a strongly-dominant hermitian
matrix. This means that ¢ + (fw) *As is positive definite, and hence
that « in equation (23) is negative, which is a contradiction. O

Sublemma 3: Ifb,,b,, --- b, are positive constants such that
b > 2 ad(ry + 75)
P

for all 7, then there exists a positive constani o with the property that if
c; = b;foralli,andif A(s) = 0withs = a+ wanda = 0 and w # 0,
then a > o.

Proof: Withs = @ + 1w and @« = 0 and » # 0, and proceeding as in

the proof of Sublemma, 2, with any C such that ¢; = b; for all 2 we have
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for some nonzero vector =

2ot i+ e e O

in which M is hermitian with elements m,; = 0 for all 7 and m;; (7 # j)
such that

| my; | < aud(re; + 30 + 30 |07 lexp (—ar;) — exp (—ari)] |.
By Sublemma 1,
w* 2 o' + ab
in which b = min; b; . Thus | w |™* < (o® + ab)™. Since (for all a = 0)
| exp (—ar;;) — exp (—ari;) | £ alr— 75,
we have (for all 7 = §)
| mis | £ @iy + 1) + dagale® + ab)H | i — 7y |-
Let
e = mm (b — 2 aid(re; + 700}

iei

Of course € > 0. Since b > 0, it is clear that there exists a positive con-
stant ¢ such that (for all 7 # j)

@n) 7" e = dayale® + ab) | 1 — 1y |

for all 0 < a = o. It follows that (C + M) is positive definite for all «
such that 0 £ @ < ¢. This means that if & = 0 satisfies equation (23),
then « > o. O

Sublemma 4: There exists a positive constant k, independent of C, such
that if A(s) = O withs = a + 1w and o = 0, then

|s| < maxe; + k.
[

Proof: The elements of A are uniformly bounded on Re [s] = 0

Let & be any positive constant greater than

L]
sup{|ﬁAﬁ :Re[s] = 0, z;éﬂ}-
If A(s) = 0 with s = a + 2w and @ = 0, then for some z =
2*Cx a* Az

3 =0
S EE I
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and

*Cx [( z*Cx )2 z* Az )*
95 = — + ;) —a AL
T =P L =P

Thus, since

11

z*Cz )2 z*¥Ax ]* 2*Cx ¥ Az |}
T3 — 4 = + 2
[(Hﬂ?ll2 I = [I* ||z |I* TEXT
it follows that
z*Cx Az |}
s| = +
N PRI
< maxe¢; + k. O
By Sublemmas 1 and 3, if
c; > Z a;5(re; + 70 (24)

PRkt

for all %, then A (s) has no zeros on the positive-real axis of the s plane,
and A (iw) # 0 for all real w # 0. We are now in a position to show that
if condition (24) is satisfied for all 7, then A(s) = 0 for Re [s] > 0.

Let ¢; for7 = 1,2, --- , n be any set of positive constants such that

¢ > Z a;5(ri; + 730)
iei
for all 7, and let ¢; forz = 1, 2, - -+ , n be any set of positive constants
such that ¢; = ¢; and
é.‘ > E @;; max (T,',' ; T,',')
[

for all 7. Let ¢; e [e; , €] for all 7. Then, by Sublemmas 3 and 4 there
exists a ‘“half-moon-shaped” finite region ® in the strict right-half
plane bounded by a line Re [s] = ¢ and a semicircular are | s | £ K
such that if ¢, ¢ [¢; , &] for all 7 and A(s) = 0 with Re [s] > 0, then s
lies inside ®. By Sublemma 2, for ¢;=¢; for all , A(s) = 0 for Re [s] > 0.
On the boundary of &, A(s) # 0 for all ¢; £ [¢; , é&].

For each 7, we can write A(s) as 4,(s) + ¢;B:(s) in which A; and B;
are entire functions which are independent of ¢; . For ¢; = & for
i=23 - ,n

Ay(s) + aBi(s) #0

on the boundary of @& for all ¢, £ [¢, , ¢,]- Thus A(s) has no zeros inside
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®fore, = ¢, and ¢; = & fori = 2,3, --- , n.* Similarly, for ¢, = ¢, and
c; = C_.' fOl"f = 3,4, e, N

Ay(s) 4 caBy(s) = 0

on the boundary of ® for all ¢, ¢ [c , &]. Therefore A(s) has no zeros
inside ® for ¢, = ¢,,¢ = ¢z and ¢; = & for? = 3,4, --- , n. By con-
tinuing in this manner we find that A(s) has no zeros inside ® when
¢; = ¢; for all 4, which shows that if condition (24) is satisfied for all 7,
then A(s) # 0 for Re [s] > 0.

