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This paper 1s concerned with the identification of a fairly general class
of nonlinear operators using corrupted measurements. A precise mathe-
matical definition of identification is presented and the relationship belween
a priori information and identification is studied. The a priori information
is represented as a subset of a metric space of nonlinear operators. Neces-
sary and sufficient conditions are developed to answer the question ‘““When 1s
identification possible?”’

I. INTRODUCTION

A large body of literature already exists for the problem of identifying
a control system or communication channel with noisy measurements.
In the usual identification problems, a certain structure is assumed at
the outset in order to reduce the identification problem to one of param-
eter estimation. The absence of such parametrization increases the
difficulty of the problem substantially. It is often not clear if identifica-
tion is even possible.

In this paper we are concerned with the determinability (identifi-
ability) of quite general nonlinear operators whose outputs are corrupted
by additive gaussian noise. We introduce a norm on this space of non-
linear operators and define precisely what we mean by determinability.
Loosely speaking, we say that we can determine an operator H if we
can choose a finite observation interval [0, T, a test signal with con-
strained peak value over this interval, a finite set of linear measurements
over [0, T], and an estimate A of H which is a continuous function
of our measurements such that A is close to H in norm with high proba-
bility.

The question of determinability is of course intimately related to the
kind of a priori knowledge one has of the operator. We represent this
a priori information by saying that the operator H belongs to a subset
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D of possible operators. We derive conditions on ® which are sufficient
for determinability. We also show that most of these conditions are in
fact necessary for the determination of H.

Our results are motivated by the work on the determinability of
noiseless channels done by Root, Prosser, and Varaiya.'™ They derive
necessary and sufficient conditions to estimate a noiseless channel
closely with a “one-shot” experiment. These conditions are similar to
those presented here. Some work on the noisy problem has been done by
Root.® His approach and results are fundamentally different than those
presented in this paper. Root investigated a class of stochastic nonlinear
operators represented by a Volterra series whose kernels are gaussian
random variables. He derived necessary and sufficient conditions for
the second moments of the kernels to be determinable.

II. PRELIMINARIES

The types of channels to be considered can be described as follows.
The input signal = and observed signal w are related via the operator
equation

w(t) = [Hz](t) +2(0)  te0, =) (1)

where H is an operator and z is zero mean white gaussian noise’ with
covariance Ez(f)z(r) = 8(t — 7). (The colored noise case will be treated
separately in Section V.)

We constrain our input functions x to have peak value less than s,

t The noise term z(t) in equation (1) must be interpreted symbolically since white
noise cannot be parametrized with a time variable, but must properly be param-
etrized with an element of a space of “testing functions.”” However, we deal only
with functionals of w(¢) of the form

[ wowo a,

where ¢ e L2(0, b), or with quantities derivable from these functionals. Hence we
can define

fu " ADe(t) dt

to mean

[ o0 azt)

whelrg g(t) is Brownian motion and the operations to be performed are readily
justified.
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that is,
e Ly(s) = {a|a is a real valued measurable function on [0, )
and | z(t) | < sforallie[0, «)}.

If we let || ||, denote the norm on L,[0, «) and define the projection
operator Pr by

[Pr2](1)

a) for t£T
=0 for t>T
then
T 3
| Py ||: = (f 2°(f) d!) < s(T)! forall ze Ly(s).
0
The types of operators which we consider are assumed to belong to
the space 3C. The space 3¢ is defined: if H & 3¢ then
(#) H : Lo(s) — Ly,
where L,, = {y | v is a real valued, measurable function on
[0, ®), || Pry |l < = forall T > 0},
(#7) H is eausal; that is, for all T > 0, v ¢ L (s), P,Hx = P,HP,2,
(i) [|H|| < =.

Using the usual definitions of addition of operators and multiplication
by scalars, the norm of H, || H || is defined as:

P:Hzx
H|l = su [ Py z.
” | T>]2 HPT-17 Hz
reLw(a)
[1PTxllax=0

We consider H to be the zero operator® if || H || = 0. It is then easy
to show that || || satisfies the norm axioms. Obviously || H || = 0 for
all Hedcand || N || = | N]| || H || for all scalars . The triangle in-
equality is also satisfied since

WH 4K || = sup P2 £ Ko [l _ || PrHx + P.Kz
| Py [, 1Pz [,

2

t The equivalence classes defined in this manner are not unreasonable. In fact,
if | H|| = 0then || PrHz |l2 = 0 for all z € L(s), || Prz |l2 # 0 and all T > 0.
As far as we are concerned this is the zero operator since Hz is then the zero function
in the L2(0, « ) sense.
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“ P.Hx ||2 + || P,-Kxjg]
ém[ 1 Pz I,

< qup LPeHE |l o o ILPeKZ ]l _ gy 4y k)
[ Pr [ [ Prz |2

where the supremums are taken over all T > 0, z & Ly(s), || Prz ||z # 0.

