Some Network-Theoretic Properties of
Nonlinear DC Transistor Networks

By I. W. SANDBERG and A. N. WILLSON, JR.
(Manuseript received September 9, 1968)

This paper exlends, in several directions, some of the resulls of earlier
work concerned with the existence and uniqueness of solutions of the dc
equations of nonlinear (ransistor metworks. In particular, here we
develop techniques which enable us to deal directly with a more complicaled
transistor model.

I. INTRODUCTION

Several results are presented in Ref. 1 concerning the equation

F(x) + Ax =B (1)
(with F () a “diagonal” nonlinear mapping of real Euclidean n-space
E* into itself, and A a real n x n matrix) which plays a central role
in the de analysis of transistor networks. In particular, a necessary
and sufficient condition on A is given such that the equation possesses
a unique solution x for each real n-vector B and each strietly mono-
tone increasing F(-) that maps E" onto itself. Several circuit-theoretic
implications of the results are also deseribed in Ref. 1; for example,
it is shown that the short-eircuit admittance matrix of the linear
portion of the de model of an interesting class of switching circuits
must, violate a certain dominance condition.

In Ref. 1 the word transistor was used to refer to the three-terminal
device whose de equivalent cirenit is shown in Fig. 1(a). Although
this equivalent circuit is frequently used in the design and computer
analysis of transistor networks it is, from a physical standpoint, some-
what incomplete. A more exact de model of a physical transistor is
that of Fig. 1(b) in which the presenee of series resistance in each
of the transistor’s leads has been accounted for.

In this paper we report on several extensions of the previous results.
The motivation for much of this work was to enable the model of
Fig. 1(b) to be taken into account. In addition, we present here
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Fig. 1—DC transistor models.

further material concerning cases in which (in accordance with stan-
dard assumptions) the nonlinear functions of Fig. 1(b) do not map
E* onto itself. Finally, we prove a considerably stronger result than
that of Ref. 1, to the effect that a certain class of networks cannot
be bistable,

We now summarize some of the material of Ref. 1 that will be
needed in the sequel:

For each positive integer n, we let " denote that collection of map-
pings of the real n-dimensional Euclidean space E™ onto itself defined
by: F ¢ 5" if and only if there exist, for7 = 1, - - - , n, strictly monotone
increasing functions f; mapping E' onto E' such that, for each z =
@,y 2) e B F@) = (h(z), -+, falza).

The origin in E" will be denoted by 6. Throughout this article we
consider only matrices whose elements are real. If D is a diagonal matrix
then D > 0 (D = 0) means that each element on the main diagonal of D
is positive (nonnegative).

The classes of matrices P and P, have been defined by M. Fiedler
and V. Ptik in Refs. 2 and 3. They prove that these classes ean be
defined by any one of several equivalent properties. We shall need only
the following characterization of the classes P and P, : A square matrix
A is a member of the class P (P,) if and only if all principal minors of A
are positive (nonnegative). In the appendix it is proved that A & P,
if and only if det [A + D] # 0 for every diagonal matrix D > 0.

b T}Jf'M is an arbitrary matrix, then the transpose of M is denoted in this article
v M.
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The following theorem is proved in Ref. 1:

Theorem 1: If A is an n X n mairix then there exists a unique solution
of (1) for each F £ 5" and each B & E" if and only if A € P, .

We say that an n X n matrix A is strongly (weakly) row-sum dominant

if and only if the elements a;; of A satisfy

a;;>(g)2|ﬂ“’|, fO[' ?:=1,“',n.

FEE)

Similarly, a strongly (weakly) column-sum dominant matrix is one that
satisfies

a.-.->(;)2|a,~.-l, fOI‘ 'l:=].,"',n.
The square matrix 4 is said to be dominant (strongly dominant) if and
only if A is weakly (strongly) row-sum dominant and symmetric.

If a square matrix 4 is strongly column-sum or row-sum dominant
then A is nonsingular, in fact A ¢ P.
The following theorem is also proved in Ref. 1:

Theorem 2: If the square malriz A satisfies a strong column-sum domi-
nance condition and if the square matriz B satisfies a weak (strong) column-
sum dominance condition, then A™'B ¢ P, (P).

An analogous theorem involving row-sum dominant matrices is also
true, and can be proved with trivial modifications of the proof of
Theorem 2 given in Ref. 1.

