Amplitude and Phase Modulations in
Resistive Diode Mixers

By C. DRAGONE
(Manusecript received April 30, 1968)

This paper presents some new aspects of mizer operation and shows that
the behavior of a mizer, using a resistive diode, can in general be represented
by means of an equivalent circust consisting of two transducers connected in
cascade. The first of these two transducers transforms the input signals into
amplitude modulations; the second is an AM detector which transforms
these amplitude modulations into output signals. An important feature of
this equivalent circuit is that it gives the dependence of the conversion loss
upon certain important miver parameters.

We also show that extremely low (< 0.8 dB) conversion losses can be
achieved from a Scholtky barrier diode, if the pump frequency w, is much
smaller than the cutoff frequency of the diode. To achieve such low con-
version losses the diode must be open-circuited at the harmonics 2wy , o,
4wo , and so on, of the pump frequency.

I. INTRODUCTION AND SUMMARY OF THE PRINCIPAL RESULTS

The process of frequency conversion and its applications are well
known and are extensively treated in the literature.'”** This paper
considers the special case of a resistive diode frequency converter. We
assume that the diode is pumped periodically by a strong source, the
pump, which generates power at a single frequency w, . In most of the
analysis we assume that the frequency converter is required to transform
small input signals occurring in the vicinity of w, into low-frequency
output signals.

In such a frequency converter the large signals occurring at the
frequencies 0, wo , 2wo , 3w, , and so on, are perturbed by small ampli-
tude and phase modulations caused by the input signals. The occurrence
of these modulations can be shown by using the amplitude-phase
representation (sometimes called AM-PM representation) which
describes the small signals occurring in the vicinity of the kth harmonic
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of wp in terms of the corresponding amplitude and phase modulations.
When this representation is used, a convenient way of determining
the small-signal terminal behavior of the frequency converter is pro-
vided by the incremental method. This method consists of perturbing
the large-signals by introducing small and stationary variations in the
pump level and in the de bias. Then, from the relations between these
variations and the perturbations they cause in the large signals, the
small-signal terminal behavior of the frequency converter ean be
readily determined. In faet, we show that the connection between the
foregoing relations and the desired terminal behavior can be represented
by means of a simple equivalent circuit.

This equivalent circuit represents the frequency converter as a cas-
cade connection of two transducers, as shown in Fig. 1. The first of
these two transducers transforms the input signals into amplitude
modulations with carrier frequency w, . The second is an AM detector
which transforms these amplitude modulations into the desired low-fre-
quency output signals.

In other words, when a small signal generator at some frequency
w, + p, with p &< w, , is connected to the input terminals of the fre-
quency converter, small signals are produced in the diode at w, + p
and w, — p. These signals contain two distinet types of components,
the components which are produced by amplitude modulations, and
the components which are produced by phase modulations. The second
transducer of Fig. 1 shows that there is a one-to-one correspondence
between the output signals of the frequency converter and the amplitude
modulation components. The first transducer represents the relations
between these components and the input signals.

An important feature of the foregoing equivalent circuit is that it
shows the dependence of the conversion loss upon certain important
parameters of the frequency converter. This follows from the fact that
the first transducer can be represented by means of a network con-
sisting of two ideal transformers and two admittances. One of these
two admittances is the admittance y; terminating the diode at the
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Fig. 1— Equivalent circuit representing a frequency converter as a cascade
connection of two transducers.



FREQUENCY MIXERS 1969

9p
—{— —>

-

Fig. 2 — First transducer of Fig. 1 for ya = 0.

image frequency; the other is the nonlinear admittance g, presented
by the diode at the pump frequency w, . In particular, if ys = 0 then
the first transducer can be represented as shown in Fig. 2. An analogous
equivalent cireuit is obtained when g5, = .

Finally, we examine the conversion loss of a Schottky barrier diode
frequency converter. Its minimum value can be expressed as

o~ i q AV
L=1+4e.\p(—ﬁT), (1)
if the parasitic capacitance of the diode can be neglected. In equation
(1) AV is the difference between the maximum and minimum values
of the large-signal voltage of the diode. In order to achieve this con-
version loss the diode must be open-eircuited at all frequencies except
w =0, w = w, and the input and output frequencies.

Practical considerations almost always require that the input and
output impedances be much smaller than the impedances required for
achieving the conversion loss given by equation (1). If these practical
considerations are taken into account, one finds that the frequency
converter can be represented by means of the equivalent circuit shown
in Fig. 3. The conversion loss of this equivalent circuit depends upon:
the impedance R of the input signal generator, the diode series resist-
ance R,, and the de component I, of the current flowing through the
diode. In fact, the conversion loss can be expressed as

5 KT
L=1+E(R.+q}g)- @)

Notice that the operating frequencies at which this conversion loss

KT
qleo 2Rg
—AANN——— NA—0
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Tig. 3— Low frequency eauivalent cireuit of a Schottky barrier diode frequency
converter under optimum cirenit conditions,
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can be achieved are limited by the junction capacitance C; of the
diode. Finally, notice that equation (2) implies that E, does not set,
by itself, any limit to the conversion loss.

II. SMALL-SIGNAL TERMINAL BEHAVIOR OF PUMPED NONLINEAR RESISTORS

Consider a nonlinear element in which the terminal voltage is related
to the current by

i= () (3)
and let
) = L. @

Then, if the voltage v is the sum of a large component v.(t) and a
small component 8v (), that is,

v =) = v.(t) + &), (5)
the current can be written to a first approximation as
122 (1) = () + &), (6)
where
i(t) = flv.()] (7)
and
8i(t) = g(t) do(t) (8)
with
g(t) = galv.(D)]. 9

Equation (8) completely describes the small-signal terminal be-
havior of a nonlinear resistor pumped by a large-signal voltage v,(?),
in the absence of internal noise sources.

