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In this paper we present a theorelical analysis of the performance of an
m-phase coherent phase-shift keyed system in the presence of random
gaussian noise and interference. An explicit expression is given for the
probability of error of the phase angle of the recetved signal; we show that
this probability of error can be expressed as a converging power Series.
We show that the coefficients of this series are expressible in terms of well-
known and well-tabulated functions, and we give methods of evaluating
the character error rates of the systems. We also show that this error rate
is minimum when all the interference power is concentrated in a single
interferer, and that it attains its mazimum [P,l... when the total inter-
ference power is equally distributed amongst the K interferers. The limat-
ing case when K goes to infinity is considered. The cases of K = 1, and
m = 2, 4, 8, and 16 are trealed in some detail, and the results are given
graphically. The usefulness of the results presented in this paper vs that
the designer can have at his disposal very simple expressions with which to
evaluate the performance of any given Coherent Phase-Shift Keyed sys-
tem when the received signal is corrupted by both interference and random
gaussian notse.

I. INTRODUCTION

The performance of coherent phase-shift keyed (CPSK) systems
has been investigated by many authors;*® in the transmission of in-
formation the CPSK system has been shown to be one of the most
efficient techniques for trading bandwidth for signal-to-noise ratio.
However, the type of noise considered by these authors is almost
always limited to be random gaussian noise although most authors
admit that interference other than normal noise must be considered
in the design of any modulation scheme for digital transmission.
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Consider the following situation. In the frequency bands above 10
GHz where the signal attenuation resulting from rain storms could
be very severe, close spacings of the repeaters are almost always
mandatory for reliable communication from point to point and for
all periods of time.® In such cases the problem of interference may be
much more important than the problem of noise in the optimum detec-
tion of the desired signal; hence it is very desirable to evaluate the per-
formance of a CPSK system with co-channel and adjacent channel in-
terference so that, for the selection of an optimum transmission scheme,
comparative advantages of CPSK over other broadband modulation
techniques (like FM) in combating interference can be determined.

We consider in this paper the performance of a CPSK system when
the received signal is corrupted by both interference and random
gaussian noise.* We first discuss binary (2-phase) and quaternary
(4-phase) CPSK systems and show that exact expressions can be
obtained for their probability of error P,. These expressions are in
the form of infinite power series which are shown to converge for all
values of signal-to-noise ratio and for all signal-to-interference ratios
above a certain level determined by the system. For m = 2 and 4,
these error rates are caleulated and the results are given in graphiecal
form.

For m = 3 and for m > 4 we show that exact expressions for P,
are very complicated funetions of signal-to-noise ratio, and signal-to-
interference ratios; in this paper we only indicate how these expressions
can be obtained. However, we do obtain expressions for upper and lower
bounds to P,, and show that the difference between these two bounds is
a monotonically decreasing function of signal-to-noise ratio, signal-to-
interference ratios, and the number m of phases used in the system.
Form = 4, signal-to-noise ratio p* = 5 dB, and for signal-to-interference
ratio 1/L* = 20 dB, we show that this difference is less than 5 percent,
and that the upper bound can be used as a good approximation to P,.
For m = 8 and 16, we calculate these upper bounds and we present the
results graphically.

For a given amount of interference power, we show that the char-
acter error rate is minimum when all the power is concentrated in
a single interferer. If the total number of interferers is K we also
show that the error rate P, reaches its maximum [P,,]max When the
interference power is equally distributed among all the interferers. It

* The word “noise” indicates random gaussian noise corrupting the desired

received signal,
T We use the notation b = a dB if 10 logwb = a.



PHASE-SHIFT KEYED SYSTEMS 745

follows that [P, ]max is 8 monotonically increasing function of K and
attains its maximum when K goes to infinity. We show that the case
of K going to infinity can be treated in a simple manner.

