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We consider the problem of the transmission of discrete-tine analog data
with a variely of fidelity crileria. The oulpuls of the analog source are as-
sumed to belong to a bounded set. Bounds on the minimum achievable average
distortion for memoryless sources are derived both for the case where the
coding delay is infinite (an extension of the Shannon Theory) and also for
some cases where the coding delay is finite. Several examples are given, for
which the upper and lower bounds coincide.

Further, we discuss the case where the assumption of the existence of a
probabilistic model for the source s dropped. We adopl as our fidelity
criterion the supremum over all possible source-oulput n-sequences X, of
the conditional expectation of the distortion given x (‘‘guaranteed distor-
tion’”). The Shannon Theory is not directly applicable in determining the
minimum guaranteed distortion. We do oblain resulls for two important
cases. Some generalizations and applications are also discussed.

I, INTRODUCTION

In this paper we are concerned with communication of discrete-time
analog data over a communication channel with a variety of fidelity
criteria. The central assumption about the analog source is that its
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outputs belong to a bounded set, typically the interval [—A4/2, A/2].
We begin with a rough outline of our results, leaving the precise formula-
tion and statement to Section II. Proofs are found in Section III.

Suppose that we have a data source which emits a sequence of sym-
bols , , >, --- = % (an arbitrary set) at a rate of ps per second. This
sequence is fed into an ‘“‘encoder’” which assigns to each successive block
of n source symbols, say x = (x,, %2, - - , Z.), & channel input of dura-
tion n/ps = T seconds. At the receiving end of the channel, the T-
second output is transformed by a ‘‘decoder” into an m-sequence, say
% = (#,4%2, -+, #), which is delivered to the destination. The ‘“‘dis-
tortion” between the source ocutput sequence x and the received sequence
% is defined as d™(x, %) = n~' >_r., d(z:, £,), where d(x, £) = 01is
an arbitrary function.

The classical problem is that of a “memoryless” source, where suc-
cessive source outputs are statistically independent with identical
probability distribution. In this case it is meaningful to let the system
performance criterion (fidelity criterion) be the statistical expectation
of the distortion d™ (x, ). A quantity of interest is #*(T), the smallest
attainable value of the fidelity criterion when the coding delay is T
seconds. The Shannon Theory gives the asymptotic behavior of d*(T)
as T — . In many cases this limit is difficult to evaluate analytically.
Theorem 1 (in Section 2.2) considers the case where the source output set
x = [—A/2, A/2], and the function d(z, £) depends only on the dif-
ference # — z. This theorem gives a lower bound on limitr_., @*(T).
The examples which follow this theorem illustrate the applicability
and utility of the bound.

There are two cases in which we are particularly interested. In the
first, the source set X = {0, 1, --- , K — 1} with a uniform distribution,
and d(z, £) = 0 or 1 according as ¢ = £ or x # £. Thus the fidelity
criterion is the error-rate. For this case let d*(T) = P,(K, T). In the
second case, ¢ = [—A /2, A/2] with a uniform distribution, and d(z, £} =
OQorlaccordingas |z — £ | < 6or|2 — £| = & (where § > 0). In
this case let d*(T) = Q(T, A, 8). It turns out that P, and @ are inti-
mately related. In faet it is a eonsequence of Theorem 2 (Section 2.2)
that if 4/(28) = K,, an integer, then Q(T, 4, 8) = P,(T, K,). This
result is valid for all values of the delay parameter T. From this result
it can be deduced that the optimal encoder for the analog source & =
[—A/2, A/2] is a “uniform” quantizer followed by an optimal ‘“‘digital”
encoder. This is the only known case for which analog-to-digital con-
version is known to be optimal for finite T for the transmission of analog
data from a memoryless source.

We now drop the assumption of 2 memoryless source. In fact we do
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not even assume that there is a probabilistic model for the source.
Instead of the expectation of the distortion, we adopt as our fidelity
criterion, the supremum, over all possible source output n-sequences x,
of the conditional expectation of the distortion given x. We call this
criterion the “guaranteed distortion”. Let d*(T) be the minimum
attainable guaranteed distortion for a system with delay parameter 7.
The Shannon Theory is not directly applicable in determining d*(T).
We do obtain results for the two interesting cases discussed below.

In the first, ¢ = {0, 1, --- , K — 1} and d(z, £) = 0 or 1, respectively,
when z = £ or z  £. For this case let d*(T) = P,(T, K). It is a conse-
quence of Theorem 3 (Section 2.3) that limity_, P,(T, K) = limity_,
P,(T, K), which is known from the Shannon Theory.