II. FURTHER RESULTS CONCERNING THE EXISTENCE AND UNIQUENESS OF
SOLUTIONS

The proof of Theorem 1 given in Ref. 1 exploits the fact that the
straight line described by the equation ¥ = —ax + b has exactly one
intersection with the graph of each strictly monotone increasing function
{(z) which maps E' onto E' if and only if a = 0.

It happens that a useful result that is slightly more general than that
of Theorem 1 can be proved easily if use is made of a proposition that is
similar to, but stronger than, the elementary fact mentioned in the
preceding paragraph. That proposition is stated below.

Definition: TFor all @, 8 with — = a < 8 = «, let I(e, B) denote
the interval I'(e, B) = {z:a < 2 < B}.

The following proposition is quite easily verified:
Proposition: For —w = a < B = e, the straight line described by the
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equation ¥y = —ax + b has exactly one intersection with the graph of
each strictly monotone increasing function f(x) which maps I(e, B)
onto E' if and only if a = 0.

Definition: TFor each positive integer n and each pair of n-vectors «, 8
whose components «; , 8; lie in the extended real number system, with
a < B (that is, with — o =< a; < 8: £ « for 7 = 1, ---,n) let
F"(a, B; E") denote that collection of mappings of (e, , 8;) X -+ X
I(e, ,8,) onto E" defined by: F e (e, 8; E") if and only if there exist, for

1 =1, --- , n, strictly monotone increasing functions f; mapplng
(et; , B:) onto E' such that foreachz = (z,, - -+, z.) e I(ey,B8,) X -+- X
I(eta , Ba),

F(:E) = (fl(:cl): Tt fn(xn))‘-

Let the collection of strictly monotone increasing mappings of E" onto
I(a;,8,) X --- X I(a,B,) be similarly defined, and denoted by
F*(E"; @, B). Note that F ¢ 5"(a, 8; E") if and only if F~' exists and
F' ¢ 3"(E"; a, B). Also, in case I(e;,8,)) X -+ X I{e,8,) = E",
then §"(a, 8; £") = F"(E"; o, 8) =

Using the above proposition it is now easy to prove:

Theorem 3: For the n-vectors a < 8 whose components lie in the extended
real number system, if A is an n X n matriz then there evists a unigue
solution of (1) for each F & F'(a, 8; E") and each B ¢ E" if and only if
AePy.

Proof: (if) The proof of this part of the theorem is identical to the
proof (given in Ref. 1) of the corresponding part of Theorem 1 with
the exception that appropriate use is made of the above proposition.
Since the necessary modifications are quite obvious we omit the details.

(only if) Suppose A ¢ P, . Then there exists a diagonal matrix
D = diag[d,, --- , d,] > 0 such that det [A + D] = 0. Let z° be an
arbitrary point in (e, , 8;) X - -+ X I(a, , 8,) and let 4° be an arbitrary
point in E" . Let

B =" 4 Ax°
Let 6 > 0 be chosen such that
o <al—6<t+5<B;:, fore =1, ---,mn,

and choose F = (fi(+), +++ , fu(:))" in 5"(e, 8; E") such that for
2=1,+-+,m and for 2] — § < z; < 2] + 5,

file:) = yi + di(z: — 2).
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Thus, F(z®) = " and hence, 2° is a solution of (1) for this choice of F.
Since det [A + D] = 0, there exists some n-vector z* £ 6 having the
property that

Azx* 4+ Dx* = 6.
Thus, for each real number e,
y® 4+ Dex* + A(x® + e*) = B.

In particular, if € 5 0 is chosen such that |¢| is sufficiently small, then
| ex* | < éfori =1, --+ , n. Hence, for such ¢, if z = 2° + ex*, F(x) =
y" 4 Dex* and therefore  # 2° is also a solution of (1). O

An important special case of Corollary 3 of Ref. 1 is:

Corollary 1:  For the n-vectors a < 8 whose components lie in the extended
real number system, if A is an n X n matriz then there exisls a unique
solution of (1) for each F ¢ 3"(L"; o, B) and each B ¢ E" if A & P.

1

Theorem 3 may be used to prove a sharper (and, from the viewpoint of
transistor networks, a more useful) result than Corollary 1. We have:

Theorem 4: For the n-vectors « < 3 whose components lie in the extended
real number system (in the real number system), if A is an n X n matriz
then there exists a unique solution of (1) for each F & §"(E"; @, B) and each
B e E" if (and only if) A & P, and det A = 0.