If we consider the metric induced by the norm || || then 3¢ is a com-
plete metric space. The proof of this proposition is contained in the
appendix. The completeness property is crucial to Theorem 2 of this

paper.

The space ¢ includes many types of operators familiar to those in
communication and control theory. Linear time invariant convolution
operators whose kernels are either in L,(0, «) or L(0, w) are in JC.
If these operators are cascaded with a memoryless nonlinearity having
bounded slope, the composite operators are also in 3¢. Operators des-
cribed by certain nonlinear dynamical systems are also in 3C. Let = ¢
Le(s) be the input to the following dynamical system and let y be the

output:
() = f(g®), =®), ),  g(0) =0
f:R"XRXR—R"
y(1) = g(g()
g:R"—R
with
lg@ | = Kilgql,  [fgzt)| =K |g|l+Ksfz]

forallge R", |z | < st > 0. Assume also that for each z & L.(s) there
exists a solution to the differential equation. Then, via the Bellman-
Gronwall inequality we see that

g0 = Ko [ &7 (o) | dr,

( f g P dt)i KJ{,,( f 20 dt)%

T L]
(j[; | (1) |2 dt) < KKK, || Prz |2 .

Hence,

lIA

and

Thus, the operator described is in 3¢ with norm bounded by K KK, .



NOISY CHANNEL CLASSIFICATION 3269

Subsets of 3¢ will be used to represent the a priori information in an
identification problem. We call a subset © of 3¢ determinable if every
member of D can be identified. The determinability of a subset D de-
pends of course on our definition of identification. We would like to
consider only those identification procedures which could theoretically
be implemented in real time. The identification procedures which we are
concerned with must have the following properties. To identify H we
must be able to

(i) choose a finite observation interval,
(77) select an input function with constrained peak value,
(i) perform linear measurements on the noisy observations generated
by this input, and
(@) operate on these measurements to yield an estimate of H which is
a continuous function of these measurements,

so that our estimate of H is close to H with high probability.

The properties of such an identification procedure are physically
very appealing. We obviously must be able to identify within a finite
period of time. The peak value restriction is the usual kind of input
constraint used in communication theory. Linear measurements are
easily implemented and tend to reduce the sensitivity to unknown
biases as does the continuity requirement on the estimate. Finally,
we are usually satisfied to identify to within a small tolerance.

For H ¢ 3¢ and channel model given by equation (1) we may specify
our definition of identification even further. A linear measurement over
the time interval [0, T] is a finite collection of bounded linear funec-
tionals™ (p;, w), 4 = 1,2, --- N, p; e L,[0, T] defined when P,w
L,[0, T] and

w(t) = [Hz)(t) + =20, O0=t=T
is the received waveform with H e 3¢, x e L,(s). We say that a class
D C 3¢ of channel operators is deferminable if given arbitrary positive
constants e and 7, there exists a finite observation interval [0, T], an

input (test) signal z ¢ L.(s), a linear measurement [(p, , w), (p2, w), -~ -,
(py , w)] over [0, T], and a continuous function g : RY — 3C such that

for each H ¢ D,
Probability (|| H — A || > € < n
where 1 = g[(p. ,w), (p2, w), -+, (px, w)]. Thus, if D is determinable,

+ The symbol (f, k) is used to represent the inner product in L.[0, 71; that is,
(f, kY = Jo' f(DRh(1) dt.
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we can “identify” any element of © to within any specified accuracy
with sufficient processing and long enough observation time.

The bulk of this paper is related to answering the following question.
What structure must © have in order to be determinable? Theorem 1
derives sufficient conditions on D in order to be determinable. The key
condition is compactness. Theorem 2 indicates that this condition is in
fact necessary for determinability. A number of corollaries are given
which interpret these results for the case where D is composed of linear
convolution operators.

II1. SUFFICIENT DETERMINABILITY CONDITIONS

Despite the generality of our class of operators and the rather rigid
nature of allowable identification schemes only two conditions guarantee
the determinability of a subset of operators. Both conditions are some-
what obvious. One condition insures that the class may be approximated
closely by a finite number of elements; the other insures that a test
signal exists which will produce sufficiently dissimilar responses for
dissimilar channels. These conditions are rigorously stated in Theorem 1.
Theorem 1: Lel © be a subset of 3¢ having the following properties:

(2) the closure of D is compact (thus D s also bounded; that is, there
exists a constant R > 0, such that || H — K || < R for all H, K& D)

(i7) given any 8 > 0 there exists an unbounded sequence {'T';}, a sequence
of inpuls x; e L. (s) and a positive number r such that

” PT](HXE - KX,-) H; > I‘Tl

for all pairs H, K& D for which || H — K || = 6. Then D is a delerminable
subset of 3C.