For the computation of error rates P, (or upper bounds to P,, m
> 2) it is necessary to calculate the central moments ps,’s of a certain
random variable 5 defined in terms of the K interfering carriers. For
large values of K the conventional method of evaluating us,’s can be
rather tedious; we give some simple methods of evaluating these mo-
ments.

In conclusion, this paper determines the performance of m-phase
CPSK systems for the important case of signals corrupted by random
gaussian noise and interference. The cases of m = 2, 4, 8, and 16 are
treated in some detail.

II. PHASE ANGLE DISTRIBUTION IN CPSK SYSTEMS

Let us consider an m-phase CPSK system. We assume that there
is a steady received signal* which is corrupted by random gaussian
noise and interference. The gaussian noise is assumed to have zero
mean and variance o® The signals under consideration consist of
phase-modulation pulses of specified width transmitted at a known
repetition rate; we assume that there are K interferers, each interferer
having the same form as the signal.

If we assume that each signal transmitted has a duration T, the
received signal waveform in the absence of noise during the Nth in-
terval can be represented as

sw(t) = (28)} cos (wt + 0), NT =t < (N + )T, (1)

where S is the received signal power, w, is the angular frequency of the
signal, and 6 will have some value in the discrete set 2xk/m, 0 < k =
m — 1, corresponding to the Nth message. All m messages are assumed
to be equally likely. In the absence of noise and interference, the set of
m possible received signals is described by a set of m equally-spaced
vectors in the complex plane as shown in Fig. 1. The noise and inter-
ference corrupting the signal distort the signal both in amplitude and in
phase; a zero-phase signal (corresponding to k& = 0), as disturbed by
noise and interference, is also shown in Fig. 1.

If we now assume that power in the jth interferer is I;, the jth inter-

*In this paper we do not consider the effects of fading on the error rates of
CPSK systems, The effects of fading can usually be accounted for by a further
integration of error rates obtained in this paper.”
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Fig. 1 — Phasor representation of CPSK signals for m = 4.

ferer as received during the Nth interval can be represented as*

() = @) cos {wt 4 6; +p,}, NTSt= N+ DT (2)
where w, is the angular frequency of the jth interferer, 6; is some value
in the discrete set (2r/m) k, 0 < k < m — 1, and the probability density
s (1s) of py is given by
1
27’
0,
Since the K interferers are assumed to originate from K different
sources, it is reasonable to assume that all p;’s are statistically in-
dependent of each other and are also independent of gaussian noise
n(t).

The total received signal during the Nth interval can then be writ-
ten as

0§.ﬂ‘r,‘<2‘ﬂ'

®3)

Wn;(ﬂi) =

otherwise.

(28) cos (wot + 6) + Z @I)} cos (w;t + 0, + u;) + n(d),
(4)

rn(t) =

NT <t<(N+ DT

where n(t) has zero mean and variance o2,

Assuming that the receiver used in the system detects only the
phase angle ® of ry(¢) and does not respond to its amplitude varia-
tions,T we can write®

‘_: .

*We assume that all #¥'s, 1 = K, are in the passband of the CPSK
receiver used in the system.

t This can be achieved in practice by using an ideal limiter at the front end
of the receiver. If A(t)e’*” is the input to an ideal limiter, its output is given

by Ace?** where A, is a constant.



PHASE-SHIFT KEYED SYSTEMS 747

— tan-t ()
= tan™ ¥ — et 6)
where fy(t) is the Hilbert transform of ry(f) and is given by
Au(t) = 1 f (D g, ©)
Tdowt— 7
Let us write
n(t) = I, cos (wet + 6) — I, sin (wet + 6). (7)

We can show® that I, and I, are two independent gaussian random
variables each distributed with mean zero and variance ¢2.* From
(4)-(7), we can now show that