In equation (8) g(f) is the time-varying differential conductance of
the nonlinear resistor, as shown by equations (4) and (9). In the follow-
ing analysis we assume that v.(f) is periodic with some frequency w, .
Therefore %,(t) and g(t) also are periodie. Furthermore, we assume that
the ecircuit connected to the nonlinear resistor is resistive at the har-
moniecs 2wy , 3wo , 4w , and so on, and at these frequencies, does not
contain generators. Under these conditions it is always possible to choose
the origin of time in such a way as to make v,(t), 7.(¢), and g(f) even
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functions of time.*”® Thus let

v.(t) = v.(—8), () =d(=8, 9@ = g(—0). (10)

This allows one to write v,(t), i.(f), and g(t) in the form

v,(f) = Voo + 2 2 V. cos kgt (11)
k=1

() = Io + 2 Y I.. cos kwot (12)
k=1

g(t) = go + 2 ?__: g €08 kewql. (13)
=1

III, AMPLITUDE-PHASE REPRESENTATION OF 8v(f) AND 8i(t)

Normally, it is convenient to represent the perturbations §v(¢) and
81(t) in terms of the Fourier coefficients of their frequency compo-
nents. The discussion of certain properties of the behavior of a pumped
diode is often simplified by the use of an alternative representation,
the so-called amplitude-phase representation. The main feature of
this representation is that it emphasizes the amplitude and phase
modulations oceurring, because of 8v (¢} and &i(f), in the wvarious
quasisinusoidal harmonic components of v(t) and (f).

This representation is well known and has already been shown to
be particularly useful in simplifying the analysis of certain pumped
nonlinear systems.**** In this section a complete derivation of it is
given, in a form suitable for the discussion of the behavior of a fre-
quency converter. We regard 8v(f) and 8i(f) as representing small
perturbations produced on v(t) and #(¢), about the condition v (¢) =
v,(t) and 1(t) = 1,(¢). In accordance with this point of view, which is
clarified by the following discussion, §v(f) and 8i(f) are often referred
to as perturbations.

An arbitrary voltage perturbation 8v(f) can always be expressed
in the form

su(t) = Bu,o(t) + V2 i [6v.i(t) cos kot + Sv,.(2) sin kawqt] (14)

where 8v,0(f), 8vq:(f), and 6v,.(f) are low-pass funections limited to the
band | w | < wo/2. Therefore in equation (14) the time function

S0 (t) = V2[0.(t) cos kwot + v, (E) sin kewol] (15)
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represents the components of év(f) occurring in the frequency range
between kw, — wo/2 and kw, + wo/2 and between —kw, — wp/2 and
—Fkwo, + wo/2. In particular, if sv(f) contains frequency components
at only the side-frequencies rw, = p(| » | = 0, 1, 2, and so on;
0 < p < wo/2), then dv,(t) and dv,,(t) can be written as

sv,(1) = 2(Re){ Vo exp [i(p + kewo)i]
+ Va exp [ilp — kwo)i]} (k = 1, 2, and so on) (16)
da0(t) = 2(Re)(V 40e™) (17)

where V.o, V., and V4, are the complex amplitudes of the components
of v(t) oceurring at p, p + ko , and p — ke, , respectively (k = 1,
2, 3, -+ -). Equation (16) can be rewritten in the form

(1) = 2(Re)[(V.i + Va)e™ cos kot
+ j(Var — Vade™ sinkaot].  (18)

A comparison of this expression and equation (15) shows that the
low-pass functions v.:(t) and dv,(t) are sinusoidal of frequency p.
That is, if equation (16) is satisfied one can write

.(t) = 2(Re)(Vue'™) (k=0,1,2,--) (19)
su,(t) = 2(Re) (V™) (k=1,2,3,:-:). (20)

Furthermore, by comparing equation (18) and the expressions that
one obtains by substituting equation (19) and (20) into equation (15),
one obtains the following relations between the Fourier coefficients
of 8va (t) and dv,; (£) and those of §v(f)

Vi :LP 1}[%} h=1,23, ). 1)
[Vnk:| ‘/QIJ — LV

Furthermore,
Vﬂo = VaU . (22)

The two sets of low-pass functions 8v,0(), 8v4:(¢), and so on, and
8vp1 (t), dvp2(t), and so on, defined by equation (14) provide a com-
plete representation of the voltage perturbation dv(f). Their signifi-
cance can be readily obtained by noticing that if »(¢) is written as

o(t) = Volt) + V2 Z V.(t) cos [kaot + deu(0)], (23)
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where V,(f), V() and 8¢(t) are low-pass functions limited to the
band | w | < wp/2, from equations (5), (11), and (14) one obtains

Vu(t) = V. + 5040(0 (24)
Vi) = V2 Voo + 0u() (k> 0) (25)
dpi(t) = \/- V v, (1) (k> 0). (26)

That is, if one decomposes the voltage v(¢) into a sum of harmonic
terms, one finds that, because of the presence of the perturbation 8uv (¢),
each harmonie component is modulated. The kth harmonic component
is amplitude modulated by 8v.:(¢) and phase modulated by vy (t).
Because of this property the representation of $v(t) in terms of the
low-pass functions 8v.(t) and 8v,.(¢) (or of their Fourier coefficients
Var and V,.) is called the amplitude-phase representation of dv(t).
The direct representation of 8v(¢) by means of the Fourier coefficients
Var and Vg is called the a-g representation.?s

The foregoing discussion can be extended to 8§i(t) by replacing v
with < throughout. That is, 87(f) can be represented in terms of low-
pass functions 8%, (¢) and 81, ()

5i(l) = Bio(l) + VO f [86,4(1) cos kol + 8i0(0) sin kant].  (27)

Furthermore, in the special case where 8i(f) of the type
i) = 2(Re){2 Lo exp [i(p + k)]
k=0

+ 3 I e [ito — kwo)e]} )

the low-pass functions 8%, (t) and 8, (f) are sinusoidal of frequency
p and, if I, and I, are their Fourier coefficients, one has

I 11 11
w| L ak (k=1,2,3, ) (29)
[In,‘:l v2 J:j‘ —jl:fﬁj

IuO = Iao . (30)

Equations (21) and (29) can be interpreted, because of their partie-
ular form, as the relations deseribing the terminal behavior of a four-
terminal-pairs lossless network consisting of ideal transformers, such
as the network 7T shown in Fig. 4.

and
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Fig. 4 — Network T describing the relations between the « — g signals at
p = kuwo and the corresponding amplitude and phase modulations.