Proof: Sinee the proof of this theorem is lengthy, we give here a brief,
rough description of the key steps involved which the reader may use
as a guide through the mathematical details.

(i) Using (77) of Theorem 1 we select an input z; to give sufficient
separation of outputs over [0, 7';] for sufficiently dissimilar channels.

(i) We then approximate the class © to within a judiciously chosen
accuracy by a finite number of elements.

(7ii) The actual received signal due to the input selected in (7) of
this proof is correlated over [0, T';] with the calculated outputs of the
channels selected in step (iZ) of this proof.

(i) If one of these correlations is larger than the others by some
amount we select as our estimate the corresponding element of the
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approximating class that yielded this correlation. If there is no such
correlation we assign an arbitrary rule so as to make the identification
procedure a continuous function of the correlated values.

(v) We finally show that as 7 (and hence T';) increases, the proba-
bility that there will not be a correlation larger than the others by some
prescribed amount goes to zero. In addition, we show that the proba-
bility that our identification procedure yields an estimate which is
further apart in norm from the actual channel than is desired is vanish-
ingly small as ¢ increases.

The formal statement of the proof follows below.

We may assume that D is closed, since subsets of a determinable set
of channels are determinable. Using assumption (#7) of Theorem 1
with 6 = 3¢/4 we have that there exists an unbounded sequence {7'.},
a positive number r, and for each 7 an input signal z; ¢ L,(z) such that
for all pairs H, K e D with || H — K || > 3¢/4

|| Pri(Hz; — Kz)) ||z = #T.. (2)

In what follows we will denote the operator which we wish to identify
by H. Since D is closed, by assumption (z) of Theorem 1, it is also com-
pact and hence totally bounded (see for example Ref. 6, p. 22). There-
fore, given any T, ¢ { T} we can choose a finite number of balls of radius
o = min {r}/2s, ¢/4} with centers H,e ©, a = 1,2, --- , M to cover D.
There may be operators H, , H,¢ {H,} for which || Pr,(H,xz: — H.z.) ||
= 0, in which case retain only the H,’s with the lowest subscript. Thus
we have a subset of {H .} which we label {H,} for which || Pr,(Hz; —
Hx,) || > 8; > 0 for some 6; and all H, , H, e {Hy}. For convenience
order the {Hgs} so that || H — Hj|| < 3¢/4forg =1,2, -+, Ny — 1
and || H — Hg || > 3¢/4forp = No,No+1,---,N,N = M.

We can now choose an appropriate linear measurement over the
interval [0, T';]. We define the linear measurement m(w) = {f(w, 1),
flw, 2), -+ f(w, N)}: f(w, B) = (w, 2Hgz;), B = 1, 2, --- N where the
inner product is defined over the interval [0, T';]. Thus for each received
waveform w({), the linear measurement gives us a point in B". From
this measurement we will determine an estimator function g : RV — 3C.
We first partition B into N + 1 disjoint subsets: A, , 4,, -+, Ay, B,
with

Ai = {G’ = (al y Aoy = a,v):ﬂr,' — > (H,‘.’U,‘,Hii:,-)
—(Hk:l;,',Hk-'E[)"'e,"/T,', k=1,2,"'N, k#];

and B the remainder of R",
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b ().

i=1
The disjointness of the above subsets of R" is easily verified by making
use of the fact that 6;/T; > 0. The estimator function is defined in
terms of this partition:

g(m) = H; if mw)e A,
g(m) = i e;(w)H; if m(w)eB

wheret

) = mtw), 4) + 11 dm(w), 4,)

i#1

and

dx, A) = nf [z — y |.

ved

Tt is not difficult to show that ¢ is a continuous mapping from E" into
gc. Having given the identification scheme we now show that for any

HeidC,e >0
P{|H—-H| >¢ — 0.
Ti—em

Recalling the definition of B, 4, and the labeling convention we have
used, we see that

PAIH = otm@) || > d = Plutw e B} + P{nw: U4}

i=Nao
N N
= P{m(W) e M A?} + P{m(W) e U A,}' 3)
i=1 i=No
Let us first concentrate on obtaining bounds for the first term on the
right side of equation (3). We rewrite 4; as 4; = (U‘.,.,- F)" where
Fi=1la=(a,a, - ,av):a — & = (Hjz: , Hx;)
— (Hux, , Hyx)) + 6,/T.}.
Thus

t It turns out that the form of a(w) is irrelevant since we show that P[m(w) ¢ B]
vanishes as 7'; increases. It is merely included to make the estimator function
continuous.
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N 4= N (U F. )

f=1 i=1 ki
Applying DeMorgan’s rules to equation (4), and after some thought,
we see that