Proof: (if) As pointed out in Ref. 1, A & P, and det 4 # 0 imply that
Al e P, . Also, F~" exists and F~' ¢ (a, 8; E"). Now z satisfies (1)
if and only if y satisfies

F'(y) + A7y = A7'B, (2)

where ¥y = F(x). But, according to Theorem 3, there exists a unique y
which satisfies (2).

(only if) We assume here that the components of @ and g8 are real.
Suppose 4 ¢ P, . Then, in a manner similar to that used in the proof of
the “only if”” part of Theorem 3, we ean choose a mapping F ¢ §"(E"; @, 8)
and a point B ¢ E", such that the solution of (1) is not unique.

If, on the other hand, det A = 0, then there exists * > 6 such that
A'z* = 6. Assume that (1) has a solution z for each B ¢ E". Then,
since (z*, Az) = 0 for all z, we have

('E*: F(L)) = (I*y B),

for each B ¢ E" (and the corresponding z). It is clear, since the com-
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ponents of « and 8 are finite, that there exists some constant M such
that

[(e*, F(x))| = M

for all x ¢ E". But B can certainly be chosen such that (z*, B) > M.
This contradiction completes the proof of the theorem. [

The following theorem provides an alternative method of characteriz-
ing the class of matrices that are in P, and are nonsingular (compare
with the theorem of the appendix).

Theorem 6: If A is a real square matriz then A ¢ Py and det A # 0
if and only if det [A -+ D] # 0 for every diagonal matriz D = 0.

Proof: (¢f) It is clear, by the theorem of the appendix, that 4 P, ,
since det [A + D] # 0 for all diagonal D > 0. Moreover, det 4 = 0,
by hypothesis.

(only if) It is shown in Ref. 1 that, for each 4 & P, and each diagonal
D = 0, A4+ D ¢ P,. It suffices, therefore, to show that if
D, = diag[0, -+-,0,d;,0, ---,0]withd; = 0, and A e P, with det 4
> 0, then det [A + D] > 0. Letting A, denote the principal sub-
matrix obtained from A by deleting the 7th row and the zth column,
we have

det [A + D] = det A + d, det 4, .
Butdet A > 0and d;det A; = 0. O

III. APPLICATION TO EQUATIONS FOR TRANSISTOR NETWORKS

In the analysis of a transistor network one could account for the
presence of series lead resistance, while using the model of Fig. 1(a)
to represent, the transistor, by including appropriate additional resis-
tors in the rest of the network. Indeed, there is at least one good
reason for doing this. When treated in this manner, the presence of
nonzero series resistance in the base, collector, and emitter leads of
each transistor ensures that the y-parameter matrix exists for the
ecircuit to which the transistors are connected—and hence ensures that
the transistor network can be described by an equation having the
form of (1). On the other hand, there are also good reasons for rep-
resenting the transistor, for analysis purposes, by the model of Fig.
1(b). Using this model it will be shown, for example, that it is often
possible to determine that there is a unique solution of the equation
describing a given transistor network regardless of the (nonnegative)
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values of the transistors’ series lead resistances. Since these resis-
tances are usually parasitic and unavoidable in nature it is significant
that one might be able to show that their introduction in, say, a cer-
tain monostable circuit will not cause the eircuit to become bistable.

Using the model of Fig. 1(b) it is quite easy to see that the port
variables for the transistor, when considered as a nonlinear two-port
network, obey the following relationship

fiw))

[’ix _ { 1 ‘—am}

s — 1 f2(1)2)
[01] _ lﬁl] _ |:?'. + 1y Ty :Hily .
v, 7, Ty 7. + ol lis

Asin Ref. 1 we assume that 0 < a,, < 1,0 < a, < 1, and that both
of the functions f, and f, are strictly monotone increasing mappings
of E" into E*.

