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We study two models of a system of queues served in cyclic order by
a single server. In each model, the ith queue is characterized by general
service time distribution function H;(-) and Poisson input with param-
eler \; .

In the exhaustive service model, the server continues to serve a particular
queue until the server becomes idle and there are no units waiting in that
queue; at this time the server advances to and immediately starts service
on the next nonempty queue in the cyclic order.

The gating model differs from the exhaustive service model in that when
the server advances to a nonempty queue, a gate closes behind the waiting
units. Only those units waiting in front of the gate are served during this
cycle, with the service of subsequent arrivals deferred to the mext cycle.

We find expressions for the mean number of units in a queue at the
instant it starts service, the mean cycle time, and the Laplace-Stieltjes
transform of the cycle time distribution function.

I. INTRODUCTION

We consider a system of queues served in cyelic order by a single
server. The ith queue is characterized by general service time dis-
tribution function H;(:) and Poisson input with parameter A;.

We study two variations of this model. In the first, called the
exhaustive service model, the process begins with the arrival of a
unit at some queue, say A, when the system is otherwise empty. The
server begins on this unit immediately, and continues to serve queue
A until for the first time the server becomes idle and there are no
units waiting in queue A. The server then looks at the next queue
in the cyelic order, queue 4 + 1, and serves those units, if any, that
have accumulated during the serving period of queue 4. The server
continues to serve queue A + 1 until for the first time the server

* The RAND Corporation.



676 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

becomes idle and there are no units waiting in queue A + 1. The
process continues in this manner, with the queues being served in
cyclic order, until for the first time the system becomes completely
empty. The process is then re-initiated by the arrival of the next
unit. No time is required to switeh from one queue to the next.

The second variation, called the gating model, differs from the first
in the following way: When the server moves to a queue with at
least one waiting unit, the server accepts only those units that were
waiting when the server arrived, deferring service of all subsequent
arriving units until the next eycle. That is, in the gating model, at the
instant the server advances to a nonempty queue a gate closes behind
the waiting units, and only those units waiting in front of the gate are
served during that cycle.

The exhaustive service model is analyzed in detail. We obtain the
generating function for the joint probability distribution of the num-
ber of units in each queue at an instant at which the server finishes
serving any one of the queues. We then obtain expressions for the
mean number of units in a queue at the instant it starts service, the
mean cycle time, and, in a form suitable for numerical computation,
the Laplace-Stieltjes transform of the eycle time distribution function.

Finally, we note that the equations describing the gating model
differ only trivially from those of the exhaustive service model, and
that the same method of solution applies to each.

Systems in which a single server is shared among several queues
are common. For example, in the No. 1 Electronic Switching System
the central control spends much of its time polling various hoppers
and performing work requests that it finds in these hoppers. Similarly,
in a time-shared computer system the users have access through tele-
typewriters to a central computer which is shared among them. The
cyclic queueing models studied here are of a type which may be useful
in the analyses of these and similar problems.

The exhaustive service model for the special case of two queues
has been studied by L. Takées,' B. Avi-Itzhak, W. L. Maxwell, and
L. W. Miller,>® and M. F. Neuts and M. Yadin.* Avi-Itzhak et al
used an argument based on the properties of mean values, to obtain
an expression for the mean waiting time suffered by a unit in either
queue. Takécs, by a more direct argument, utilizing the Markov
chain imbedded at the epochs of service completion, obtained the
corresponding Laplace-Stieltjes transform and formulas for the wait-
ing time moments assuming service in order of arrival. Neuts and
Yadin obtained waiting time results for the transient case.
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The more general two-queue model in which the time required to
switch from one queue to the nmext has some arbitrary distribution
function is also studied in Ref. 3, and has been investigated in addi-
tion by M. Eisenberg® and J. S. Sykes.® M. A. Leibowitz™* has stud-
ied a multiqueue model similar to the gating model studied here. A
nonprobabilistic approach to eyclic queueing problems has been used
by J. B. Kruskal.®

In the present paper we use the imbedded Markov chain approach
but, as with Neuts and Yadin, our chain is imbedded at the instants
at which the server completes serving a queue, rather than at the set
of all instants of service completion used by Takécs. Whereas Takdes
and Neuts and Yadin obtained waiting time results, our analysis yields
cycle time results. The mathematical analyses characterizing the three
approaches share some common ground, although the differences, espe-
cially those arising from our consideration of an arbitrary number of
queues, are significant.