IV. SMALL-SIGNAL TERMINAL BEHAVIOR OF THE DIODE IN THE AMPLITUDE-
PHASE REPRESENTATION

According to equations (14) and (27)

aw(t) = dv,(t) + dv,(t) (81)
() = &.(t) + 8i,(2) (32)

where 8v,(t) and 81,(¢) are the amplitude modulation components of
sv(t) and 8 (¢t), and 8v,(¢) and 8¢,(t) are the phase modulation com-
ponents. Thus

d,(8) = dv.olt) + V2 ki 80ax() cOS ket (33)
o, () = V2 i 8v,:(t) sin ket (34)
55.00) = 55a(®) + V2 3 85(8) 008 ot (35)
5i,() = V2 ;‘2“1 8%,:(f) sin kwot. (36)

Since from equations (13), (35), and (33) one has that 8v,(f) g(¢) only
contains amplitude modulation components and $v,(t)g(t) only con-
tains phase modulation components, by substituting equations (31)
and (32) into equation (8) one obtains

8i(t) = g(8) dv.(D) @37)

8,(1) = g(t) dv,(1). (38)
The relations between the low-pass functions 8i4 (%), 8% (£), and so
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on and 8v,(t), 8va1 (¢), 8042, . . . may now be obtained by substituting
equations (13), (33), and (35) into equation (37). One obtains

Mnu(t) + JQ i 81,4(1) cos kol = Jo 5?),,0(5}
k=1

+ V2 i g. ov.. (1) + g [2yk 8a0(1)

r=1

+ V2 2 (@rsr + Groeir) 6»,,(t)] cos fkwot, (39)

which gives

[oiu®| [ 00, V2o, VBg, V2g, o |[o00)]
8 (1) V2gi, Got gy it g, @t g, oo || 8a()
Sia(t) | = | V202, g1+ g, go+ gsy gt gs, cor || dva(t) -
8tas(t) V2 Gay G2+ Giy Gi+ G5y Got goy || Ba(l)

I T . . : J -

(40)

In a completely similar way, from equations (13), (34), (36) and (38)
one obtains

ainl(t) Go— G2, G — Ja, G2 — Ga, et &vpl(t)
8150(t) Gi— Gss Go— Gas Gr— G5, - || 85a(t)

. = . 41
5%3(0 g2 — Gsy Gy — G5, Go— Gs, "°° 51}»3(1) (1)

Equations (40) and (41) provide the amplitude-phase admittance-
matrix representation of the small-signal terminal behavior of the
diode, in the absence of internal noise sources. If the various low-pass
functions 8v,:(t) and 8v,;(f) are sinusoidal of frequency p, then equa-
tions (40) and (41) give

1] = [G.]V.]
L] = [G,]V,]

(42)
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where the matrix notation is defined as

0, V2o, V2g, V24,
V2g,, go+ g, 1+ g, 01+ g,
G)=|v20:, g1+ gs, got g, 1t g, -+ (43)
V205, G240, Gt g5, G0t Go,

Jo — G2, G1— Gz, G2 — 01,

g1 — Gz, Go— Ga,y G1 — G5,
(@] = (44)
gz — a4y Gy — G5y Go— GFo, *°°

and
Iuﬂ_ VuD Ipl Vrl
Iﬂ] = Iul ) Vn] = Vul ¥ Ip] = I:JZ ’ VP] = V,z '
(45)

Notice that I,i, Var, Ipr, and V,, are the Fourier coefficients of 8is (),
dvar (t), 81,-(1), and 8v,,(t), as shown by equations (19) and (20).

Equation (42) shows that the terminal behavior of the diode has the
following special property: the diode does not produce any coupling
between the amplitude modulation components and the phase modula-
tion components of the perturbations §v (t) and 8i(¢) ; or equivalently,
the diode does not produce amplitude £ phase conversion. This prop-
erty can be useful in simplifying the discussion of the terminal be-
havior of the diode because it allows the two types of signals (ampli-
tude and phase) to be treated separately.

According to equation (42) the small-signal terminal behavior of
the diode can be represented by two separate linear and time-invariant
networks D, and D,, as shown in Fig. 5. In these two equivalent net-
works the terminal voltages and currents occeur at the same frequency
(p) and their Fourier coefficients are equal to those of the various low-
pass functions of 8v(t) and 8i(t). Notice that from equations (43) and
(44) one has that [G,] and [G,] are real symmetric matrices and
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Fig. 5— Time-invariant equivalent networks D. and D, providing the ampli-
tude-phase representation of the terminal behavior of a resistive pumped diode.

therefore the two networks D, and D, can be realized by means of
ordinary resistive networks.

V. TERMINAL BEHAVIOR OF A FREQUENCY CONVERTER IN THE AMPLITUDE-
PHASE REPRESENTATION

In the following part of this paper the results obtained in the pre-
ceding sections are applied to the study of a very common type of
frequency converter, a frequency converter which is required to trans-
form input signals occurring at some frequency w, + p, with p < w, ,
into output signals occurring at @ = p. We assume that sv(t) and 8i(f)
contain components at only the pairs of side-frequencies kw, + p and
kw, — p(| k| = 0,1, 2, and s0 on; 2p < w,).

In this section attention is focused on the signals oceurring at p and
P %+ wy . At set of relations among these signals is derived, from the
equations describing the small-signal terminal behavior of the diode,
by taking into account the constraints imposed by the external eircuit
on the signals oceurring at the side-frequencies of 2w, , 3w, , 4w, , and
so on. We show that these relations establish the existence of a one-to-
one correspondence between the output signals (V,, and I,,) and the
amplitude modulation coefficients (V,, and I,,) of the signals occurring
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at p = w, . That is, they do not impose any relation between the output
signals and the phase modulation coefficients (V, and I,,) of the
signals oceurring at p =+ w, .

Let i , Yar and yg (k > 0) denote the admittances terminating the
diode at kwo , p + kwy , and p — kwo , respectively. We assume that

Ye = Yar = Ypr k > 11 (46)

a condition satisfied in many practical applications. Notice that this
condition is satisfied for p — 0 because ¥ is real.