Suppose an electrical network is synthesized containing transistors,
resistors (that is, linear resistors having nonnegative resistance), inde-
pendent voltage and current sources, and nonlinear resistors which are
described by strictly monotone increasing conductance functions (and
which shall henceforth be called “diodes”). Suppose the network con-
tains n transistors and d diodes (n +d > 0). Fork =1, --- , n let
Taro1 , Tok  Foro1 y ok y Yze—1 , and ya, denote the voltage and current
variables v, , v , ¥, , U2 , 1, , and 7, , respectively, for the kth transistor.
Tork =1, -+, d,let Ts,., and ¥s,., denote the voltage across, and the
current through, the kth diode; also (for k=1, ++- , d) let Tonsr="Tonss -
Let these variables be related by ¥anie = fan+r(@z2nsr). Then, if @ =
(T, oy Tonsa)y &= @y 00y fpaea)yand ¥ = ry -o0 ) Yonsa) s
we have

where

y=TF(@), «=2&— Ry, 3)

where T = diag[T:, Ts], with Ty a block diagonal matrix with n
2 % 2 diagonal blocks of the form

1 __af.kl
|: 12 } , (4)
—an 1

and Ty the d X d identity matrix. Also, R = diag[R,, R.], with I,
a block diagonal matrix with n 2x2 diagonal blocks of the form
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(k) (k) (k)
[T. + Ty Ty } , (5)

(k) (k) (k)
Ty e + 71

and R, the d X d null matrix.

Consider now the (2n + d)-port network of resistors and independent
sources which is formed from the original network by removing the
transistors and diodes. If the y-parameter matrix G of this (2n + d)-port
exists then we have the additional equation relating the vectors # and y:

y=—Gt+a (6)

where # is some vector of constants that is, in general, nonzero since
sources are present in the (2n 4 d)-port.

The vectors £ and ¥ can easily be eliminated from (3) and (6), re-
sulting in the equation

TF(z) + [I + GR] 'Gx = u, )
where we have defined the vector u by
u = [I + GR]"a.
According to Theorem 6, below, the matrix [I + GR] must be non-

singular,

In case the matrix R contains all zeros (that is, in case all series
lead resistors are omitted from the transistors) (7) reduces immedi-
ately to the equation which was studied in Ref. 1. Even when R
does not contain all zeros, however, the results of Ref. 1 can be ap-
plied directly to (7). By applying Theorem 2 we have: If the matrix
[I + GR]?* G is dominanty then there is at most one solution of (7).
If, furthermore, F maps E" onto E*, or if [I + GR]?G 1s strongly
dominant, then there exists a unique solution of (7).

Making use of Theorem 4, we also have the stronger result: There
extsts a unique solution of (7) if [I + GR]*G s dominant and G s
nonsingular.

Although it is not, in general, true that the inverse of a strongly
column-sum (row-sum) dominant matrix is strongly row-sum (col-
umn-sum) dominant, the statement is true when the order of the
matrix is less than three. This elementary observation turns out to
be quite useful in the proof of Theorem 6, which yields results that
focus attention on the properties of (7, concerning the existence and
uniqueness of a solution of (7).
mmmetric matrices the properties (i) weak column-sum dominance, and
(#2) dominance, are identical. Since it is easily verified that for symmetric G and

R, [I + GRIG is also symmetric, we simply specifiy. that [ 4+ GR1G be
dominant,
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Theorem 6: Let A (B) be the direct sum of n 2 X 2 and d 1 X 1
strongly column-sum (weakly row-sum) dominant matrices. Let B
be symmetric and let C be a square matrix of order 2n + d. Then:

(7) det [I 4 CB] # 0, provided that C' is positive semidefinite,
(i) A7'[I 4+ CB]™'C ¢ P, , provided that C is dominant,
(@17) A7'[I + CB]7'C ¢ P, provided that C is strongly dominant.

Proof: (i) Here C is positive semidefinite. Let B! be the symmetric
nonnegative square root of B, so that I + CB = I + CB'B}. Since
(see Appendix A of Ref. 4) det [I 4+ CB!B'] = det [I + B'CBY], and
since I + BYCB! is positive definite, we have det [[ + CB] > 0.