N (N—1) N

nfl;: H D, (5)

where D, has the form
D; = I"”, m Fzr,m T mF.-VI.\'

with I; # j for all j. We can upper bound P{m(w) & D,} by
N, .
5:1[) P{-F‘l + (H,-.‘L',' , Hix,) — (Hin , Hir)) = f(w, k) — f(w- 1)

ke

= % + (Hwx; , Hex) — (H;x; .Hﬂ?-)}' (6)
To see this, define q(w, k) = f(w, k) — (H,x: , Hv,). Then P{m(w) e D,}
is the probability of the N events q(w, 1) — ¢q(w, I,) = 6,/T:, q(w, 2) —
qlw, 1) = 0,/T: -+ qlw, N) — q(w, ly) = 8;/T; occurring simul-
taneously. Suppose I, = k. Then consider the two events g(w, 1) —
qw, , 1) = qw, 1) — q(w, k) = 6,/T; and g(w, k) — q(w, ;) = 0,/T,; .
If I, = 1, then these two events are contained in the event —8,/T; <
q(w, 1) — q(w, k) £ 0,/T,.If I, = j # 1 then consider the three events

glw, 1) — glw, k) = 8./T,,
q(w, k) — q(w, j) = 8./T. ,
Q'('w‘ ]) - Q(w' ) = B-‘/Te .
If I; = 1, then these three simultaneous events are contained in the
event —0,/T < q(w, 1) — q(w, j) < 26,/T,;.1f l; = k, then these three
simultaneous events are contained in the event —8./T = ¢(w, k) —
q(w, j) = 6;/T;. Continuing in this fashion we obtain the bound in
equation (6).
Since g(w, k) — q(w, j) is gaussian, we can bound the value of the
expression in equation (6) quite easily.
Let
E[(I(w. k) - Q(w! J')]
H PT.-(fo — Hx) i

Qs

P || Po(He — Hax) |} ()

Il
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and
ol = Var [gw, k) — qw, )] = 4 || Pr.(Hww: — Hiz) |2 > 46; . (8)
Hence,

No, . _ N
P{_T = qw, k) = q(w,j) = 75 }

1
NO;/Tiokj—aki/ok; 22
= (2m)! f exp (—;) dz

—(NOi/Tiokj)—akj/okj

NO#i/Tiokj 22
= @ent f exp (—5) dz

—~(NOi/Takj)

N/2T z2 M/2Ti 22
< @207t f exp(—;) dz < (2m)7 [ exp (—,—,) dz  (9)

—(N/s2T) Y= (M/2Ti)
(recall that N = M).
Using equations (9) and (5) we see that

(N=1) ¥

; P{m(w) e D,}

1A

P{m(w) e Q 43)

M/T

< (M — DMEm? f exp (—"'—;) dz. (10)

—(M/Ti)
Since the right side of equation (10) goes to zero as T'; increases we can
choose a T'e {T;} large enough so that this term is less than n/2. We now
bound the second term on the right side of equation (3):

Pluw e U 4,f = 3 Plmeie 4. (1
Recall that o o
A, = (\JF) = NFi.
Hence - .
Pluwe U 4= 3 Plww e (Y Fil. 12)

Observe that for all & # j
Pim@) e (\Fii} < P{m(w) e F;.] (13)
k#j

- P{q(w, ) — qlw, k) > %} (14)
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) : ( zz)
= T —= ] dz. 15
jﬁ"i/?’i—uu/c;i (277) exp 2 o ( )

Since 9 was covered by balls of radius r, , there exists at least one inte-
ger i < N, such that || H — H || < 7o £ ¢/4 and hence || Pr,(Hz; —
Hiz)||* < r2s*T; . Note also that since || H; — H || > 3¢/4 forj = Ny,
[| Pp,(Hx, — H2) ||* > rT:. Hence,

—Qjg = || Pr(Hzx; — H;x,) Hf - ” P (Hx; — Hgxy) ||;

I

TT{ —_ ?'gszT,' % (’n" - E)T‘ = %?'T,‘ . (16)

Recalling that © was bounded,
o = 4 || Pr,(H;x; — Hix,) |3 = 4R*T . (17)
Using equations (16) and (17) in equation (15) we see that

Plue N\Fiul SPlm@eFd s [ oo ten(-5)d

(18)

Hence from equation (11) we see that

P{m(w) e \NJ A,-} =M ) 2m)~* exp (—%) dz. (19)

i=Nao 3rTit/16Rs

Thus we can select a T & {7';} so that this term is less than 5/2. This
T makes P{|| H — H || > ¢ < nforall He D.