Consider the equivalent network 7' shown in Fig. 4. One can verify
that if one terminates the two terminal pairs relative to the (a, 8)
signals with two admittances equal to y; then its behavior at the re-
maining two terminal pairs is described by the relations

Ii = —9Va, L= =%V (k> 1), (47

which show that, if condition (46) is satisfied, then the external circuit
does not produce amplitude == phase conversion. That is, if y.x = g ,
then in the amplitude-phase representation the behavior of the ex-
ternal cireuit at p = kw, can be represented by means of two separate
one-terminal-pair networks, Furthermore, the admittances of these
two networks are equal to the admittance presented by the external
cireuit at p + ke, .

Now, consider the relations among the signals oceurring at p & wo
and p when the remaining signals are constrained by the conditions
imposed by the external circuit at p == 2w, , p & 3w, , and so on. If
the two networks D, and D, shown in Fig. 5 are terminated as speci-
fied by equations (47) one obtains the two networks A and P shown in
Figs. 6 and 7. The relations between the terminal voltages and currents
of these two networks can be written in the form

II’I = ganl (48)

[I.,o} _ [G:][Vuo} (49)
Ial Vul

where g, and [G!] can be derived from equations (42) and (47). For
example, in the special case where y, = « for k£ > 1, from equations
(42) and (47) one obtains

% g
[G;J=[g° ‘”J, 9o = Go — 02 . (50)
‘/le Qn+gz
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Fig. 6 — Network A representing the relations in a frequency converter between
the output signals and the amplitude modulation signals at p = w..
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Fig. 7— Network P representing the behavior of the diede at p + wo with
respect to phase modulation.
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Notice that equation (49) establishes the existence, in a frequency
converter satisfying equation (47), of a one-to-one correspondence
between the output signals V,, and 7,, and the amplitude modulation
signals V,; and I, .

The significance of the two networks A and P is best understood by
considering the following alternative method of deriving g, and [GZ].
Suppose, for the moment, that év(f) = 8i(f) = 0 and that the level of
the pump and the de bias applied to the diode are variable. That is,
assume that the amplitudes of the various harmonic components of
v(f) and () can be varied, by changing the level of the pump and the
de bias, while the terminations ¥, , ¥s , %#s , **+ presented by the ex-
ternal circuit to the diode are kept constant. The functions v.(f) and ¢.(f)
must satisfy the constraint 7,() =f[v.(t)] imposed by the diode. Further-
more, the harmonic components of v.(¢) and <.(tf) must satisfy the
constraints I, = —y:V.. (k > 1) imposed by the external circuit.
Clearly, from these constraints two independent nonlinear relations
can be derived, among the four variables V.o, V., , I, and I, . That is,
if one considers the variables 75 = oo , m = V2@, 2o = V. and
x, = V2V,,, one can write

Mo = FU(-TO H a:l) (51)
Fl(-’”a y Tp)

T

where the two nonlinear funetions Fo(z, , z,) and Fi(z, , ) are de-
termined by the particular function f(v) describing the diode non-
linearity and by the parameters ¥, , %5 , %1 , - - - - Notice that the vari-
ables no , m , %o and z, represent the root mean square values of the
harmonic components of order zero and one of #(¢) and v(f).

Now, suppose &v(f) and &(t) differ from zero and are produced by
small generators occurring in the external circuit at the frequencies
p £ w, and p. We want to derive from equation (51) the relations
among the coefficients Vi, a1y Vaos Lao » Vo1 and I, of év(t) and &(¢).
Since the terminal behavior of the two networks A and P (shown in
Figs. 6 and 7) is frequency independent, the relations in question are
independent of p and therefore one can set p=0 without loss of gener-
ality. Thus, let sv(f) and &i(t) be produced by small-signal generators
oceurring at w = w, and w = 0. These small-signal generators can be
interpreted as follows. A small-signal amplitude modulation generator
oceurring at w, can be regarded as representing a small change of the
level of the pump; a small-signal phase modulation generator occurring at
wp can be interpreted as a small change d¢ of the phase of the pump.



FREQUENCY MIXERS 1981

Finally, a small-signal generator occurring at de can be interpreted as
a small change produced in the de bias circuit. When small changes of
the above three types occur in the external circuit, the components of
év(t) and 8i(t) at w = 0 and @ = «, can be evaluated as follows.

First, consider the amplitude modulation components év,(f) and
6i.(f) of dv(t) and 8i(t). Clearly, the harmonic components of order zero
and one of v, () + v.(t) and 7.(f) + 7.({) must satisfy equation (51).
From equations (11), (12), (33), and (35) and from the fact that 6v..(f) =
2V, and 84,,(t) = 2I,, because p = 0, the root mean square values of
the harmonic components in question are o = Ve + 2V , &1 =
VoV 4+ 2V, mo = I + 2@, and n, = V2I,, + 2I,, . Therefore,
from equation (51),

I"u + 21”9 = 'Fﬂ(\/é I;cl + 2Va1 ] Vcﬂ + 2Vaﬂ)

V21, + 21, = Fu(V2 V. + 2V, Vo + 2Va), o
and since V., < V., , from equations (49) and (52) one obtains
), ¢
(7] = | 0% A (53)

) &)

A2/ . dx./.

where ( ). indicates that the partial derivatives are calculated for
Ty = VcD ’ xr, = \/QVBI . (.34:)

Next, consider the phase modulation components év,(t) and &,(t) of
sv(t) and &i(t). They are produced by a small change é¢ of the phase
of the pump. Such a change is equivalent to a small change 6¢/w, of
the origin of time. Therefore

o)+ o0,) = 0.t + %) (55)

i.(f) + 82,(1) = ic(t + %) (56)

From these relations and from equations (11), (12), (34), and (36)
one can calculate the phase modulation coefficients V,, and I, of
&, (t) and é7,(t). One obtains

]-nl = ’_6§C‘V“/\@, Ipl = _5‘101:1/\/‘2
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Therefore, from these relations and equation (48),

gn = __.[I/:ri — [Fn(xo rxl)]c . (57)

z,

In words, g, is the nonlinear conductance presented at w, by the
diode to the external cireuit under normal operating conditions.