(#7) Here C is dominant (which, as is well known, implies that C' is
positive semidefinite and hence, by (i), implies that [I + CB]™" exists).
Suppose A~'[I 4 CB]7'C ¢ P, . Then, by the theorem of the appendix,
there exists a diagonal matrix D > 0 such that A™'[I + CB]"'C + D
is singular. But

A™I 4+ CB]'C + D = A7'[[ + CBI'[C(D'A™" + B) + I]AD,
which means that C(D-4-* + B) + I must be singular. Since 4 1s a
direct sum of 1 X 1 and 2 X 2 strongly column-sum dominant ma-
trices, it follows that A is a direct sum of 1 X 1 and 2 X 2 strongly
row-sum dominant matrices. Thus, DA™ and hence DA + B is
strongly row-sum dominant. Therefore, (D714 4 B) is nonsingular,
and (DA 4 B)~ is strongly column-sum dominant. But,

CDT'A'+ B +I1=[C+D'A7+B7I(D'A™" + B)

in which the right-hand side is nonsingular since ¢ + (DA™ + B)™*
is strongly column-sum dominant, which is a contradiction.

(1) Here C is strongly dominant. Since C'(I + BC) = (I + CB)C,
we have det (I + BC) > 0 and

(I +CB)'C = C(I + BO)™.

Suppose that there is no constant § > 0 such that A~ C(I + BC)™ —
81 ¢ P, . Then, for each § > 0 there is a diagonal matrix D > 0 such that
A7' C(I + BC)™ — &I + D is singular. But,

A7'CI +BO)™ — 81 + D

= A7'[C — $A(I + BC) + ADUI + BO)I + BC)™
D{I + BC + D'A7'[C — 8A(I + BO)}UI + BC)™
(D + [DB + A7 — &(C™" + B)IC}I + BCO)™,
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which leads to the conclusion that for each & > 0 thereisa D > 0
such that D 4+ [DB + A™' — 8(C™" 4+ B)]C is singular. We now es-
tablish a contradiction:
Forallze E* let ||z || = max |z; |. Ifz,ye E" such that ||z || = 1
and i
[DB+ A7y ==

then it is easy to show that

1
é max ———————
[yl . akk_2|akil
i#k
in which the ay; are the elements of A-*. Thus, the norm of [DB + 4]
can be bounded from above uniformly in D > 0. Therefore,

D+ [DB + A7 — 5(C™ + B)IC = (DB + A™)((DB + A™)™'D
+ [I — 8(DB + A™)7'(C™" + B)IC}

in which & > 0 can be chosen so small that [I—§(DB+A4~")~"(C™"+B)]IC
is strongly column-sum dominant for all D > 0. Since (DB + A™")7'D
is also column-sum dominant, we have a contradiction. It follows that
for some § > 0, A™'(I + CB)™'C — &I = P, and hence, by Theorem 1
of Ref. 1, A™'(I + CB)"'Ce P. O

The matrices T, R, and G of (7) satisfy the hypotheses on 4, B, and
C, respectively, of Theorem 6 if it happens that G is dominant (strongly
dominant for (¢72)). Thus, we have the result: If the y-parameter matriz
G is dominant then there is at most one solution of (7). If, furthermore, F
maps E* onto E", or if G is strongly dominant, then there exists a unique
solution of (7).

Making use of Theorem 4 and since det ¢ > 0 implies det [A™"
(I 4+ CB)7'C] # 0, we also have: There exists a unique solution of (7) if
G s dominant and nonsingular.

These results show that if the solution of the equation

TF(z) + Gz = 4, ®)

describing a given transistor network (with the transistors represented
by the model of Fig. 1(a) is shown to (exist and) be unique by showing
that the y-parameter matrix ¢ is dominant (and det G £ 0, or that
F maps E" onto E), then any other network obtained from the original
by adding arbitrary (nonnegative) resistances in series with any of the
transistor leads will be described by (7) and, furthermore, the solution
of (7) will also (exist and) be unique. Thus, the addition of series lead
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resistance does not affect the existence and uniqueness of the solution,
provided @ is dominant.

We now prove another result concerning the relationship between the
existence and uniqueness of solutions of the two equations (7) and (8).
We prove that, roughly speaking, whenever (8) has a unique solution
for all transistors and diodes then so does (7). More precisely, let us
define, for a given transistor network, the class of matrices 3:

Definition: Let (8) describe the given network for some choice of
transistor parameters a,, , s, , for each transistor. Let J then denote
that class of matrices 7' obtained by considering all possible combina-
tions of values of a5 , @z (0 < @2 < 1,0 < apy, < 1) for each transistor.

We then have:

Theorem 7: If (8) has a unique solution for each T e 3, and each
F e §(E"; a, 8) for all « < B whose components lie in the extended real
number system then, for each R, so does (7).