The following argument completes the proof of Lemma 2.

If A(s) = 0 with s = —a + 1w, then for some x = 6

2 2 z*Cx x*ﬁHI
a —w —a 3 s = 0.
IEZ I EA]

Since A(s) is an entire function of s, in any circle in the s plane A(s)
has at most a finite number of zeros. Thus, either there exists a positive
constant a, such that if A(s) = 0 with s = —a + ww and a > 0, then
@ = a , or there exists an infinite sequence s, , 8, , -+ , such that
A(s,) = 0 for all n and, with s, = —a, + iw, , w, — @ and a, — 0+
as n — . In the later case, since forn = 1,2, ---

= — a x¥Cx, +$iﬁHIn
R N T T

with z, # 6 an associate of s, , we would have

2 z*Cx x* Ay,
a, — @ + — ®
T = )

as a, — 04 which is impossible since for any real 3 < 0

xﬁﬂﬂxn
[ENE

is bounded on the strip 8 < Re [s] = 0 uniformly in z, . O
Proof of Lemma 3: We have
F4+CF+AF =6, t20. (25)

* Here we use the following known result.® Let & be a closed region in the s plane,
the boundary of which consists of a finite number of regular arcs; let the funetions
f(s) and h(s) be regular on ®. Assume that for no value of the real parameter c,
running through the interval ¢ < ¢ < b, does the function f(s) + ch(s) become
equal to 0 on the boundary of ®. Then the number N(c) of the zeros of f(s) + ch(s)
inside ® is independent of ¢ fora < ¢ < b.
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Using the Bellman—Gronwall Lemma (see p. 31 of Ref. 7), we can prove
that there are constants k, , k. > 0 such that for all ¢
| F:(t) | = ki exp (kot), t=0.

Thus F(-) possesses a Laplace transform
f F(he™ di & F(s)
0
which is well defined for all s such that Re [s] > k, . Therefore
P (s) + sCF(s) + AF(s) = sV, + V, + W(s)

in v.vhi(:h the constant vectors V, and V, take into account the values
of F(0) and F(0), and for all ¢

WOl = 3 a exp (—sra) [ Fi(0e™ d.

-Tif
Thus
Fs) = [s*1, + sC + A]7'[sV, + Vo, + W(s)].

Of course
F(t) = (2m)™" f F(s)e" ds, t=0
(+)

in which (I+) is some line parallel to and to the right of the imaginary
axis of the s plane. Let (I—) denote the line indicated in Fig. 1. Then

‘r Im (s
-azd-i..ﬁ
)
S A S
ey 0 Re [s)
(£-) (L£+)
—_t— a1—i.,e
i
—ﬂ;—i..,e B>0
@, a,>0

Fig. 1— Relation between (I—) and (I4).
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(see Fig. 1)

agtiff
f — lim ,
(1+) B0 Ya,—iff
and for¢t = 0

ay+if —ar{-nﬂ —as—if a;—if
[ +]
a

1—iB ar+iff —aat+ifl —a,—-:ﬂ

in which K is a constant n-vector (since the contour contains
a single pole at the origin). Since the integrand — 8 uniformly in —a, =
Re [s] £ a, as | Im [s] | — o, the integrals over the horizontal pieces
— @ as 8§ — <, and therefore for ¢ = 0

a,+if —ag—if
lim =K —
[: ) a,—iff B0 —wa+if
We now show that
—ay—if
lim — 0
f—reo —aaz+if

exponentially as t — o,
On (I—) each element of W(s) is bounded. Thus on ({—) each ele-
ment of

Q(s) 2 [Ls* + sC + A]7'[V. + W(s)]
(we consider the part involving V, later) is bounded and of order at

most | s |* as | s | — . Therefore

-8
Q@)™ ds = exp (—ayt) lim f Q—a + iw)e™" d(ia)
B0 Jif

(=)

But [7;* is uniformly bounded on the ¢-set [0, «), and hence

Q(s)e'* ds

(=)
approaches zero exponentially.