The foregoing discussion presents two alternative methods of evaluat-
ing the terminal behavior of the two networks A and P. One method
consists of analyzing these two networks by using equations (42) and
(47), as suggested by the equivalent circuits of Figs. 6 and 7. There-
fore, it requires that the small-signal terminal behavior of the diode
be determined. The other method consists of deriving [G.] and g, di-
rectly from the large-signal terminal behavior, at w = 0 and & = a, ,
of the nonlinear network consisting of the diode terminated with
Yz, Ys s Ya, * b 2wy , Bwy , 4wy , - -+ . If these admittances are non-
zero and finite, considerable analytical difficulties often arise when one
tries to analyze the equivalent circuits A and P by using the representa-
tion shown in Figs. 6 and 7. In these cases the second method may be
used. Furthermore, it is important to point out that a well known
technique of measuring frequency converters is based on the second
method, which is often called the incremental method.* ™

In the special ease where ¢, = c for k > 1, one can readily verify
that

Folzo , ) = 21—rf0 " o + V3 21 cos wl) di, o
58

and

1 27
Fi(z, , 2,) = V_Z_;Iu f(zo + V2 2, cos w,l) cos w,t dt,
and by using equations (53) and (57) one obtains equation (50).

VI. COMPLETE EQUIVALENT CIRCUIT OF A FREQUENCY CONVERTER

In Section V a one-to-one correspondence between the output sig-
nals of a frequency converter and the amplitude modulation coef-
ficients V,; and I,; was derived. In this section the terminal behavior
of the frequency converter is completely determined by deriving the
relations between these coefficients and the input signals. The relations
in question can be obtained with the help of the equivalent circuits T
and P shown in Figs. 4 and 7. In fact, they are given by the terminal
behavior of the network shown in Fig. 8.
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I

al \Jﬂ‘ 201 Iy
VmT %é Ip TVm
O- | 2*]

1:./2

Fig. 8 — Network 7" describing the transformation of the input signals of a
frequency converter into amplitude modulation signals at p %= wo.

Now, by connecting the two networks of Figs. 6 and 8 in cascade,
as shown in Fig. 9, one obtains a two-terminal-pairs network, which
provides a complete representation of the terminal behavior of the
frequency converter. This network corresponds to the equivalent eir-
cuit shown in Fig. 1. Notice that in Fig. 9 the input terminals of the
frequency converter are connected to a small-signal generator with
short-circuit terminal current I, and with internal admittance yqq,
and that the output terminals are connected to a load yao.

From equation (15) the signals occurring at the terminals of the
diode at p == w, can be expressed as

50,(8) = V2 dv,(1) coswot + V2 8,,(t) sin wot
8,(f) = V2 8i,(1) coswyt + V2 8i,,(f) sin wot.

(59)

FIRST TRANSDUCER \
(NETWORK T") ‘
g S

131 ] In‘u

SECOND
VB1T TRANSDUCER Tvao Yao
(NETWORK A)

Fig. 9— Equivalent circuit representing a frequency converter as a cascade
connection of two transducers.



1984 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1969

From these relations one ean verify that

P, =P, + P,, (60)
where
Py = (8,(1) 8:())av (61)
Py = 2(00,,(1) 80,(1) €08® wol)uy = (801(1) 8ur(D))ae (62)
P,y = 2(60,,(1) 87,,(1) sin® wol)ey = (8050(8) 8651(1))ur

and ( )., indicates the time average. Equation (59) shows that év,(f)
and #,(f) contain two types of signals: the amplitude modulation
components V2 8v,,(t) cos wof and V2 84, (t) cos wet, and the phase
modulation components V2 8v,,(t) sin wet and V2 8%, () sin wit. Equa-
tions (59) through (62) show that the total power P, flowing into the
diode at p = w, is the sum of the individual powers P,, and P,, carried
by these two types of components. Furthermore, P,, and P,, can be
caleulated directly from the modulating functions év,,(f) and &, (f) as
shown by equations (62).

Now, consider the equivalent circuit shown in Fig. 9. The network
T’ can be regarded as a transducer which transforms the input signals
of the frequency converter into amplitude modulations of the funda-
mental harmonic components of v, (¢) and 7,(f). These amplitude modula-
tions are then transformed by the network A into the output
signals of the frequency converter. The network 7" is dissipative be-
cause it contains the two admittances yg and g, . The power dissipated
in g, , P, , represents the power dissipated in the frequency converter
because of the generation of phase modulation signals. The power
flowing into the network A4, at its left terminals, is P, . Figure 9 clearly
shows that P,, + P,., the total power flowing into the diode at p =+ wo ,
is in general less than the power P,, flowing into the input terminals
of the frequency converter. In fact the difference Poy — (P + Pp)
between these two powers is lost in the admittance ys of Fig. 9. This
is the power flowing from the diode into the external circuit at p — wo .
In general, only if either one of the two conditions

Yp = *® (63)
Y = 0 (64)

is satisfied, is this power equal to zero. These two conditions are ex-

amined in Seetion VIII.
In the following section the special and very important case of a
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frequency converter in which
Yn = Yar (65)

is considered. The discussion of the terminal behavior of this frequeney
converter will also provide the background needed in Section VIII for
the discussion of the two cases given by equations (63) and (64).

VII. FREQUENCY CONVERTER WITH EQUAL TERMINATIONS AT wy + P
AND P — wy

One can verify that if 3, = %., , then the Thevenin representation
of the one-terminal-pair network connected to the left terminals of
the network A of Fig. 9 has a short-circuit current I,/v2 and an internal
admittance y., , as shown in Fig. 10a. One can also verify that the one-
terminal-pair network connected to the terminals of ¢, , in Fig. 9,
has the Thevenin representation shown in Fig. 10b. Notice that the
only significant difference between the two equivalent generators of
Fig. 10 and the generator connected to the input terminals of the fre-
quency converter (Fig. 9) is that the available power of this generator
is twice the power available from each of the two equivalent generators
of Fig. 10. Notice, furthermore, that Fig. 10 shows that if ¥., = ¥ ,
in the amplitude-phase representation the terminal behavior of the
external circuit at p &+ w, can be represented by means of two separate
one-terminal-pair networks, the two equivalent generators shown in
Fig. 10. This property is in accordance with the remarks in Section VI
about the significance of Equation (47).