Proof: The hypotheses imply (using Theorem 4) that T'G & P, and
det [T7'G] 5 0 for each T ¢ 3. Thus, G7" exists. Letting

= [[ + GRI''G,
H™" exists and,
H'=G"+R

As pointed out in Ref. 1, since det [T'G] # 0, T™'G & P, for every
T ¢ 3 implies that G™' T ¢ P, for every T ¢ 3. Hence

det [G7'T + D] > 0, forall Tedand all D > 0.

But then,
det [G™' 4+ DT7'] > 0, forall T ¢ 3 and all D > 0.

Now, due to the special structure of the matrix R (that is, block di-
agonal with dominant blocks that are “compatible” with T~ N it is
clear that, for any such R, any diagonal D > 0, and any T ¢ 3, there
exists a diagonal A > 0 and some } ¢ 3, such that R 4 DT = AM™!
Hence, it is clear that

det ['+ R+ DT'1>0, forallTedandallD > 0.

It easily follows that H™'T ¢ P, and hence T7'H ¢ P, for all T ¢ 3.
Applying Theorem 4, we thus have that there exists a unique solution
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of (7) for each T £ 3, and each F £ " (E"; o, B) for all @ < 8 whose com-
ponents lie in the extended real number system. O

It is not difficult to show that there exist transistor networks for
which [I 4+ GR]™'G is dominant while @ is not, and also networks for
which G is dominant while [I + GR]™'G is not. For the first case, pick
any network for which @ is not dominant and det G # 0. If the values
of the series lead resistors in each transistor lead are then allowed to
become large, since

I 4+ GR]"'G =[I+ R'GI"'R7Y, _

and since each element of R approaches zero as the lead resistor
values approach infinity, we see that [I + GR]*G — E*. But R is
strongly dominant and hence there certainly exist sufficiently large

values for the lead resistors such that [I + GR]G is dominant. The
network of Fig. 2 is an example of the other case. For this network,

1 0 -1 0 9 9 0 0

G - 0 1 0 —1 ’ R = 9 9 0 0 '
—1 0 1 0 0 0 9 9
0 -1 0 1 0 0 9 9

while
19 —18 —19 18
11~ 18 19 18 —19
37| —19 18 19 -—18
18 —19 -—18 19

[l + GR)™'G =

IV. A SPECIAL CLASS OF TRANSISTOR NETWORKS

Transistor networks in which the base terminal of each transistor is
connected to a common node are considered in Ref. 1 using the model
of Fig. 1(a) to represent the transistor. It is shown there that there is
at most one pair of base-collector and base-emitter voltages for each
transistor in such a network—even in the cases in which the network is
not described by an equation having the form of (1).

In this section we show that the class of common-base transistor
networks is but a subset of a considerably more extensive special class
of transistor networks for which the same statement is true. We show
that there is at most one pair of base-collector and base-emitter volt-
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Tig. 2— A two-transistor network.

ages for each transistor in any de network which has the structure shown
in Fig. 3. The box at the top of Iig. 3 represents, assuming that there
are n transistors, any (2n 4 1)-terminal network consisting of inde-
pendent voltage and current sources, resistors (that is, linear resistors
having nonnegative resistance), and diodes (that is, nonlinear resistors
which are described by strictly monotone increasing conductance
functions). Each of the n boxes at the bottom of Fig. 3 represents an

—i—

DY

Tig. 3 — A special class of transistor networks,

—r—
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arbitrary 2-terminal network consisting of independent sources, resistors,
and diodes. Each of the transistors in Fig. 3 is represented by the model
of Fig. 1(b), in which the value of each of the resistors r, , r, , r, may
be any nonnegative number. In this regard, we note here that it suffices
in what follows to show, for each transistor, the uniqueness of the
voltages v, and v, (in Fig. 1(b)) since, clearly, the voltages #, and 7,
are then uniquely determined.