Consider now the integral
f 1,8 + sC + A 'sVe™ ds.
(-

We cannot directly apply the same argument as for the integration of
Q because here it need not be true that on (I—) each component of the
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integrand is of order at most | s | as | s | — «. However,if on (I—)some
component R, (s) of [1,s* + sC + A]'sV, is not of order at most | s |™*
as | s | — o, then it ean be written (to within a constant multplier) as

s2n—lzt2n*l) + s2n422(2n—2) + - + z(ﬂ)

R,‘ = o
© T 60
in which s™"¢(s) — 0 as |s| — e« on (I—), and ».°"",
2(2"_2), ree Em denote sums of exponentials (some sums may be
constants). Thus the sum of R,(s) and
z(!n—l)
- s+ o (a > an)

is of order at most |s|™* as [s| — = on (I—). Since the inverse Laplace
transform of

E(?n—l)

s+ o

vanishes faster than some damped exponential, we see that

f (L& 4 sC + A sVt ds, £=0
(=)

can be written as the sum of two integrals, the components of both of
which approach zero at least as fast as some damped exponential. O]

Proof of Lemma 4: Since F(-) satisfies
F4+CF+AF =06, t=0

we have
F()) = ¢ (0) —f CCIARY () dr,  t 2 0.
(]
But F(t) — K as t — . Therefore as t — =,

—P) — 1imf e CIAR dr = CTUAK.
0

t—0

In addition, since
Fi) = f F() di + F0), t=0

we see that —C'AK [that is, the limit of F(f) as { — ] must be the
zero vector, for otherwise F(f) could not approach a constant vector as



2018 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—-AUGUST 1969

t— . Thus AK = 6. We note that A(1,1, - -+, 1)'" = 8, and that 4 is
of rank (n — 1). Therefore K = p(1, 1, --- , 1)*” for some constant p. O

3.2 Proof of Theorem 2

By Lemma 2 of the proof of Theorem 1, A(s) # 0 for Re [s] = 0
and 8 # 0. Let A(s) = 0 withs = —a + 7w, @ > 0, and w # 0. Then
for some z # 6

. . *Cx x* Az
— Qe + + =0
¢ IR

or

z*Cx 2*(iw) ' A sz

T EtY e O

Let 7 = max;.; {r:;}. Then (iw) "As = e""Bs with
(Bs):; = 0, forallf = j

= ayri; exp [a(ry; — D] To20, foralld # .
ij

Thus since | (Bs):j | £ @ijri; forallé # j, all @ > 0, and all w # 0; and
C,~ - Z (I,-,-‘r,-,- g 5

iei
for all 4, it follows that
:z:”‘Ca:2 :1:*B,,~x2 >
IEZ R
for all @ > 0 and all w # 0. Therefore with

c — z*Cx
1E2LS

=$*Bs$
[z []*°

and b

we have

—2a+4c+be*T =0
with |b| = ¢ — 6 and ¢ £ max; ¢, . But
—2a4c=|—2a+c|=]|b|e" = (c— de”
and hence

—2a¢+¢=(c— 8e’, ¢ = maxe,.
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Therefore « must not be less than «, , the unique solution of

—20, + maxe¢; = [m_ax c; — 8le™. O

i

3.3 Proof of Theorem 3
We have for all z

fv' =c(for — ) + Z a;bi;, =0
with
B-‘i(t) = [fi(t - -r,-,-) - f‘(t)]
Observe that
j: f:‘(t - Tii) di
= [ i du
= [ st [ 060 = sldu+ = nae

= G—ret [ et [ U6 — 6l

—1ij

- [ i) = o du.

Since
fo = o (—ef.0 + [ " exp [t — 7]

dedor + 2 aub(Nldr, 120
iFi
for all <,

fi = exp (—c:)f:(0) +f exp [—c(t — 7)] {c for + 2 aibi;(0)

i

- Za‘ T\rp+ Z Jjﬁ_f“fi(u) du+ ;aif(pi _p‘)

bRt FEE)

— > algi(r) — ?‘,-(r)]} dr, =0 (26)

il
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for all 7, in which

p; = j:” [f:(w) — p] du

2 = [ [ — ol du

T—Tij

r) = [ U = ol du.