Also, in a recent nontechnical article on queues by Leibowitz** the
present problem is offered as a prime example of an important, dif-
ficult, unsolved queueing problem.

II. PRELIMINARIES

In the analysis of the exhaustive service model, we take the number
of queues to be N + 1 = 2. Units arrive at the ith queue according to
the Poisson process with rate A, ; that is, the probability Q.(k; ) that
k units arrive at the 7th queue in an interval of length ¢ is

Q-(‘k;t) = O\’;?k exp (—R‘t) (k = 011:2u :1'= 01 II rN)

The length of time required to serve a unit from queue 7 has distribution
function H;(-) with mean h; ( =0, 1, --- , N).

In the analysis of the exhaustive service model, we shall use the
concept of busy period, discussed at length by Takées''. For the ordinary
single-server queue, the busy period is defined as the length of time
from the instant a unit enters a previously empty system until the
next instant at which the system is completely empty. Both the distri-
bution function of the busy period and its Laplace-Stieltjes transform
are known explicitly for the M/G/1 queue. In particular, the M/G/1
queue with arrival rate A and mean service time i has a busy period
with mean b = A/(1 — M) if M < land b = = if M 2 1.

Consider now the M/G/1 queue with j waiting units; define the
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j-busy period as the length of time from the instant at which service
starts on the first of the § units until the next instant at which the
system is completely empty. (When § = 1, the j-busy period and the
busy period are identical.) Each of the j units, which together generate
a j-busy period, individually generates a 1-busy period. Thus (as
Takécs shows) the distribution function of the j-busy period is the
j-fold convolution with itself of the distribution function of the 1-busy
period.

Denote by B;(-) the distribution function of a 1-busy period for
queue 7, by g;(-) its Laplace-Stieltjes transform, and by b: = h,/(1 —
\:h.) its mean. Let B*/(-) be the j-fold convolution of B,(-) with itself,
B*!(-) = B,(-). Then a j-busy period for the 7th queue has distribution
function B*'(-) and Laplace-Stieltjes transform (8:(-))".

III. FORMULATION OF IMBEDDED MARKOV CHAIN STATE EQUATIONS FOR THE
EXHAUSTIVE SERVICE MODEL

There are N + 1 = 2 queues. Suppose that the system is idle and a
unit arrives at some queue at epoch 7, . The server immediately com-
mences service at that queue, and continues to serve units at that
queue until the first instant 7, at which that queue becomes empty.
If the system is not empty at 7, , the server advances to the next queue
in the cyclic order. The server immediately commences work at this
queue until the instant =, at which this queue becomes empty (where
7o = 7, if the server finds the queue empty), and continues on in this
manner until for the first time, r, say, the server finishes serving a
queue and there are no units waiting anywhere in the system. The
process terminates at , and is reinitiated by the next arrival.

Thus the process generates a set of points 7o , 7, , =+, 7, , Where 7
is the arrival instant of a unit at some queue in the previously empty
system, and , is the first instant at which the system becomes com-
pletely empty again. The next arrival, at epoch 7,. say, reinitiates the
process, and a new set of points, 7o« , 7+, * *+ , T, is generated. We call
the points r, , -++ , 7, (and 7., - -+ , 7,/) switch points.

Note that 7, is not a switch point, whereas 7, is a switch point.
Successive switch points may occur simultaneously in time, but are
nevertheless considered distinet. Thus, with each switch point is as-
sociated a queue, namely, that queue at which the server has just
completed its visit.

When the server finishes serving a queue and finds the system com-
pletely empty, a switch point associated with that queue is recorded.
The next switch point is recorded when the server leaves the queue at
which the process is reinitiated, and is associated with that queue.
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Let (¢; n,, -+, ny) denote the state of the system at an arbitrary
switch point, where 7 is the index of the associated queue, and %, is the
number of units waiting in queue ¢ 4+ k(k = 1, - - - , N). [For simplicity,
no special notation will be used to denote arithmetic mod (N 4+ 1).]
Let the state (4; n, , -+ - , ny) have probability P;(n, , --- , ny); that is,
P.n, , --- , ny) is the joint probability that at a switch point, the
server has just completed a visit to queue ¢ ( = 0, 1, ---, N) and =,
units are waiting in queue 7 + 1, n, units in queue 7 + 2, --- , and ny
units in queue 7 + N.