$ = ¢+ tan™
K
I, + E (21,-)isin [(w; — wo)t + 6; — 6 + u;]
. i=1 — . (8)
@)} + 1. + 2 (21)} cos [(w; — wo)t + 8, — 6 + ]
Let us now write
S}
pP=" )
1,
@8 = ¥ (10)
1,
E2—S)—5 = U, (11)
5 = Z Ri Si].’l )\,‘ 3 (12)
n= 2 R;cos\, (13)
where
I\
and
A= (0 —wo)t + 8; — 6+ p; . (15)

* It is assumed that the speetrum of gaussian noise is symmetrical around the
frequency w = wo.
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Let us also denote the set {A\; , As, ~*+ , Nj , **- , Ax} of random
variables A;’s by A.
We can now write eq. (8) as

_ s
® = 6 + tan Trutn (16)

where & and 7 are functions of X.
If K is a finite number, we can show® that the probability density
Py(n) can be represented as®

pan) = % f_ :, e I;Il Jo(tR;) dt, an

where Jo(z) is the Bessel function of the first kind and of order zero.
For K = 1, we can show that®®

1 1
o) = @ - =k 18)
0, otherwise.

For K = 2, p,(y) can be expressed in terms of elliptic functions, and
for K > 2, no closed form expressions can be obtained for p,(y). In
Ref. 10 p,(4) has been expressed as a converging sum and has been
evaluated for K = 10, It is easy to show that

K
P(n) = 0, for |9 | > EIRI ’ (19)
and
L . K
[ piae an = TL iRy (20)

III. CPSK RECEIVER

An ideal CPSK receiver is shown in Fig. 2. The ideal limiter re-
moves all the amplitude variations of the received signal before it
reaches the ideal phase detector of the system. We shall assume maxi-
mum likelihood detection for our analysis of the receiver. Let us as-
sume that the receiver shown in Fig. 2 has zero-width decision thres-
holds as shown in Fig. 1.

* We can also write similar expressions for ps(8).
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Fig. 2— CPSK receiver.

3.1 Error Rates for Binary CPSK Systems

For a binary CPSK system the set of two possible received signals
in the absence of noise and interference is shown in Fig. 3. The noise
and interference corrupting the desired signal distort the signal both
in amplitude and in phase; a zero-phase signal (corresponding to
k = 0) as disturbed by noise and interference is also shown in Fig. 3.

When the message k& = 0 is sent, and when the phase angle ® of the
received signal lies in the second and third quadrants of the complex
plane shown in Fig. 3, an error is made in detecting the received signal.
For a given p°, and for an arbitrary set of A;’s let us assume that the
origin of the gaussian noise vector is at point G in Fig. 3. When the
terminus or tip of the gaussian noise vector lies in the left half of
the complex plane (the shaded portion of Fig. 3) an error is made by the
receiver. Since I, and I, are two independent gaussian random vari-
ables and since they are distributed independently of A;’s, the prob-
ability P,(A) that the terminus of the gaussian noise vector lies in the
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_ Fig. 3 — Phasor representation of CPSK signals for m = 2. I. and I, are the
in-phase and quadrature components of gaussian noise corrupting the desired
received signal.
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left half of the complex plane is given by*
Py(A) = Pr[—ow < I, < ]

Py |:_ w < I, < —((28)* + i (2I,)* cos 7‘5)]

i=1

1 —{(23)*+i§:‘(2r;)5oo.h;}
= m f_w exp (—£/26%) dt. (21)
We can show from Equation (21) that
P,(\) = 3 erfe [p + pnl, (22)
where
_2f e
erf (x) = 3 j; exp (—w) du (23)
and
erfe (z) = 1 — erf (z). (24)

The character error rate Py for a binary CPSK system is, therefore,
given by

P, = E[P,(M)], (25)

where E[P,())] represents the mathematical expectation of the random
funetion P,()).
From Equations (22) and (25) we have

P, = 3Elerfe {p + pn}l- (26)