Thus, if Y41 = ¥g1, then only half of the power available from the
input generator shown in Fig. 9 is used by the frequency converter to

T EQUIVALENT | T tuvacent !
| | weeie |
LATING MODULATING
[ GENERATOR | I GENERATOR |
| ptuy | | AT Ptug
| ] T .
1s a A y i Is ° y g
:./?- | ao |_)./2_ l ar | p
. [ | -
| o l
L J L J
(a) (b)

Fig. 10 — Equivalent generators in the amplitude-phase representation for
the external cireuit at p = wo, when yp = Ya .
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produce output signals. The remaining half is lost because of the gen-
eration of phase modulation signals, as shown by Fig. 10b. This ex-
plains why the minimum conversion loss of a frequency converter of
the type considered here is always greater than two and can be ex-
pressed as

L = 2L,, (66)

where L, is the minimum conversion loss of the network A shown in
Fig. 10a. The conversion loss given by equation (66) is achieved when

yal = al ) yno = Yany (67)

where Y, (k = 0, 1) are the image admittances of the network A.

A frequency converter of the type considered in this section is
characterized by the following special behavior. If one minimizes its
conversion loss, the frequency converter reflects, at its input terminals,
a part of the power incident from the input generator. The reflected
power P, can be calculated with the help of the equivalent circuit
shown in Fig. 8, by terminating with Y, the terminals relative to the
signals Vg and I,;, connecting the remaining terminals to the input
generator shown in Fig. 9, and setting Ya1 = yp1 = Yar. One finds that
P, is equal to the power dissipated in yp, and

Aoy )
Py=3\g ) D a\g v+ v/ (68)

where P, is the available power of the input generator. Therefore,
the following conclusion can be drawn: in a frequency converter of the
type considered in this section, minimum conversion loss is achieved
only when the power reflected at the input terminals of the frequency
converter is equal to the power dissipated in the admittance terminating
the diode at p — w, and is given by equation (68).

This result can be given the following interpretation. The available
power of the equivalent generator shown in Fig. 10a represents the
amplitude modulation power available from the external circuit at
p =+ wo . This power is entirely absorbed by the diode, when equations
(67) are satisfied. Only a part of the power available from the generator
of Fig. 10b, on the other hand, is generally absorbed by the diode, be-
cause normally g, # Y1 = ¥a . From Fig. 10b, the power reflected at
the terminals of the generator in question is

I_:_’l (gn — y=!1>2 _ & (gz _ Yal)z
2 \g, + Ymu 2 \g,+ Y./~
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Since half of this power is reflected at p 4+ w, and the remaining half is
reflected at p — w, , one obtains equation (68) and the conclusion
following it.

Notice that, in the special case where y; = @ for k > 1, from equa-
tions (50) one obtains the well known expressions:*

1 — [1 — 2g7/g0(go + g2)]
L - L 69
1+ [1 = 2¢,/g4(g0 + gz):li ©9
o T+ go [ ————-20? ]&
Vo=0T0 0 y,=g 41~ - @0
9o oot g 90(go + ¢2) 7

VIII. FREQUENCY CONVERTER WITH EITHER }g1 = @ OR g1 = 0

One can readily verify that in the two cases corresponding to condi-
tions (64) and (63), the equivalent circuit of Fig. 9 reduces to the two
equivalent circuits shown in Figs. 11 and 12, respectively. In both
cases the minimum conversion loss can be expressed as

L = 4L{[(La + 1)* + v(L2 — 1))}
—[(La — 1)* + v(L2 — D]} (71)

where
y=L it gy = w (72)
Y., -
y = 1;— it Vs = 0. (73)

The values of y., and y., required for achieving this conversion loss
are given in the appendix.
Of great practical importance is the problem of determining which

r— - - — A
FIRST TRANSDUCER [
Uﬁ. =0 |

Fig. 11 — Equivalent circuit of a frequency converter when ygu = 0.



1988 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1969

r 1
FIRST TRANSDUCER

|
g =
! s |
/2 :1 l
i
Is I 9p | A Yao
______ J

Fig. 12 — Equivalent circuit of a frequency converter when yp = co.

of the two conditions ys; = @ and ys = 0 yields the lowest conversion
loss. Since equation (71) shows that L decreases with decreasing v,
for ¥ = 0, one has that of the two foregoing conditions the one which
givesy < 1 yields the lowest L. Therefore one obtains the fundamental
result: Of the two conditions 75 = 0 and ys; = < the one which yields
the lowest conversion loss is ¥5 = 0 if g,/Ya > 1 and is Yy =
if g,/ Y., < 1; the two conditions are equivalent if g, = Y., .

Therefore, if ¥z is so chosen as to minimize the conversion loss,
then v = 1 and from equation (71) one obtains

L, 2L (74)

1
=L@
where the two equal signs occur when y = 0 and y = 1, respectively.
The first inequality is a direet consequence of the fact that in both
equivalent circuits of Figs. 11 and 12 the conversion loss is always
greater than L,, the minimum conversion loss of the network 4. The
second inequality shows that in a frequency converter of the type
considered here the optimum conversion loss is always less than 2L,
the lowet conversion loss obtainable when 1, = yg:. In fact

1
1= L@ =1 = 2L, (75)

where the equal signs occur when L, = 1 and L, = .

Often practical considerations require that the admittance ya1 of the
input generator be equal to a prescribed value G, not necessarily
equal to the value required for optimum performance. In such a case
it is important to point out that one ean readily determine, with the
help of the two equivalent circuits of Figs. 11 and 12, which one of
the two conditions yg; = 0 and yg = o is to be chosen, in order to
minimize the conversion loss. Clearly the choice depends upon the
values of G, Yy and L.
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IX. SCHOTTKY BARRIER DIODE

Among the various resistive diodes presently available, the Schottky
barrier diode offers the most suitable electrical characteristies for
microwave frequency conversion.®'*8 The main features of this diode
are that its low-frequency terminal behavior is deseribed by the equa-
tion

s e | L — —

i= z,{exp l:KT v @R,)] 1} (76)
over a very wide range of voltages, and that its frequency response is
not limited by minority carrier lifetime. In equation (76) 1, is the
saturation current, g the electronic charge, K the Boltzmann constant,
T the absolute temperature, and R, the series resistance. Therefore,

ZEe 40 for T = 200°K. @)

The useful frequency range of the diode is limited primarily by

the junction capacitance C;. In some instances the lead inductance

and the case capacitance also have to be considered. However, in Sec-

tion 9.1 consideration is restricted to the range of frequencies over
which the foregoing parasitics can be neglected.