The state (i; n, , - -+, ny) can oceur through the following exhaustive
and mutually exclusive contingencies:

(¢) The server leaves queue « — 1 and finds j = 1 units waiting
for service in queue 7, where it thus spends a length of time
equal to a j-busy period.

(#1) The server leaves queue ¢ — 1 and finds j = 0 units waiting
for service in queue %, but at least one unit waiting for service
somewhere else in the system, so that the server then
“passes through” queue 7 in zero time. [That is, the state
(¢; m, , ++ ny_1 , 0) necessarily follows the state (z — 1; 0,
Ny, ++, ny_,) where at least one of the n,=0(k=1,.-+-, N—1).]

(777) The server leaves some queue and finds no units waiting any-
where in the system. With probability A,/N (A = N + -+ 4+ Ay)
the next arrival (which reinitiates the process) occurs at queue ¢,
where the server then spends a 1-busy period.

These considerations lead directly to the imbedded (at the switch
points) Markov chain probability state equations:

Py, -+, ny)
= Z Z e Z P.‘—](J‘, kl y T |kN—l)
i=1 kvi=0 kN—1=0

.ﬁm I:I Q;+,,,(nm - km ; t)Ql“f’}\'(n,V ; r) dBa‘kJ(f)

m=1

L PO, e ) (1 . a( b n,,,)) b(x)

m=1

+% 2P0, -+, 0) f: H Quisnln 5 1) dB.(1)

-[a(x)z{l i ow=0, -£=0,1,---,N}- (1)
0 if x=0
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[Throughout the analysis, arithmetic mod (N + 1) in subscripts
will not be specially denoted.] Assuming it exists, the distribution
{Pi(ny, --+ , ny)} is uniquely determined by (1) and the normaliza-
tion equation

;)ni;:o...”i;o]:"-(nl'...’nN)zl. )

(Intuitively, one would expect a unique stationary distribution to
exist when » 7, A\h, < 1.)

IV. FUNCTIONAL EQUATIONS FOR GENERATING FUNCTIONS

We define the probability generating functions g;(xy, -+ , @¥):
gi( , o0 xy) = 2 0 2 Py, e naal oo ay
ny=0 ny=0

(f=0,1,--- ,N). 3

Substitution of (1) into (3) yields, after some rearrangement,

gz, -+, xw)

o0 o8

=2 > o X PGk, e, kit oo 2T

i=1 k=0 kxy—1=0

-./:c exp (—t ';i Niam(l — z,,.)) dB¥ (1)
£33 (1 - a(:;i_‘;nm))

=0 nxy=0

'5(nN)P.-,1(0, N y V0 ,nN_l)m?l b CCRVN
A N ] N

+ 3 2P0, -+ ,0) f exp (—z D Al — ;v,,.)) dB(t)
X k=0 (1] m=1

The integrals on the right side of (4) are recognized as the Laplace—
Stieltjes transform (8;(-))’ of the j-busy period distribution function
with argument »_¥_ A;,n(l — z..). Hence (4) yields the set of simul-
taneous functional equations

(

B: Zh
+’£a(ix- (1—3:))%1%(0 cee L 0)
A 1 fovert 1+m m H 1

k=0

gilxy 0 an) = g;—1( iem(l — $m)) y 1yttt |$N—1)

_'Pi—l(Os"':O) ('L.:Olll".lN)' (5)
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V. SOLUTION OF THE FUNCTIONAL EQUATIONS

For notational convenience, we define the nesting operator = for any
sequence of functions {f.(:)} for which it is meaningful:

E 1) = 1. G Gol@) ).

We shall denote by x the vector with components z, , --- , zy , and

by 0 the vector with all components zero. Both vectors and vector-

valued functions will be denoted by boldface type, and square brackets

will be used to enclose vector arguments of vector-valued functions.

Finally, we will denote by ¢(v) the first component of a vector v.
Define the vector functions

Zifx,, -+ ,an] = [B,-(ﬁ:l ANiem(l — a:,,,)) J &y ,a:N_l]
¢=0,1,---,N) (6

so that (5) can be rewritten

0.0 = ger(Zlx) + N (Zi[x) 2 Pi0) — Poi(0)

(ito,l,"',N). (7)
Iterating v — 1 times on 7in (7) we obtain

v—=1

0@ = 0% 2atel) + 2 2P0 o E 7))