We now note that we can write't 12

erfe [z + 2] = erfe [2] + % exp (—z%) i (—1)‘H,_1(x);—: , 27

where H, (z) represents the Hermite polynomial of order n. The series
converges for all values of z + 2 such that

z+2=0. (28)
From Equations (26) and (27) we have

P, = Jerfo (9) + o (=) 3 (~D'Hep) b B (29)

* The notation Prla << z < bl denotes the probability that the random vari-
able z satisfies the inequality @ < = <C b. It may also be noted that Pa()) is a
conditional probability conditioned on A. -
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Let us denote by p, the nth central moment of ».® It can then be
shown that'®

Maev1 = 0, {= 0, 11 21 . (30)
We, therefore, have

Py = ferte (p) + foxp (—5) 2 Huale) sy - (3)

The series given in Equation (31) converges for all values of p and
Rj's such that

p+ppm=0 for all ). (32)

From Equations (13) and (32) we can show that the series converges
when

Q

A

1, (33)
where

Q= iR,- . (34)

j=1
Equation (34) states that the sum of the normalized amplitudes of all
the interfering carriers may not exceed the normalized amplitude of
the desired signal. This is not a very stringent requirement and it is
almost always satisfied when low error rates are desired.
Since we also know that*

LEr)=1re (35)

i=1 i=1

when Equation (33) is satisfied, we have

(%) = ()" a0

The expression S/I; denotes the signal-to-interference ratio of the
jth interfering carrier.
When there is only one interfering carrier we can show that,

RN (25)! ,
22{{51 } 2

MHze = (37)

. *Equation (35) states that the arithmetic mean of a set of real variables
is always greater than or equal to its geometric mean.
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kil

Py = Yafe () + Gow (—4) 3 Huad) e (38)

and equation (31) can be written as

The series in equation (38) converges for all signal-to-interference
ratios such that

1/8 £ 1. (39)

The values of P, have been calculated from equation (38) and the
results are given in graphical form in Fig. 4.*

Notice that we need to calculate only the even order moments
po,'s of the random variable 5 in determining P from equation (31).
Some methods of calculating these moments are given in Appendix A.

3.2 Error Rates for Quaternary CPSK Systems

Let us now consider a 4-phase CPSK system. For this system the
set of four possible signal phasors and the four optimum decision
thresholds are shown in Fig. 5. A signal phasor (corresponding to
k = 1) as disturbed by noise and interference is also shown in Fig. 5.

For a given set of A/s let us assume that the gaussian noise is rep-
resented by a vector from the point G. If the message k = 1 is trans-
mitted, an error is made if the received phase angle lies in areas
marked 1, 2, and 3. The phase angle of the received signal will lie
in areas marked 1, 2, and 3 if the terminus of the gaussian noise
vector lies in this area of the plane.**

We notice that

GA = (28)’sin£ + f: (21,)} sin (’i + x,.) , (40)
and

GB = (28)'siny + f (2I,)* cos (E + )\,.)- (41)
Let us denote by I .sa 5 *** , #a(2) the probability that the terminus

of the gaussian noise vector lies in area

U k.t
i=1
* The results obtained in Fig. 4 indicate that the error rates obtained in Refs.

13, 14, and 15 agree well with those obtained in this paper.
tThe notation U "_ik; denotes the union of all elements of the set {k1,kz,- -k}
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Fig. 4 — Frror rates for a 2-phase CPSK system with one interferer.

We can show from Fig. 5 that

and

]11.2(2\) =

Hz.s{l\) =

IL,(\) =

K
1 erfe [psinz + p 2 R; cos (E + 7\,)] . (42)
K
L erfe [p sini + p Z R; sin (E + }\,-)] , (43)
™ 3 ™
1 erfe l:,o sin; + 5 ZRi cos (E + 7\,-)]
iy S ™ T
-erfe l:psi]fl&‘—l~ P ER,— sin (Z+ )\,—)_I. (44)