In the second case, X = [—A/2, A/2] and d(z, £) = 0 or 1, respect-
ively, when |z — £| < dor |z — £#| = 4. For this case, let d*(T') =
Q(T, A, 5). Theorem 4 (Section 2.3) relates P, and Q by

Q(T; A, 5) = P-(T: M))
where M is the unique integer satisfying (M — 1) = A/(28) < M.
Here too, we can deduce the optimality of analog-to-digital conversion.

Theorem 4 is generalized by Theorem 5 (Section 2.4) to apply to an
arbitrary set & with a distance-like measure defined on it (replacing

|z — 2 1).
In Section 2.5, we give some applications of the above results. In
particular we obtain some results for the distortion d(z, £) = |z — £ |".

In order to state our results completely and precisely, it is unfor-
tunately necessary to give a rather large collection of definitions and
to introduce a large number of symbols. In order to ease the reader’s
burden somewhat, we have included a glossary of symbols in the ap-
pendix.

II. STATEMENT OF THE PROBLEM AND PRINCIPAL RESULTS

In Section 2.1 we define a “‘channel” (and its “capacity’) in a very
general and abstract way. We do this because the nature of the channel
does not figure explicitly in our results (except for the channel capacity),
and we want our results to apply as broadly as possible. In Section 2.2
we describe the communication system which we shall consider, and
state our results for the case of a “memoryless” information source.
The remainder of the results follows in Sections 2.3-2.5.

2.1 Channel and Channel Capacity

A channel is defined as follows. For every T' > 0 we have a set W,
of ‘“allowable” inputs and a set 3, of possible outputs. Every T
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seconds some 0 & W 5 is transmitted through the channel, and the chan-
nel output z is a member of 3 . The output is related to the input we W,
by a probability measure u, on the set 3, . Thus given that we W, is
transmitted, the probability that z e B [where B is a (measurable) subset
of 37] is u,(B). For example W, and 3, may be the set of binary se-
quences of length [T]7T. The measure p, is then a discrete conditional
probability distribution. Another example is the case where W, and
3, are sets of real valued functions defined on the interval [0, T'], and
the members of W, have “energy’” not exceeding PT.

With T specified, a block code with parameter N is a set of N pairs
{(w; , By)}Y.,, where w; ¢ W; are called code words and the
collection of B; is a set of disjoint (measurable) subsets of 3, called
decoding sets. If code word w;(1 = ¢ £ N) is transmitted, the resulting
error probability is

N = Pr {z ¢ B; | w, is transmitted} = 1 — u,.(B.). (1)
The word error probability for the code is
A= max )\, . 2)
121N

Let M(T, N) be the smallest attainable word error probability for a
code with parameters T and N. The channel capacity C is defined as
the supremum of those numbers B = 0, for which

N, [6]) =0, as T — «.

Let us define the average word error probability by
- 1 &

Thus X is the resulting average error probability which results when
each of the N code words are equally likely to be transmitted. Let us
define A*(T, N) as the smallest attainable value of X for a code with
parameters T and N. Since X = ) for any code, it follows from the
above definition of channel capacity that for any R < C,

(T, [e""]) =0, as T — .
Further it is known that for a large class of channels including the mem-
oryless gaussian channel and diserete memoryless channels,'
(T, [e°]) =4, as T — . 4)
[It is also true that for many of these same channels if B > C,

t Throughout this paper we denote by [z]- and [z]* the largest integer < =z
and the smallest integer > =z respectively (0 < z < o).
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M (T, [e"7]) tends to 1 as T — =, but we do not need this fact here.]

Let us remark here that for a large class of channels (including “mem-
oryless” channels and “finite state channels”), the eapacity C is known
to be the supremum of a quantity called the “information”. In fact
this equivalence is the essence of the Fundamental Theorem of Informa-
tion Theory. It will not be necessary, however, to explore this equi-
valence further.