9.1 Analysis
Assume that

i =1, exp [ﬁ = R,z‘)] (78)
and that
¥, =0 for k> 1. (79)
Then from equation (78) one obtains
v _ KT1
Gi~ g TE (80)

and, from equations (12) and (79),

1.(t) = I, + 2I., cos wyl. (81)
Therefore, by setting ¢+ = 2,(¢) in equation (80), the differential resist-
ance of the diode can be expressed as

KT 1
ri) = B, + 2ql., £ + cos wyl

(82)
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where

.o
— fec0 | 3

£=2r1., (83)
From equation (82) one can readily calculate the Fourier coefficients
of r(t). One obtains

KT 1 cos né KT n
o= SR, + 11 [ as 540 = MR+ 57 (=D
z+) “[e 5—11"
ENavo -] e
where
5n) = {1’ n=0 (85)
0, n#0

Because of the formal analogy between the impedance-matrix repre-
gentation and the admittance-matrix representation, from equation
(50) one has that the impedance matrix [R/] of the network 4 is

{Rﬁ — I: To \/éf'l ] (86)
\/Q T
and the impedance 7, presented at wy by the diode to the pump is
T, = To — T2 - (87)
Therefore, from equations (84), (86), and (87) one obtains
KT - —V2[EE - D7 = 1]
[(R] =5 2qT
V2 — DT 1] 26 - D7 = 1]
+F'01 (88)
0 R.|
and
KT 2
o= g = € - Dl (89)

Equation (88) shows that the network A can be represented by
means of the equivalent eircuit shown in Fig. 13, with

KT
chO

R, = (90)
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Rg Ry Rg

n:1

Fig. 13— Network A for a Schottky barrier diode frequency converter with
ye=0fork > 1.

B quﬂ (Ez - 1)

n = V2 L. (92)

Now, let vy and v,, denote the maximum and minimum values, re-
spectively, of v,(t) — R4,(t) and let

AV =V — Unp . (93)
Then from equations (78), (81), and (93) one obtains

R,

Icl) + 2Icl = (IcU - 2I¢1) exp (% AV)

which, by making use of equation (83), gives

t=1+ 2[exp (-I-(% AV) — 1]-1- (94)

At this point the assumption is made that
AV > 0.5 volts, (95)

a condition satisfied in most cases of practical interest. Then, if one
substitutes equation (94) into equations (89), (91), (92) and examines
the behavior of n, R, and r, for large ¢ AV/KT, one finds that

n =2 v2 (96)
KT
T, 2 2 T + R, 97
~oKT (g A_V).
R, =2 ol exp \ 7 5 (98)

Furthermore, one can verify that the fractional errors in these ap-
proximate expressions decrease exponentially with AV and are less
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than 0.01 per cent, because of condition (95). Therefore the equivalent
cireuit of Fig. 13 can be replaced by that shown in Fig. 14.
Notice that

R,, R, < R,, (99)
because of condition (95) and of the fact that typically R, < 10Q and
I, <« 100 mA. (100)

Then, with the help of the equivalent circuit of Fig. 14 and by mak-
ing use of condition (95), from standard network theory one obtains

g o~y 2R, ql. ) (_q_ él’)

L.=~1+ 2(2 + 3Rl °“) exp (— E% ATV) (102)

where Zgo and Zg; are the image impedances of the network A (that
is, Zgo = 1/Y 40 and Zoy = 1/Ya1).

Equations (97) and (101) show that r, < Z,. Therefore, in ac-
cordance with the discussion in Section VIII, condition (64) yields
better performance than condition (63). Thus let yg: = 0. Then, from
the equivalent circuits shown in Figs. 11 and 14 and from equation
(97) one obtains the equivalent circuit shown in Fig. 15.

9.2 Discussion of the Equivalent Circuit

From the equivalent cireuit shown in Fig. 15 one obtains the follow-
ing expression for the minimum conversion loss of a Schottky barrier
diode

~ R.ql w) (_ g él)
L=1+ 4(1 — exp \ = %7 4 (108)
which is achieved when
o~ R.ql. =a)’ KT (_fL M)
Za1 = Zan =2 (1 + X ol exp\ %7 4 (104)

where 2., = 1/1«: From equation (103), by selecting I., in such a way
that

Rancﬂ

KT « 1, (105)

one obtains equation (1).
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KT
R
Iay s aleo Rg Tao
V,
a1 R.= KT a av Vao

27 2ql., EID[KT z

O
V2 i

Tig. 14 — Equivalent circuit of Fig. 13 when AV > 0.5 volts.

Notice that it is always desirable that AV be as large as possible, be-
cause this increases the value of the resistance Ry shown by Fig. 15. On
the other hand, equations (104) and (105) show that it AV is too large,
then very high input and output impedances are required in order to
achieve minimum conversion loss. For instance, if AV > 0.85 (which
is a condition that can be readily satisfied in most practical cases
since the breakdown voltage of the diode typically is greater than 1
volt), I, = 10 mA and R, = 20, then from equations (103) and (104)
one obtains

L < 1.0015, but Za1 = 240 > 17000Q. (106)

Since normally it is required that the input and output impedances be
mueh smaller than this value, one concludes that practical considera-

tions almost always require that

g A—V)- (107)

Zal = Za0 K KT exp (KT n

ql.
Because of this restriction, the equivalent circuit of Fig. 15 reduces to
that of Fig. 16 which shows that, under practical conditions, the termi-
nal behavior of the frequency converter only depends upon the two
parameters I,, and R, . Furthermore, Fig. 16 clearly shows that low
conversion losses require high de currents (I.,); that is, they require

KT KT
Rsg qleo qlco Rs Iao

Fig. 15— Equivalent circuit of a Schottky barrier diode frequency converter
withyr =0fork > 1,y = 0, and AV > 0.5 volts.
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Teo Rs
P e AVAVAY AVAvAY, O lao
Vat T TVao
o o

Fig. 16 — Equivalent circuit of alSchottky barrier diode frequency converter
under certain optimum circuit conditions.

that the impedance r, presented by the diode at w, be small. Notice that
from the equivalent circuit of Fig. 16 one readily obtains equation (2).
The pump power P, absorbed by the diode at wo is

P, = 2I'r, . (108)

Therefore, by using equations (77) and (97) and the fact that Iu
== 2], one obtains

I:ﬂ R.Izo

+ 2000  @W), (109)

P, =

where R, and I, are measured in ohms and milliamperes, respectively.