The probability P,(d) of an error due to noise is, therefore, given by

Py(d) = o) + Mas(d) — ILQ). (45)
The probability of an error due to noise and interference is therefore
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Fig. 5 — Phasor representation of CPSK signals for m = 4. I. and I, are two
orthogonal components of gaussian noise.

given by
P, = E[P,(})]. (46)
From equations (27), and (42) through (46) we can show that

P, = erfe [psin E:l — 1 erfc’ [p sin E]
o o enlon]
+G5;exp( psin’ 2 — erfe psin
iH (sinf)"—“ 1. (—2’in“5)
it 2¢-1\ P 4 (25)1#2J - Xp p S 1

o Hzl—l(P sin E)Hz:'—-l(P sin E

& 201 2j)! " €y

-

where uf, ,;’s are given by

1 2r 2T 2 K 2¢
Pe,ay = Wj; aé, fo dby -+ j; dex{g R; cos B,—}

{i R, sin 6,)2"- (48)

é=1
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For a given set of R,’s, u¥ ,;’s may be evaluated from equation (48).
TFor K = 1, we can show that

= R2+o (26)! (29)! .

22181 (£ + 8)!

For K = 1, we have calculated P4 from equation (47) and the
results are presented in Fig. 6.

We can again show that the series given in equation (47) con-
verges for all values of p and E;'s such that

*
M2g,2:s

(49)

1
Ve (50)
For K = 1, equation (50) becomes

S/I = 2. (51)
Equation (50) is usually satisfied by systems encountered in practice.

5
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Fig, 6 — Error rates for a 4-phase CPSK system with one interferer.
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3.3 Error Rates for Multilevel CPSK Systems

In this section we shall investigate the performance of a multilevel
(m = 3) CPSK Systems and indicate a method in which an exact
expression can be obtained for the probability of error of the system.
This exact expression is a very complicated function of signal-to-noise
ratio and R,’s; we do not obtain this expression in this paper. However,
we obtain upper and lower bounds to P, and show that the difference
between these two bounds is a monotonically decreasing function of
p, m, and signal-to-interference ratios. For K =1, m 2 4, p° = 5dB, and
S/I = 20 dB, we show that this difference is less than 5 percent of
the lower bound, and hence the upper bound is a good approximation
to P,. when low error rates are desired.

A signal phasor corresponding to k& = 0 as disturbed by noise and
interference is shown in Fig. 7. For a given set of A,’s let us again assume
that random gaussian noise is represented by a vector from the point
@ shown in Fig. 7. If the message k = 0 is transmitted, an error is
made if the terminus of the noise vector lies in areas marked 1, 2, and 3.

We can show that *

I, ,() = % erfe [p Sin’:; + p 2_ R;sin (-::; - ?\f)] (52)

i=1

and

I, 5(2) = % erfe [psin ﬁ + p 2 R;sin (ﬁ + m-)]- (53)

i=1

The probability of error due to noise is, therefore, given by

Pm(l\) = Hl.z()_\) + Hz.s(ﬁ) - Hz(h)- (54)

By looking at Fig. 7 we can see that no simple expression can be
obtained for IT,()) (except when m = 4). II;()) denotes the probability
that the terminus of the gaussian noise vector lies in area 2; we shall
now obtain upper and lower bounds to II;(3). Assume that

K
psin - — p 2 R; 20 (55)
m i=1
* Note that
K
 oqt i T Vo (1_ )
) GA = (28)'sin_- + ;1(21,) sin |- — \;
an

GB = (28)} sinﬁ + f (21,)} sin (i + )\,-)-

i=1
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so that II, ,(A) and II, ;(A) are nonnegative for all values of A. If equa-
tion (55) is satisfied, it is easy to see (see Fig. 7) that

IL,(\) =0 for all 3, (56)
and IT,(3) reaches its maximum when*

K
T]=—‘ZR,~=—Q. (57)
i=1

For this value of 7 it can be shown (see Fig. 8) that

—Ve —(y+ve) tan v/m
m) = - [ e (—1/20) dy [ exp (—2°/2%) du
-0 [
or
1 @ (v=vo) tan */m
mo) = -2 [ o (—y/20) dy [ exp (—2°/20%) dz  (58)
Ve 1]
where
v = (28)[1 — @]. (59)
Since we always have
0 < exp (—2°/2¢%) < 1 for all real z, (60)

* We can show that = —Q when all \;’s are odd multiples of .
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Fig. 8 — Computation of lower bound to Pm.

we have

ILQ) = Ean—ﬂﬂ f,, .., (y — yo) exp (—y*/20") dy.