The identification technique proposed in the above proof is not
necessarily a practical technique. Our intent is to indicate the possibility
of identification rather than to derive easily implementable techniques.
Notice, however, that since the measurements are linear functionals on
L,(0, T) they are iterative in nature because of the integral representa-
tion of such functionals.

Theorem 1 gives sufficient conditions for determinability. Theorem 2
indicates that some of these conditions are in fact necessary for identi-
fication.

IV. NECESSARY DETERMINABILITY CONDITIONS

In this section we show that the approximability condition given by
condition (z) of Theorem 1 is in fact necessary. We also show that a type
of separation property is necessary, although it is not as strong as that
given by condition (¢7) of Theorem 1.
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Theorem 2: Let D be a bounded, determinable subset of 3¢, then

(z) the closure of ® is compact
(43) given any & > O there exists an % e Ly(s), T > 0 and a positive

number r(6) such that
[| Ps(HX — K%) || > r(8) forall H,KeD

satisfying || H — K || = 6. i
Proof: (i) Given € > 0, choose T', £& L.(s), N linear measurements and

an estimator g(m(H, »)) so that!
P{||H — gm(H, w)) || < ¢/2} > § forall HeD.

Since D is bounded and the measurements are linear, there exists a
compact ball By ¢ RY so that

Pm(H,w)e Bf} < i forall HeD.

Thus, since g is continuous, g(Bz) is compact. We can therefore cover
Bs by a finite number of balls of radius ¢/2. If g(Bs) D © we could
also cover D by the balls. We don’t have enough information to verify
that g(Bs) DO . Notice however that

P{lo: || H — g(m(H, w)) || > ¢/2] N [w: m(H, w) ¢ By}
= Plw: || H — g(m(H, w)) || > ¢/2} + Plo: m(H, «) & Bz}
— Pllw: || H — g(m(H, ) || > ¢/2]\J [0: m(H, ) £ Bs]}
zi{t+i-1=43 (20)

We conclude that there exists an w, so that m(H, w,) ¢ Bs and || H —
gm(H, wo)) || < ¢/2. We can repeat this argument for each H ¢ D.
Therefore, O must lie within an e/2 neighborhood of g(Bs). By expand-
ing the balls of radius e/2 which cover g(Bz) by a factor of two, the
expanded balls will also cover D. Since this argument holds for any
e > 0, D is shown to be totally bounded. Since 3¢ is complete, D is
complete; and hence D is compact (see Ref. 6, p. 22).

(%) If D is determinable, then the closure of D, D, is also determin-
able. This is easily shown by noting that any channel in D can be
approximated arbitrarily closely by a channel in D. Hence the measure-
ments will be arbitrarily close and because of the continuity of the
estimate, the estimate will be close with high probability.

t Since the measurements are gaussian random variables we have included the
dependence on the sample points « of the corresponding sample space Q.
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Since D is determinable, for every e > 0 there exists an observation
interval [0, 7', a test signal £ ¢ L, (s), and an estimator g(m(-, »)) so that
P{| H — glm(H, )] || < §/2) > § forall HeD. (21)

Suppose that || Ps(H# — K#)|[. = 0. Then, the measurements ob-
tained will be the same irrespective of whether H or K were used and
therefore the estimates for K and H will be identical. Since

Plo: || H — glm(H, )] || < 8/2} > §

and
Plo: || K — glm(H, &) || < 8/2} > &,
we see that
Pllo: [| K — glm(H, )] || < /2]
N o || H — glm(H, )] || < 8/2]}
= Plo: || K — glm(H, )] || < 8/2}
+ Plo: || H — g[m(H, )] || < 8/2}
— Plfo: [| K — glm(H, )] || < 8/2]
U fe: || H — glm(H, )] || < 8/2]}
zi+31-1-1.
Thus there exists at least one sample point w, such that
| K — gm(H, wy)) || < 3/2
and
|| H — gm(H, wo)) || < /2

which together imply that || H — K || < 6. f H, K¢ D and ||H —
K || > & then || Ps(HE — K2) ||, > 0.