As in Ref. 1 we assume, temporarily, that no diodes are present in
the network. This assumption allows each of the n hoxes at the bottom
of Fig. 3 to be replaced by either a current source or else a Thévenin’s
equivalent circuit in which the value of the Thévenin’s resistor is not
infinite. Let us temporarily ignore the possibility that any of these
boxes is equivalent to a current source. Following the technique pre-
sented in Section IX of Ref. 1, we may then consider the network of
Fig. 4 instead of that of Fig. 3. In Fig. 4 we have explicitly shown the
base, emitter, and collector resistors of each transistor, and we consider
the Thévenin’s resistor of each base circuit to be lumped in with the
corresponding base resistor, The m-vectors v* and +* (m = 2n) and
the 2n-vectors v” and 7" are related by the four equations:

—A— —l—
JE=
Bz
L
e
Van
%n Ten
o,
+

1

1|1
(92
2

Fig. 4 — Network derived from that of Fig. 3.
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* = —Gv* 4 b, (9)
* = Qv (10)
v = Qv* + ¢, (11)
it = TR — ¢ — Ri"), (12)

in which b, ¢, and e are vectors whose elements are constants, G is a
dominant matrix, Q is an m X 2n matrix having the property that
whenever the 2n X 2n matrix M is strongly column-sum dominant
then so is the m X m matrix QMQ*, T and R are 2n X 2n block di-
agonal matrices having 2 X 2 diagonal blocks of the form (4) and (5),
respectively.

We now show that the vectors v*, ¢*, o/, and 7' which satisfy (9)
through (12) are unique (if they exist). Let {v¥%, , 1%, , v{,, , 7{;,} and
{v¥, , 7%, , v}, , 1ls,} denote two sets of vectors, each of which satisfies
(9) through (12). Subtracting corresponding equations, and observing
the strictly monotone character of F, we see that there exists a diagonal
matrix D > 0 such that:

ihy — ity = —G@h, — o), (13)
ity — i = QUL — 1(2), (14)
vy — vl = Q'@h), — k), (15)
Ty — iy = TDWEHL, — vl — R@h, — 10)). (16)

But (15) and (16) imply
[I + T'DR](i%, — itn) = TDQ‘(U?:U — vfy).

However, since

[I + TDR] = T[T + DR),
in which T is strongly column-sum dominant (77" is strongly row-
sum dominant), and DR is weakly row-sum dominant, we have
det [I + TDR] # 0, and hence,
iy — iy = [I + TDR]_ITDQI(v’("” — vly). (17)
Substituting this into (14) and then (13), however, yields:
{QII + TDR]T'TDQ' + G}@h, — vk) = 6.

Now if Q[I 4+ TDR]™'TDQ' + G can be shown to be nonsingular
then v¥, — v%, = 0 and hence, by (13), (15), and (17): ¢}, — %, = 6,
v}, — v}, = 8, and 7{,, — 7{,, = 0, which, together, show that the
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vectors which satisfy (9) through (12) are unique. Since G is dominant
it suffices to show that [+ TDR]™TD (and hence Q[I+TDR]'TDQ")
is strongly eolumn-sum dominant. But

[ + TDR]'TD = [D™'T™* + R,

which is the inverse of the direct sum of 2 X 2 strongly row-sum dom-
inant matrices and is, therefore, strongly column-sum dominant.

Let us now consider the case in which diodes are present in the box
at the top of Fig. 3. In this case, arguing as in Section IX of Ref. 1, if
the set of base-emitter and base-collector voltages for Fig. 3 was not
unique, we could replace all of the diodes by an appropriate series
combination of a voltage source and a (nonnegative) resistor and
thus synthesize a network of the type just considered, for which the
set, of base-emitter and base-collector voltages is not unique. This is
a contradietion, and hence establishes that the set of base-emitter and
base-collector voltages for the network of Fig. 3 is unique even when
diodes are present in the top box.

A somewhat similar argument may now be used to show the unique-
ness of the voltage across each of the diodes in the box at the top of
Tig. 3. Assume that there exist two sets of branch voltages and currents,
S, and S, , which satisfy Kirchoff’s and Ohm’s laws for the network of
Fig. 3. Since we have just proved the uniqueness of the base-emitter and
base-collector voltages of each transistor, the elements of S, and S,
which correspond to any such voltage must be identical. Thus, if each
transistor is replaced by, say, an appropriate pair of voltage sources,
the sets S, and S, still satisfy Kirchoff’s and Ohm’s laws for the modified
network. Let us now choose (arbitrarily) any diode in the network and,
as in the previous argument, replace all other diodes by a series combi-
nation of a voltage source and a (nonnegative) resistor, thus obtaining
a new networl, containing only one diode, for which the sets S, and S,
still satisfy Kirchoff’s and Ohm’s laws. Suppose this remaining diode is
characterized by the equation 7 = f(»). The (now linear) network to
which this diode is connected contains only independent sources and
nonnegative resistors, and hence is characterized by one of the equations:
—t=gv+ Iy,v = V,,whereg = 0, I, , and V, are constants. Due to
the strictly monotone increasing character of f, however, the graph of
either of the above equations ean intersect the graph of f in at most one
point. Thus, the elements of S, and S. that specify the voltage across
this diode must be equal. We can therefore conclude that the corre-
sponding elements of S, and S, which specify the voltage across any
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diode are equal. That is, the diode voltages are unique for all diodes
in the box at the top of Fig. 3.