= m=0

— 2P0 (=01 ,N;j»=1,2 ), (8)
m=1
In particular, when v = N 4 1 (8) can be written

o = 2a) - 0.0 = POt — L S ne( = 20 k[x]))

k=0 k=

o

—

@=01,---,N) (9

where we have set
N
P(0) = ; P;(0). (10)
=0

We shall now solve (9) by extending a method devised by M. F.
Neuts*? for the solution of a related equation in one variable.
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Define the iteration procedure

N

VO] = & Z,. [V "]

k=0

(=01, --,N;j=1,2, - ; VO] = x). (11)
Using (11) in (9) gives

g.(V [x]) — g(Vi " [x])
= P(o)(l — %MZN:,! ?\.--,,.gb(k Z.-_k[vf""”[X]]))

(i:Orll.--lN;jzllzl-.-)' (12)
Adding equations (12) forj=1,2,...,nyields

g.(V"[x]) — g:(x) = P(0) :2: (1 - % .,.Z: 7\i—m¢(;5‘0 Zi—k[vf'”Ix]]))

(=01 ,N;n=1,2--). (13

Now let n = o in (13). We will show in the next section that

Ig 8

1]

IimVPx] =1 @®m=1, -, ax=1;7=0,1,---,N) (14)

n—oo

where 1 = [1, 1, -+, 1], so that (13) becomes

00 — o) = PO 35 (1= £ 2ol E zeaviran))

m=0

(z=0,1,--- , N). (15)
Notice that

2 gi1) =1 (16)
and
‘_X_; g:(0) = P(0) (17)

so that upon setting x = 0 in (15) and adding forz = 0, 1, ---, N
we obtain

PO - (1+ 3 40) a8)

i=0



CYCLIC QUEUES 683

where

A@%=i@—%ihm%é&AW%®)

(z=0,1, -+, N). (19)

(We remark that P(0) # 1 — .., N\, because the set of switch points
is not an arbitrary subset of the set of all points at which units leave
the server.)

It remains to caleulate g.(1). Physically, ¢;(1) is the probability that
at the instant the server leaves some queue, that queue is queue ¢. This
event ocecurs if

(¢) the last time the server left a queue the system was empty, and
the next arrival occurred at queue 7, or
(#3) the last time the server left a queue the system was not empty,
and the queue was queue 7 — 1.
Event (z) has probability (\;/\) P(0); event (27) has probability g._,(1) —
¢:-1(0). Hence

0) = XPO + (o — g00) G =01, M) (0)

[Equation (20) can also be obtained directly from (7) with x = 1]
But the difference (g;_,(1) — g._,(0)) can be evaluated from (15) with
x = 0. Hence

i .
g:(1) = 3P0 + PO)A;,(0) (@=0,1,---,N) (21
so that (15) can be rewritten

%+&Jm—mm

g:(x) = (f=0,1,---,N). (22)

L+ 2 A0

i=0

The quantities on the right side of (22) are completely specified; the
set of simultaneous functional equations (5) has been solved in the
sense that g;(x) may be calculated for any x = 1.

VI. PROOF OF CONVERGENCE
We wish to prove statement, (14):

lim V" [x] = 1 (t,=1,--- ,2y = 1;7=0,1, --- , N).

n—0
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Note first that V[x] is a vector whose (N + 1 — m)th element
m=12--- , N) is
o = Zeatvi ).
k=0

Therefore, we need show only that

lim qs( = Z‘_,‘{VE“’[x]]) =1
n—oo k=0
@=0,1,--,N;ym=12 - Nz £1,---,ay = 1). (23)

From the definition (11) it is clear that the sequence {V{”[x]} is bounded
asn — o forx < 1, and therefore the sequence {g;(V{"[x])} is bounded
as n — o« for x £ 1. Also,

0= ¢( = Z.»_,,[Vﬁ"’[x]]) =1 m>1,%x=1). (24)
k=0

We now turn our attention to equation (13). From (24) we see that the
right side of (13) increases monotonically with n for x < 1, and there-
fore the sequence |g;(V{™[x])} increases monotonically with n forx = 1.
Thus the sequence {g;(V{[x])} is monotonically increasing and bounded
for x < 1, and therefore has a limit. Hence the left side of (13) has a
limit, which implies that the series of nonnegative terms on the right
side of (13) converges. This in turn implies that

imd S ag( Z ZalveR) =1 @sn. @)

n—ad k m=0

Statements (24) and (25) together imply (23), completing the proof.