9.3 Optimum Terminations at 2wy , Swo , 4wo , = **

The preceding analysis assumes that the diode is open-circuited at
the frequencies p = kwo and kw, , k > 1. In this section we show that the
conversion losses obtainable when the diode is short-circuited at these
frequencies are appreciably higher than those given by equation (1).

Assume that the diode is short-circuited at p == kw, and kwo(k > 1).
Reference 10 shows that then the optimum termination at p — w, is*

Ys = 0. (110)

With this optimum termination the minimum conversion loss can
be expressed as follows*™°

ool rea ey TT-GF]0 )
U@l Ge-n

* The analysis of Ref. 10 is valid only if the diode is short-circuited at p =+
kwo, & > 1. Therefore, even though the analysis covers all cases where such an
assumption can be made, it cannot be applied to the case (yx = yar = Vs = 0)

(111)
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where
,,Z(L A_V)
g2 _ _KT—Q , (112)
o )r( q M)
YO\NKT 2
Jl(_Q_ A_V)
g _ KT 2 (113)

go Jo (_q_ Q_V)

provided R, can be neglected.*® From these equations, by making use
of well known asymptotic expansions of the modified Bessel functions
Jo, J1, and Js, one obtains

=1+ 2( va) + 2( Igv) +6+ f’(qlfv) e
(114)

Thus, if one compares L’ with the conversion loss L of equation (1)
one finds

-1 e w KT
L —1 YN
If for example AV = 1, then equations (1) and (114) give

— 0.

L = 1.00018 (115)
and
L' = 1.39, (116)

respectively. Clearly, condition (79) gives better performance than
the condition ¥, = e« for k > 1.

X. CONCLUSIONS

It has been shown that, under certain circuit conditions, a resistive
diode frequency converter can be represented by the equivalent eircuit
shown in Fig. 9. The general case where the diode cannot be regarded
as a nonlinear resistor and the terminations ys, ¥a, ¥4, *** are not re-
sistive has not been considered, in order to prevent the mathematical
difficulties inherent in it from obscuring the significance of the results.

However, the equivalent circuit of Fig. 9 is valid under conditions
much more general than those considered in the preceding sections.
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In fact, in this section we show that it is valid also in the general case
of a frequency converter using an arbitrary nonlinear element which is
pumped at w, and is arbitrarily terminated at 2w , 3wo , 4wo and so on,
provided that three conditions are satisfied. (1) p K wo (%) small and
slow changes of the level of the pump and of the de bias do not cause
phase variations in the fundamental harmonic ecomponents of v. (?)
and 7,(¢), and (#%) the nonlinear admittance (g,) seen by the pump
be real.

Assume first that 777 is satisfied. Then, the fundamental harmonic
components of v.(¢) and 4,() have the same phase ¢, . Let the origin of
time be chosen in such a way that ¢, = 0. If one now defines the ampli-
tude modulation and phase modulation components of &v,(f) and &, (%)
by means equation (59), the relations between Vo, Lo, Vor ) Ina and
Vi, L, Vi » Ig arve provided by the terminal behavior of the net-
work T shown in Fig. 4.

Next, assume that p < w, and let the incremental method be used
to derive the relations between the output signals V,, and I,, and the
coefficients V., , a1, Vo1 and I, . By using equations (51), which are
valid even if the aforementioned three conditions are not satisfied, one
finds that there is a one-to-one correspondence between the output
signals of the frequency converter and the amplitude modulation
coeflicients V., and I,, . More precisely,

{le 17)
Va

£, (2)

I:Iun:l _ 0xo/ . 9T,/ .
rd | (o) (e

ama e a:‘El c

where Fo(zo, 1) and Fy (e, 71) have the significance given in Section
V.

Finally, assume that all of the three conditions are satisfied. Then,
by using the incremental method one finds that I, /V;: is independent
of I.1, Var, Iao and Vg, because of 1. The ratio Ip/V; can therefore
be determined by applying a small variation 8¢ to the phase of the
pump; and one finds

Ivl = gﬂVpl - (118)

Now, from equations (117) and (118) and from the network T of
Fig. 4 one obtains the equivalent circuit of Fig. 9, where the terminal
behavior of the network A is now specified by equation (117).

Notice that the validity of the equivalent circuit shown in Fig. 9
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can be extended to the general case where only the condition p < w,
is satisfied, by properly modifying the first transducer. This follows
from the fact that p <« w, is sufficient to guarantee the validity of
equation (117).

The special case of a Schottky varrier diode is examined in Section IX,
which shows that the optimum terminations at the image frequency
and at the harmonies 2w, , 3w, , 4w, , * - + , are open-circuits. Furthermore,
at low frequency and under optimum circuit conditions, the terminal
behavior of a Schottky barrier diode frequency converter is quite simple.
It can be adequately represented by means of the equivalent circuit
shown in Fig. 16.

Finally, the fact that consideration has been restricted to the fre-
quency range where the Schottky barrier diode can be regarded as a
nonlinear resistor should not be interpreted as an indieation that C;
can generally be neglected. However, the simple results obtained for
the low frequency case serves as a guide for treating the high fre-
quency case, which is reserved to a future article.

APPENDIX

The conversion loss given by equation (71) is obtained when

L, + 1)( L, — 1)'
= T )1 ¢ 11
ﬁtzl Yul(l-[_‘YL‘___ 1 +7Lu+1 ( 9)
L, + 1)( L, — 1)'
A - a a 1
yﬂﬂ 2Yn0(1+'YL“_1 1+7Lu+1 (20)
where
Y =0/Ya, s=1 if Yo=
vy=Yu/0, s=—1 1f ys; =0.
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