We now consider the case in which some box at the bottom of Fig. 3
is equivalent to a current source. Let I, denote the value of this current
source (with reference direction chosen to be out of the base of the
associated transistor). In this case, using the notation of Fig. 1(b),
the variables v, , %, , v, , and 7, , for the associated transistor, are con-
strained by the relationships:

(1 - le:z“m)ﬁ(”l) — aly

'L

(l - leu) '
(1 — CY]E(C;-EJ)_}( (;:3)"" aleB_ (18)

Thus, this transistor can be replaced by a pair of diodes (each in series
with one of the resistors 7., r.) whose nonlinear conductance functions
are specified by (18). We may now consider these diodes, these resis-
tors, and the current source, all to be components of the box at the
top of Fig. 3. We have thus shown, in summary, that when one (or
more) of the boxes at the bottom of Fig. 3 is equivalent to a current
source, the base-emitter and base-collector voltages of each transistor
are still unique, since the network is then equivalent to a network of
a type already considered.}

By use of the same type of argument that was applied to the case
in which diodes are present in the box at the top of Fig. 3, the above
results may, finally, be shown to be valid when diodes are present in
the boxes at the bottom of Fig,. 3.

The above results show the validity of the following statement con-
cerning bistable networks: One cannot synthesize a bistable network
which consists of resistors, inductors, capacitors, diodes, independent
voltage and current sowrces, and an arbitrary number of (Fig. 1b)
transistors, and which has the structure of Fig. 3 when all capacitors
are open-circuited and all inductors are short-circuited.

APPENDIX
In this appendix we give the proof of a theorem which is used here
and which is implied in Ref. 1 but is not stated explicitly there.

Theorem: If A s a real square matrix then A e P, if and only if
det [A + D] # 0 for every diagonal mairiz D > 0.

T Here, of course, we use the proposition, proved above, that the voltage across
each diode in the box at the top of Fig. 3 is unique.
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Proof:  (if) Suppose 4 ¢ P, . If det A < 0 then for sufficiently small
> 0,det [{I 4+ A] < 0. For sufficiently large ¢, however,

det [¢] + A] = ¢"-det [I 4 s% A] > 0.
Thus, since det [{I + A] is a continuous funection of {, there exists
some value of { > 0 such that det [{I + A] = 0. For this value of ¢
let D = ¢I.
If det A = 0 but, for some positive integer t < n, A hasa kt X &
principal minor which is negative we may, without loss of generality,
assume that A is partitioned as

4 = [Al A:}’
A, A,
where A; is a & X k matrix with det 4; < 0. This is so because
det [D + A] is not altered if any two rows and then the correspond-

ing pair of columns are interchanged. Let D™ = diag[d;, - , d,]
with d, = -+ = d;, = ¢ where ¢ > 0 is chosen so small that det[¢l +
A;] < 0, Then, with dy 4.y = -+ = d, = ¢ > 0, we have
det [D + A] = det [ff +A 4 }
Ay I+ A,
gl + A, A,
= "".det .
1 1
- A I+-4
¢ A + ¢ 4

Thus, for ¢ > 0 chosen to be sufficiently large, det[D™ + A] < 0.
Now, if D® = 4I, for > 0, then it is clear that for 5 chosen suffi-
ciently large,

det [D'* + A] = 5"-det l:I -+ % A] > 0.
Thus, if

D(E) — E.D(” + (1 _ E)Du),

it i3 clear that there exists a value of ¢, 0 < e < 1, such that
det [D(e) + 4] = 0.

(only if) By Theorem 1 of Ref. 1, since A e Pyand D > 0, [D + Al P.
Thus, det [D + A] # 0. O
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