Note that ® X D is compact in the product topology and hence
C) = {(H,K):||H — K|| 2 4 H, K e D} is also compact. The func-
tion f(H, K) = || Ps(Ht — K&) || is a continuous map of C(8) into the
real line and hence it has a minimum value. This minimum value cannot
be zero because we have already shown that f(H, K) > 0 for (H, K) ¢
C(5). As a consequence, there exists a positive number 7(8) such that

|| P#(HE — K£) |3 > r(5) forall H, KeD
satisfying || H — K || = é.
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V. LINEAR CONVOLUTION OPERATORS

When we specialize the results of Theorems 1 and 2 to linear convolu-
tion operators, it is possible to obtain the characterization of the deter-
minable sets in terms of the kernels of these operators. These results
are given in Corollaries 1, 2 and 3 below. We note that the resulting
conditions are similar to those obtained by Root and Prosser for the
deterministic identification problem.’

Corollary 1: If 3¢ is composed only of causal linear time invariant con-
volution operators H, [Hx](t) = [¢ h(t — 7)z(r) dr, he L,(0, =) and if
(7) D= {h|heL,(0, »), He D} has a compact closure in L,(0, =),

and
(#7) for each 6 > O there exists an x e L(s), T > 0 such that || PyHx —

P.Kx ||s > 0 forallh, ke £ for which || h — k ||, = [5|h(t) — k(t) [dt=
8 then D 1is determinable.

Necessary and sufficient conditions for © to have a compact closure
are (see Ref. 6, pp. 208-299):
(i) D is a bounded subset of L,(0, =),

(#3) lim, J3 | R(t 4+ 7) — h(t) | dt = O uniformly for A& D, and
(#i1) limp_, [2 | A(t) | d¢ = O uniformly for he D.

Proof: We first show that if the closure of 9 is compact then the

closure of D is compact in the respective topologies. Let || H [[*, H & 3¢
denote the usual operator norm, that is,

7= sup LEE
7els(0.) [| ||

Given any e > 0 there exists 7% > 0, 2* ¢ L(s) such that

P..Hz* P, .HPp.x*

< 2 <
[|H || =e+ [ Pra* . = €+ [ Pra* |2 (23)

Note however that Pr.z* ¢ L,(0, »); hence || H|| = ¢ + || H ||* for
arbitrary ¢ > 0, so

WH = |[HI[* (24)

Using the linearity of H and Holder’s inequality we see that

|[|H ||*= sup “I—TH' sup U__ll[%J_thL =||hl]l,. (25

zeLly (O o) zely(0,0)
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Thus compactness in L, (0, =) implies compactness in 3¢ and condition
(?) of Theorem 1 is satisfied.

Given § > 0, choose z,, T° so that condition (#) of Corollary 1 is
satisfied. We have already used the fact that || HPre, ||z = || A |1
|| Pyoz, ||2 . Hence HPr.x, is a continuous linear mapping (that is,
mapping the kernels into time functions) from L, (0, ) into L.(0, «).
Thus the image of © under this mapping has a compact closure. We can
therefore choose a number T > T° so that

[ WPz, — KPpz)(@dt < 1 forall H KeB. (26
T

Define £ as follows:

2(1) = zo(D) for 0 <t =T
=0 for T° <t T
—x(t—=T) for T<t=T+1T

=0 for T+ 171° <t =2

= z4(t — nT) for nfP <t=nl +T
=0 for nf + 1" <t =@+ DT

(27)

Note that # ¢ L, (s). Following the same line of reasoning as in the proof
of condition (77) of Theorem 2 we can show that there exists an r(8) > 0
so that || Pro(Hz, — Kzo) |2 > r(5) forall H, K e D for which || h — k I
> §. We now proceed to show that

|| Pos(HE — Kg) |3 > #(5)nT (28)

where 'F((}) = r(8)/4T. Let yo(t) = [HPpoy — KPpoxo](t) and y:(f) =
yo(t — ¢T"). Then, by linearity and time invariance,
i7

[ @ = koran= [ 0+ n®+ v OF @

i-1)T (1

and

i+ 7T (it1=1)T
j_ yi() dt = f i yh) dt for § = 1. (30)
it (

=T
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Using these relationships we see that

i+ T
f_ (Yo + -+ + yo)* dt

iT

I

i+ i+ P
f_f y?dt—fo Ly | (o | 4+ - 4+ Lyica D dt

i+ 7 i+ T
gf_ yidt[l—2f_ (y§+---+y?_1)di]
iT iT

Gi+1) 7 i+ T
= f ¥ dt[l - Qﬁ e dti‘ = r(8)/2. (31)
i I

T

Hence

7 of
| Poa(e — K8) i = [ hde+ [ o+ v)?di+ -
0 T

+ [ et wa

(n=1)T

v

nr(8)/4 = r'(8nT. (32)

We see that this relation implies that condition (##) of Theorem 1 is
satisfied; thus D is determinable.

When 3C is composed only of causal linear time invariant convolution
operators we can also strengthen the conclusion of Theorem 2. This
result is given in the following corollary.