The functions ¢;;(r) and r;(r) approach zero as r — . In order that
the asymptotic values (as t — o) of both sides of equation (26) agree,
we must have

pc; = Cifoi + Z arfbi;'(o) - E a;;Tiip

+ "g a” j:»r;i f‘(u) du + ’#E‘ a‘-f(’pl' - pl)

for all 7. But (using the assumption that a;; = a;; for all 7 # j)
E ; a:i;(p; — pa) = 0.
Therefore

P E C; = Zcifoi + E Z a;;b,;(0)

i i i#d

-r E Za"""‘f + Z 2 a; f“ fiw) du. O*

T P 1 P =Tii
3.4 Proof of Theorem 4

The following lemma and Lemmas 1, 3, and 4 of the proof of Theorem
1 prove Theorem 4.

Lemma 2': If
e = (2 2 a;)t foralld,
iEi
then there exists a positive constant a, such that A(s) = 0 and s # 0 imply
that Re [s] £ —ay .
Proof of Lemma 2': With D, = diag {3 i ai;} and A'=4 - D,,

*The last part of this proof, which involves the observation that the double
sRur? is) gero, is similar to an argument used by Brilliant (see the appendix of
ef. 5).
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det [1,8* + sC + 4]
det [1.s° + sC + D, + A']
det [1,5* + sC + D,]-det [1, + (18" + sC 4+ D)™ 4"].

The diagonal elements of D, are positive. It is therefore clear that
there is a positive constant «f such that if det [1,s* + sC + Dy] = 0,
then Re [s] £ —af . It is also clear that det [1, + (1.s° + sC + D) '4’]
is not zero for all s such that Re [s] = 0 and

| (& 4sc; + 2 a:)" 2 ay| <1 for all 7, (27
iFi iF
since for those values of s the matrix [1, 4+ (1,8° + sC + D,)"'4"] is
strongly row-sum dominant.
By assumption,

A(s)

Il

.= 2 X a)t  foralls.
iEd
It is a simple matter to verify that this assumption implies that condition
(27) is satisfied for all s = 7w with w real and w # 0. Thus A (iw) # 0
for all w # 0. But for all 2
(Sz + SC‘- + a’u) Z a’u

i#i i=T

is analytic throughout the closed right-half s plane, and
l (8" + sc. + Ea-’:')_l Zah‘ =1
FEt P iR

for all 7 and for all s =1w. By the Maximum Modulus Theorem, condition
(27) is satisfied for all s such that Re [s] > 0.* Therefore A(s) # 0
for all s # 0 such that Re [s] = 0. Finally, the argument used to prove
the last part of Lemma 2 shows that there exists a positive constant a,
such that if A(s) = 0 with s # 0, then Re [s] £ —ap, . O

APPENDIX

Left-Half-Plane Zeros of det [I — B(s)]

We wish to show here that all of the left-half-plane zeros of
det [I — B(s)], in which I — B(s) is as defined in Ref. 3, lie to the left
of some line which is parallel to and lies to the left of the imaginary
axis of the complex s plane, provided that each H,(s), which enters into
the definition of B(s), is a meromorphic function of s such that there

* This type of argument is also used in Ref. 3.
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exist positive constants ¢; and K; with the property that | H.(s) | = K.
for all s with —o; = Re[s] < 0.

Assume that what we wish to prove is false. Then, as in the proof of the

last part of Lemma 2, there would exist a sequence § = {s;}5 such that
Re[s)] < Oforallk, Re[s;] > 0ask — o, Im[s] = « ask — =,
and det [ — B(s;)] = 0 for all & = 0. But the complex numbers a;;

0

f Ref. 3 are bounded on § and H,(s))[s; + H.(s))]' = 0ask — .

This means (see Ref. 3) that there is a positive number &k’ such that the
matrix [I — B(s,)] is strongly dominant for all £ = &', which contradicts
the assumption that det [I — B(s)] = 0 for all k = 0, and proves that

0

ur assertion is true.
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