Equation (61) can be simplified to*

L) £ Quo = BT exp [ (L — 9]

1 — (M) (1 — @) exp [p°(1 — @) erfe {p(1 — D)}].
From equations (54), (56), and (62) we have

I o) + sQ) — Quo = Pa(d) = Iya(d) + I1,5(Q).

Sinece
P, = E[P,Qd)],
we can show from equations (52), (53), (556), and (63) that
Qm_QmD.éPm.S_Qm
where

. ™
Q. = erfc (p sin m)

2 2 H“‘l(”sm ?nTE) .
+(—w)—§e)ﬁp(—pzs'1n f) Z_(Qﬂ)! P tae

m/ =1

* For large values of p and small values of @, Qn is approximately equal to

tan w/m exp [—p’(1 — Q)]
2 21— f

(61)

(62)

(63)

(64)

(65)

(66)
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The series given in equation (66) converges if equation (55) is
satisfied, or if

Q < sin 1;; (67)

When low error rates are desired, equation (67) must be satisfied.
Equation (65) gives an upper and a lower bound to P,.; as can be
seen from equation (62) the difference Q..o between these two bounds
is a monotonically decreasing function of p, m, and signal-to-inter-

ference ratios. From equation (65) we have
_ e Pa—ln o (68)

Qn —Qu ™~ Pn =

For K = 1, R, = {4, and for m = 4, 8, and 16, we have plotted in
Fig. 9 Qmo/(Qm — Qumo) as a function of p*. From Fig. 9 we see that
Qno/(Qm — Qumo) is less than 5 percent for p° = 5 dB and for m = 4.
We can, therefore, use Q,, as a good approximation to P, for high values
of signal-to-noise ratio (p* = 5 dB) and for high values of signal-to-
interference ratio (1/R, = 10 dB).

In these cases we then have

P, =~ erfe (p gin —1[)
m

. m
0 Hgk—l(p sin a)

2 2 I) TN m)
+®”"p( oein’ ) & @
For K = 1, and for m = 8 and 16, the values of P,, obtained from

equation (69) are given in Figs. 10 and 11. The error made in this
approximation can be estimated from equation (68).

ng.uzk . (69)

IV. ERROR RATE AS A FUNCTION OF NUMBER OF INTERFERERS

Let us now investigate how P,, varies as a function of K for a total
given interference power. Let us assume that the total interference
power is some number SL? where

i I, = SL®. (70)

i=1
This power SL? can be distributed among the K interferers in a
variety of ways; every one of these distributions will in general lead
to a different character error rate of the system. Let us find out those
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Fig. 9 — Qmo/{Qm — Qmo) as a function of p.

distributions of power (if they exist) which make this character error
rate a maximum or a minimum.
4.1 Error Rates for K Interferers

Let us first consider the case when p >> 1 and & < 1. In this case the
series corresponding to P.. (or @.) converges very rapidly; let us say
that the first N terms of the series are sufficient to evaluate P, to the
desired degree of accuracy.

For all £ and z, we have

Hyy(2) = 22H,, 2(2) — 2 (20 — 2)H,, 5(2). (71)

From equation (71) we can show that

Hz,--l(psin ;;'”) >0, 1=Zj=N, (72)
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if

. N> 1. (73)

If Equations (72) and (73) are satisfied notice from Equations (31)
and (69) that P,’s are monotonically increasing functions of p.’s,
¢ = 1. For a given g, , it can be shown from Equation (13) that u..’s
£ = 2, reach their minimum when © is minimum and they reach their
maximum when £ is maximum.