Corollary 2: If 3C is composed only of causal linear {ime invariant
convolution operators and if D is a determinable subset of 3C then

(7) given any & > 0 there exists an unbounded sequence T , a sequence
of inputsx; e Lo (s) and a positivenumberr(8) suchthat || Py, (Hx;, — Kx;)* ||,
> r(8)T; for all pairs H, K¢ D for which || H — K || > 6.

Proof:  As a consequence of Theorem 2 we know that for any ¢ > 0
there exists an £ & L, (s), T > 0 and a positive number r(8) such that
|| Pa(HE — K#£)* ||, > r(5) for all H, K ¢ D satisfying || H — K || > .

Obviously, || HP3# ||, < || H || || P4 ||» . Hence HP;# is a continuous
linear mapping from 3¢ into L,(0, «). Thus the image of ® under this
mapping has a compact closure. We can therefore echoose a positive
number T > T so that

it

[ @Pst — HPsay(dt <} forall H Ke®. (39
T
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Proceeding as in the proof of corollary 1 we can easily establish (z) of
Corollary 2.

Corollary 3:  If 3¢ is composed only of causal Hilbert-Schmidt operators H,
[Hx](t) = [¢ h(t, n)x(r)dt, [2 [ | h(t, 7) |[*dt dr < o, h(t, r) = 0 for
T > tand if

(@) D = (h|H ¢ D} has compact closure in the Hilbert-Schmidl
metric (||h — k|2 = [ /% | h(t, ) — k(&, 7) [* dt dr)

(77)for each § > 0 there exisls an unbounded sequence T, , a sequence
of X; & Ly(s) and a positive constant r(8) so that || Py, (Hx; — Kx;) [|]2 >
r(8)T, for all h, k ¢ D for which ||h — k|, > 4.

Then D 1s determinable.

Proof: As in the proof of Corollary 1 we can show that || H || < [[ H [[*
where

Hz ||2
|| H ||* = sup J_L_zvlL

zeLy(0,00) H T Hz

From the Schwartz inequality we see that

| He || = fw (fo nt, T).T(T))Q di = fnm (fm h(t, 7)a(r) df)g dt
< f: Uﬂmm(:, A dr fnmim(f) |2d7] dt
S IRzl eils, (34)

which implies that
NHI| Z Al (35)

Hence, compactness of © implies that D is compact and condition (7)
and (77) of Theorem 1 are easily verified to hold.

VI. COLORED NOISE

Theorems 1 and 2 were derived for the case when z(f) the additive
noise was a zero mean white stochastic process. The situation when
Ez()z(r) = R(l, ) can be handled in a similar fashion. The only addi-
tional assumptions are:

(i) R(t, ) is positive definite; that is,

[ f R, Nwtw(r) dtdr > 0 forall we L,(0, )
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satisfying [ | w(f) |* dt > 0, and either
(72) R(t, ) is Hilbert-Schmidt; that is,

f f | R(t, 7) Pdtdr = C* < », or
0 ]
(i) if R(t, 7) = Ro(t — r) then

f | Ro(t) Fdt = C2 < o
Inspecting the proof of Theorem 1, one sees that the whiteness assump-
tion was only used in equations (8) and (17). If Ez(f)z(r) = R(t, 1),
then equation (8) becomes

of; = Var [gw, k) — q(w, j)]
=4 j"‘"l‘ fi"i R(ty T)(Hkx" bt Hj'xi)(t)‘(Hk.’t" _ H,‘I.')(T) dit dr. (36)

Since H, and H; were chosen so that || Pr,(Hz; — H;z:) || > 0, we see
that since R(t, 7) is positive definite, ¢;; > 0. If we choose 8; to be less
than min; , ¢, instead of || Pr,(Hwx: — H;xz) |[3, inequality (9) will
remain true.

Equation (17) is changed as follows. If Ez(t)z(r) = R(t, ), then by
the Schwartz inequality

o= 4 f " fu "R D (H oz — Ha)() o — Hex)(r) dt dr

IIA

4 j;ﬂ (H;z: — HEW;)(T){LT‘ | R(t, ) I dt}&
-{fom (Hyz: — Hex)'(l) dt}* dr

[ pTi pTi 3
4{[ f |R(t, 'T) l2 dt dT} || PTI(H,'.'rl‘ - HE.?:") ”:
] 0

< 4CR%'T, . (37)
On the other hand, if Ez(f)z(r) = Ro(t — 7), equation (17) is changed
as follows.