VII. MEAN NUMBERS OF WAITING UNITS

Denote by 7, (k) the mean number of units waiting in queue 7 + k when
the server leaves queues (i = 0,1, -+ ,N; k= 0,1, --- , N;7,(0) = 0).
For convenience, let g;(1)7;(k) = m,(k) and m;(1) = M, . Then Z?’_u T
is the mean number of waiting units found by the server in the next
queue in cyclic order at a switch point, and X Y., m.(k — 1) is the
mean number of waiting units in queue k at a switch point. We shall
evaluate m;(k) ¢ =0,1, --- ,N;k=1,2,---,N).

We first note that 7, (k) is given by

d
Tﬁ.‘(k) = -6:(:_,, 9-’(2'4 Tt Ty)

Zymrremzy=l

G=0,1, ,N;k=1,2,+-+,N) (26
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and the mean 1-busy period b; = hi/(1 — Mhy) generated by a unit
in queue ¢ is given by

d

b| = _E‘;n@:(s) (7‘ = Ov 1: e vN) (27)

8=0

Differentiating through (5) we obtain
d
o, g, -, xy)
7]
= 30 B Z Neew(l = 2w | oo giaBe s 2y oy )

d
+ (L= 8= 5o giaBe vy, oo )

+ 2P0 5= B (E Neem(l = ))

m=1

(i=01 - ,N;k=12 - ,N) (28

which upon setting v; = . .. = ¥y = 1 gives the two-dimensional set
of linear equations

(k) = Nioxbiia s + %P(O)M,,b,. F (1= sN—=k) (ke + 1)

i=0,1,--+-  N;k=1,2,---,N). (29)
For each 1, (29) can be solved successively starting with k = N
and working backward:

i+l i+l

Tf_?vf(N - ]) = Nisn—j Z bivio,mio, + )\_IP(O))\HN—,' Z Nvi—vbivio,
¥=1 y=1

(1":011:“'1N;j=0|1|"')N_1)' (30)
In particular, when j = N — 1 equation (30) can be written
i+N i+N
i = M1 2o bywat, + N PO, 20 Aaiba
p=i+l v=1+1

#i=0,1,---,N). (31)

When \;..b,..7; is added to both sides of the ith equation of the set
(31) we have after rearrangement
i+N i+N

il + )\s+1b;+l))\:+ll - A-IP(O) Z Mabi = Z b, i,

r=i+1 y=i

(G=0,1,---,N). (32
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The sum on the right side of (32) is a constant independent of the
value of the index 7. Hence
i+N

n—?,(l + )\;+1b|’+1))\:‘_-:1 - A—lP(O) Z )\n+lb»+l

v=i+l

1+7+N
= M1 4 Nvsiidivin)A i — APO) 25 Mabi.
G=0,1,---,N;j=0,1,---,N). (33
Combining (33) and (31) yields
= Ain P = Pin S
e = PO B = 0,1, W) (34)

where we define p; = \h; and p = Zf_o p: . Note that for (34) to be
meaningful we must have p < 1. The {m.(k)} can now be calculated
from equations (34) and (30).

VIII. LAPLACE-STIELTJES TRANSFORM OF CYCLE TIME DISTRIBUTION
FUNCTION

Consider the set of switch points associated with queue 7, and append
to this set every switch point associated with queue ¢ — 1 at which the
server finds the system completely empty. Call the elements of this
augmented set the record points associated with queue 1.

We define the partial eyele time for queue 7 as the elapsed time be-
tween a switch point associated with queue ¢ — 1 and the temporally
preceding record point associated with queue 7. Denote by G:(-) the
distribution function of the partial eycle time for the ith queue, and by
$.(-) its Laplace-Stieltjes transform.

Sinee queue 7 is necessarily empty at an associated record point, all of
the units waiting for service in queue 7 at a switch point of queue z — 1
must have arrived during the preceding partial cycle time. Let P;_,(j)
be the conditional probability that j = 0 units will be waiting for
service in queue 7, given that a switch point associated with queue 7 — 1
has just occurred. Then the distribution function G.(-) of the partial
cycle time for the ith queue and the distribution {P;_,(j)} of the
number of units that arrive (according to the Poisson process with rate
;) during the partial cycle time are related as follows:

P = [ exp (—a) a0

(i:OIIi”')N;j:Ollv"')' (3’5)
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Notice also that the distribution {P;_;(j)} has probability generat-
ing function
EP,‘—](j)Ii — gi—l(-r', ]. '-" ' 1) (I- — 0I 1' . ,N). (36)
i=n 9‘;—1(1)
Substitution of (35) into (36) yields, for the Laplace—Stieltjes transform
$:(+) of the partial ecycle time distribution function for queue 2,

h,‘ — 8
gifl.( A,‘ lll e v]-)
gi-1(1)