We can then say that P,’s (or @,’s) attain their minimum when Q
is minimum and that they are at their maximum when £ is maximum.

From Figs. 3, 5, and 7 this seems to be true for all values of p and
which satisfy Equation (55).

Let us now find out when € is minimum for a given value of signal-
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Fig. 10 — Error rates for an 8-phase CPSK system with one interferer.
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Fig. 11 — Error rates for a 16-phase CPSK system with one interferer.

to-interference ratio. The signal-to-interference ratio 1/L’ is given by

N
I = Z 24, (74)
in s
Clearly @ is minimum when
I, = 8L 1=j=K, (75)
and
I, =0, 1={(=K, {3 (76)

We can then say that the character error rate P,, is minimum when the
total interference power is concentrated in a single interferer.
Now from equations (14), (34) and (74), @ is a maximum when

SEE 5@ rsen @

i=1 i=1
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¢ is a constant and is the Lagrange multiplier used in finding the
extremum of €.
Solving equation (77) we observe that © is a maximum or that
P,, is a maximum when
_ SL?

L=, 1

or that the total interference power is equally distributed among the
K interferers.

Let us now assume that K is a variable number. It is clear from
equation (78) that [P, ]max 1S @ monotonically increasing function of
K.

IIA
A

i=K (78)

4.2 Error Rales for a Large Number of Interferers*
Let us now consider the limiting ease when K goes to infinity and
K
> 1, = SL:. (79)

i=1

We can show?® that the probability distribution function off

y(t) = il (2Ii)i cos {w;t + 6; + p;} (80)

as K goes to infinity approaches that of gaussian noise with mean
zero and variance SL? under certain conditions.
In this case we have from equation (4)

rw(t) = (25)" cos (wit + 6) + y(t) + n(®). (81)
Sinee ¥ (¢) and n(t) are independent gaussian random variables their
sum
b(t) = y(®) + n(®) (82)
is also a random gaussian variable with mean zero and variance SL?
+ of.
From equations (81) and (82) we can write
ru(t) = (28)! cos (wit + 6) + b(0) (83)
where b (t) is a gaussian random variable.
* The results of this section are applicable for any signal-to-noise ratio and
any signal-to-interference ratio.

T Ruthroff has shown that for K = 50 the distribution of y(¢) can be considered
to be gaussian in practice for the ecomputation of distortion in PM systems.10
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The case where ry(t) can be deseribed by equation (83) has been
considered in detail in Ref. 17;* we can easily determine the deteriora-
tion in performance produced by interference from the results pre-
sented in that paper. For example, suppose that m = 4, 8/¢* = 16 dB,
and L = —16 dB. Clearly

2
S+ L= —13dB (84)
and P4 from Ref. 17 is given by

P, =179 X 107" (85)

For the calculation of the effect of interference in CPSK systems,
we note that we have not shown the validity of the gaussian approxi-
mation of y(t) for K > 1. However, this assumption seems to be
justified for large signal-to-noise ratios and small interference-to-
signal ratios.’®

In conclusion, this section gives methods of evaluating character
error rates of CPSK systems for all values of m and for all values of
K. Tt shows that the error rate P, is minimum when all the inter-
ference power is concentrated in a single interferer and that it attains
its maximum value [P,,]max When the interference power is equally
distributed amongst all the interferers. We further show that [Pu]max
is a monotonically increasing function of the number K of interferers.
We also show that the ease, K going to infinity, can be treated and that
the deterioration in performance produced by interference can be de-
termined.