4 f f " R( — D(Hs — Har)(O(Hz, — Ha)(r) di dr

1IA

2.
(.37

4 j:i | (H;z;, — Hex)(0) | [‘/;Ti |R(t — =) |° d-r]5

IIA
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y [fT‘ (HiSL',‘ - HE:U,')?(T) dT]§ dit
< 4C,Rs(T )} fﬂ | (Hx; — Hex)(1) | di

4CoRs(T,.)*( f " dt)}l: fo " s — He)'(0 dt:r

40, Rs(T ) (T) -Rs(T)! = C,R*ST? . (38)

From equation (37) we see that the limit of integration in equation (19)
now becomes 3rT!/4RsC*. If we use equation (38), this limit becomes
3rT%/16RsC} . In either case this limit diverges as ¢ increases. Thus
Theorem 1 is still correct if the noise is colored. One can also see that
Theorem 2 is true without any modifications. The whiteness assumption
does enter into the proof in any substantial manner.

IA

[IA

VII. CONCLUSIONS

In this paper we have attempted to formalize the notion of identifica-
tion and examined conditions under which the a priorz information would
guarantee that the problem of identification was well formulated. Our
purpose has been to indicate when identification was possible and not
to specify a given identification procedure. It is hoped that the condi-
tions derived here may motivate researchers to consider larger classes of
identification problems than have hitherto been examined and also to
indicate for what classes of problems identification is not possible.
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APPENDIX

Proof that the Space 3¢ Is Complete

In this appendix we show that the space 3¢ with the metric induced
by its norm is a complete space. If {H,} is a Cauchy sentence in 3¢, we
show that there exists an element A ¢ 3¢ such that lim,, || 7 — H, || = 0.

Let {H,} be a Cauchy sequence in 3. Then given any e > 0 there
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exists a number N (e) such that if m, n > N(e), || H. — H. || < e From
the definition of the metric,

|| PrH,z — PrH oz |2
| Pz ||

| H, ~ Ha || 2 (39)

for all T > 0, z & L.(s), || Prx || # 0. Using the definition of L.(s),
es(T) > || Pyz |l > || Pr(H.x — H,2) |2 (40)

forall n, m > N(e), T > 0, z & Ly(s), || Prz ||s # 0. Thus, for each
T >0,ze Ly(s), || Pz ||, # 0, {H,z} is a sequence of functions in L,
and for each T' > 0, PH,z is a Cauchy sequence in L,[0, T']. Hence,
for each T there exists at least one time function yr € L,, such that
Pryr e L,(0, ) and lim,_, || PrH,x — Pryr||. = 0. Furthermore,
yr is uniquely (except for a set of measure zero) specified over [0, T].
Because of this uniqueness, if T, < T,, then Pr.yr, = Pr,yr, . Hence
there exists a unique function § ¢ L,, such that P,j = Pyr for each
T > 0. This function can be constructed:

i) = y(t) for 0=t <1
=) for 1 21<2

IIA

= y,(f) for n—1 I <n

(41)

For each z & L.(s), z # 0 we have uniquely specified a function § e L, .
For x = 0 we arbitrarily put 4 = 0. Call the operator defined by this
association A ; that is, Az = §. We now show that lim,_, || @ — H, || = 0.

Foreach T > 0, z & L,(s), || Prz ||» # 0 we can use the triangle in-
equality to show that

HPT([‘;FL'—H,,:E) llg < HPTHJ'J'?*'PTI{,,,I Hz + HPT(an _ me) HE
[| Pz |[. N I Prz []. [| Prz ||

(42)

If H,, H, are members of the Cauchy sequence, from our previous
development we know that there exists a number N(e/2) independent
of z and T such that

|| Pr(H,x — H.2) ||

< ¢/2 for m,n > N(¢/2). (43)
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Since lim,, ., || Pr(x — H,x) |l = 0 we can find another number
N*(e/2, z, T) > N(e/2) such that

|| Pr(Hz — Hu2) ||

2 < e/2 for m > N*e/2, 2, T). (44)

|| Prx |2
Hence forall T > 0, Prx # 0
|| Pr(Hx — H,2) || _ .
[P [Is < e for n > N(e/2), (45)
and if H were causal it follows that A ¢ 3¢ with lim || — H, || = 0.

The causality of H is easily established. For each z ¢ Lo(s), T > 0:

|| PrHz — P,APz ||,
|| PrHx — P,H,x ||, + || PrAPx — PrH,x ||, (46)
|| Pr(Hx — H2) ||: + || Pr(APx — HPy) |, (47)

For n sufficiently large each term on the right side may be arbitrarily
small, hence || PrHx — PHPx ||, = Oforallze Lo(s), T > 0.

If 3¢ is composed only of linear operators the completeness proof
follows as above except to additionally observe that A is linear.

1A
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