We define the (full) cycle time for queue 7 as the partial cycle time
plus the time required to serve those units, if any, waiting in queue
7 when the server finishes queue 7 — 1. (Notice that in order to be
counted as a cyele for queue 7, a time interval must contain a partial
cycle ending at a switch point at queue 7 — 1.) Denote by G.(-) the
distribution function of the cycle time for the ith queue, and by v:(-)
its Laplace-Stieltjes transform. '

The cycle time distribution function G;(-) is related to the partial
cycle time distribution function G(-) as follows:

T8 = (Z=10,1,---,N). (37)

t oo Ax‘ i ; .
G = [ 2Ol exp (-apBE — 9 al@
(B¥'(-) =1;4=0,1,---,N). (38
Taking Laplace-Stieltjes transforms throughout (38) we obtain
vi(s) = 9:(\i + s — NBi(s))  (E=0,1,---,N). (39)

Hence we have for the Laplace-Stieltjes transform y;(s) of the cycle
time distribution function for the ¢th queue

g.'—1(7\||6i(i)‘_ — 8 1, 1)

vi(s) = - PRNeY) (i=0,1,---,N). (40)

By differentiating through (40) we obtain for the mean cycle time
{; the intuitively obvious result

Io= (b; + N it (f=0,1,--- ,N). (41)
IX. THE GATING MODEL

Consider now a system of N = 1 eyclic queues described by the
gating model of Section I. Define P;(n, , --- , ny) as the joint prob-
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ability that at the instant the server leaves a queue, that queue is
queuei (i = 0,1, --- , N — 1) and n, units are waiting in queue 7 + 1,
N, units in queue 7 + 2, - - - , and ny units are waiting in queue ¢ (that
is, ny units arrived at queue 7 after the closing of the gate). Denote by
H*i(.) the j-fold convolution with itself of the service time distribution
function H;(-). Then

Pf(nli"','nN)
- Elk“E,-O o ki;opi_l(j'kl TR ’kN—l) " HQl+m Am — m;t)
Q:in(ny ; 1) dH:_H(t) + P,_0,n,, - ,nle}(l _ a(gnm))

) + N ;Pkm 0 [ i I Qu.nli 5 0 A (D)

f=0,1,--- , N —=1) (42)

where @ = Qiyn.

Equation (42}, for the N-queue gating model, is only trivially dif-
ferent from (1), which describes the (V + 1) — queue exhaustive ser-
vice model. The analogue of (5) is

gz, - aw) = Qf—l(ﬂi(i Niem(l — :t:,,,)) v Ly, |$N—:)
(Dt —20) TR0, 0

m=1 k=0
_P:—](OIIO) ('L:O?]-rlN'_l) (43)
where 7;(+) is the Laplace-Stieltjes transform of the distribution func-
tion H;(+), and g;(21, .. ., 2y) is now the generating function for the

gating model state probabilities. The solution of (43) follows that
given for (5), and a complete analysis may now be carried out in a
manner similar to that employed for the exhaustive service model.
(We remark in passing that the equations originally considered by
Neuts are those of the gating model with N = 1.)

X. SUMMARY

Two models of a system of queues served in cyelic order by a single
server have been presented. One of these, the exhaustive service model,
has been analyzed in detail. This model is described by the imbedded
Markov chain probability state equations (1), from which a set
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of functional equations (5) for the probability generating functions
are derived. The functional equations are solved with the help of a
generalization of an iteration procedure used by Neuts. The equa-
tions (5) are then used to obtain explicit expressions for various
mean values, such as the mean number of units found waiting by the
server in the ¢th queue, given by equation (34), and the mean cycle
time, given by equation (41). The Laplace-Stieltjes transform of the
cycle time distribution function is given, in a form suitable for nu-
merical computation (and hence numerical inversion), by equation
(40).

It is then shown that the gating model is described by state equations
only trivially different from those of the exhaustive service model. It
is now easy to adapt the methods and results of the detailed analysis of
the exhaustive service model to a similar analysis of the gating model.

It is noteworthy that all results are expressed directly in terms of the
single state probability P(0) and the relevant generating functions, so
that there is no need to evaluate the individual state probabilities. The
calculations are thus reduced to the iteration algorithm, which may be
suited to digital computer solution.
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