V. CONCLUSIONS

A method to evaluate the character error rates of CPSK systems
has been presented in this paper. The received signal is assumed to be
corrupted by both interference and random gaussian noise. When the
number of interferers is very large it can be shown that the inter-
ference and random gaussian noise can be combined together to give
rise to an equivalent noise source having gaussian properties. The
variance of this random variable is the sum of variance of random
gaussian noise and total interference power. In this case the analysis
of the CPSK system can be done by methods presented in Ref. 17.

When K is a finite number and when m = 2 or 4, exact expressions

* The results presented in this paper for S/I = oo are also sufficient to deter-
mine P, for a large number of interferers.
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are given for the probability of error P,, . When m = 3, upper and lower
bounds to P,, are derived. We show that the difference between these
two bounds is a monotonically decreasing function of signal-to-noise
ratio p®, signal-to-interference ratio 1/L°, and the number m of phases
used in the system. For K = 1, m = 4, p° 2 5dB, and 1/R, =z 10 dB
we show that this difference is less than 5 per cent, and that the upper
bound can be used as a good approximation to P, .

We then show that for any m-phase CPSK system the character
error rates can be expressed in terms of the central moments of a
certain random variable » and that they can be calculated to any
desired degree of accuracy by using a set of tables or by using a
digital computer.

For a total given interference power we show that the character
error rate P,, attains its minimum when all the power is concentrated
in a single interferer, and that it reaches its maximum [Pm]max When
the power is equally distributed among all the K interferers. It is also
shown that [P, ]max is a monotonically inereasing function of K.

The cases of K = 1, m = 2, 4, 8, and 16, have been treated in some
detail and the results are given in graphical form. The required signal-
to-noise ratio for any value of signal-to-interference ratio can be
determined from these figures.

The usefulness of the presented results is that they provide the
designer with some relatively simple expressions with which to eval-
uate the performance of any given CPSK system with interference
and random gaussian noise. The only quantities he must have at his
disposal are the central moments of a certain random variable 4
defined in terms of the K interfering carriers.
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APPENDIX

Evaluation of Central Moments of 5

In the computation of character error rates for CPSK systems it is
necessary to calculate the even order moments of the random variable
7; we shall give in this section two alternate methods to evaluate these
moments.
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By definition uay, is given by

1 2w 2w 2T K 2n
Man = K f dal f dez e f dﬁ}\[ Z R:' cos 9!] - (86)
(2m)" Jo 0 0 i=1

By the multinomial theorem

K 2n (2’”,) ! K
S Ricos0; | =2 % [T ®R)"™ cos™ 6, (87)
i=1 X ! i=1
where n;'s are positive integers such that
K
> n; = 2n. (88)

i=1

Since 0,’s are statistically independent of each other, and since
paerr = 0 for all £, we have from Equations (86) and (87)*

ot & o )]
on = H ”I_Ilaa) - [é)'] (89)

where n,’s are a set of even positive integers satisfying Equation (88).
Even though equation (89) gives an exact expression to evaluate
pey’s, it can be rather tedious to evaluate pe,’s from equation (89)
for large values of n and K. We shall therefore give an alternate
method to evaluate the central moments of the random variable 1.
It can be shown that the probability density function p.(») of the
random variable 5 can be expressed as*®

p) = o [ 142 5 oo T I (" )] (90)

a=1 i=1

The 2nth moment, of 4 can be represented as

Hon = f_ . 2"p,(2) dz. (91)

From equations (90) and (91) we can show that

— 2n £+1
Hn = 0 (2 +1+2Z( 1)

{[H Jc'(&rR )] :Z;: -1y [2n — 21521)!1]g (g,,)zk})’ (92)

i=1

* For K = 1, equation (89) reduces to equation (37).



PHASE-SHIFT KEYED SYSTEMS 767

It can be seen that the infinite series appearing in equation (92)

converges rapidly for all values of R;s; we need take only a finite
number of terms from equation (92) to estimate po,’s. It is, therefore,
easier to evaluate ps,’s from equation (92) than from equation (89)
when there are a large number of interferers, and we have to take a
large number of terms in estimating P,,.
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