2.2 Memoryless Source and Communicalion With a Fidelity Criterion

Consider the communication system of Figure 1. The output of the
source is a sequence of random variables X, , X, , --- from an arbi-
trary subset & of Euclidean p-space. Assume that these random vari-
ables are statistically independent and identically distributed with
probability density function Pg(z), z £ €. If we allow impulses in the
density function, then the X, can be discrete random variables. Say
that the source outputs appear at a rate of ps per second. The encoder
waits T seconds (called the “delay’’) during which time n = psT sym-

bols, say X, , X», - -+, X, e X, have appeared at its input. (Assume that
psT is an integer.) Denote the T-second output of the source by the
random n-vector X = (X, , X, -+, X)) e X"

The channel is defined as above (Section 2.1), so that during the
T seconds which it takes for the n-vector X to appear, the channel can
process an input belonging to the channel input set W, . It is the task
of the encoder to assign to each possible source output n-vector X = x,
a channel input fz(x) ¢ Wr . The channel output is a member Z of the
channel output set 3, , and it is the task of the decoder to assign to
each possible Z = z an n-vector X = [,(z) ¢ X". Note that the source
and channel statistics define a joint probability density on the random
n-vectors X and X.

Now ideally we would like X = X. But this is most often not possible
due to imperfections (for example, noise) in the channel. Thus we define
a fidelity criterion which we use as a measure of the reliability of the
system. Suppose we are given a non-negative distortion function
d(z, £) defined on % X . Typical choices of the distortion function are
d(z, ) = |z — £|"(s > 0) when % is a subset of the reals (that is, the
dimensionality p = 1), or the “Hamming” distance

)
X X y4 X=fp(z
SOURCE ENCODER 'FE( ) CHANNEL DECODER ;—-—D(_)

Fig. 1 — Communication system.
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i@, 9) = du(z, ) = Jl"’ =4 )
1: x #= jr
where X is a discrete (that is, countable) set.
The distortion between the n-vectors, x = (z,, %, --- , z,) and

%= (ﬁlr:ﬁﬂs ,:ﬁ,,)is
d™(x, %) =0 2 d(r. , £).
1

Our system performance (fidelity) eriterion, which we seek to minimize,
is

d= Ed""(X, i))

where E denotes expectation (with respeet to the joint probability dis-
tribution of X and X). For a given delay 7T, which corresponds to
n = psT, let d*(T) denote the infimum (with respect to all encoder-
decoder pairs) of the attainable values of d (for given ps and source-
channel statistics). Although we usually do not know d*(T) exactly, we
do know its asymptotic behavior as T — «. We proceed as follows.

For 0 < 8 = w«, define 9(8) as the set of probability density func-
tions p(z, £) defined on X X X which satisfy

(?) [q plx, £) df = Ps(x), the source output probability density

function,
(@) [g [x d(z, £)p(z, £) dr dE < B.

The nformation corresponding to the density p(z, £) £ 9(8) is defined as

£)
I, #) = [ [ o, )1 @D g e
tpl, &)} = | | p(@, 2) log Pop® ™ (6)
where p,(£) = [« p(z, £) dx. It is easy to show that I = 0 with equality
if and only if p(z, £) = P,(x)p.(£). Finally define the equivalent rate
of the source
Rq@ = inf Ifp(x, £)}. @)
plz,£) eI (F)
R,.(8) is usually called the ‘‘rate-distortion funection”. Note that E..(8)
depends only on 8 and P,(z).
Let us now return to the quantity d*(7'). Shannon’s well known
theorems tell us the following.? For a given communication system
(as in Fig. 1),
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@) a*(T) = d,, forallT, ®
(@) d*(T) —»dy, as T— o,
where d, is the smallest solution of
peRe(d) = C,

and C is the capacity of the channel.

Some intuitive insight into the meaning of Shannon’s theorem can be
gained by thinking of p,R,,(8) as the equivalent rate in nats per second
of the source (when reproduced with distortion 8). It is reasonable
then to suppose that the minimum attainable distortion d, is that
distortion for which the source rate is just equal to the channel capacity
C.

There are two well-known cases for which R.,(8) is known explicitly.
The first is the case where ¢ = the reals, Ps(z) = (2r) "} exp (—2°/2¢%),
and d(z, £) = (x — £)° In this case, R.,(8) = % log ¢°/f°, so that d, =
o* exp (—2C/ps).

The second case (which is important in the sequel) is%¢ = {0,1,2, - - -,
K—1} (K =23,-), Ps(z) = 252} (1/K)8(z — k)[6(z) is the unit
impulse], and d(z, £) is given by equation (5). In other words, the source
output is a sequence of independent random variables, each equally
distributed on the K-ary alphabet {0, 1, --- , K — 1}. The quantity
d is the average fraction of symbols received in error, and is often called
the “error-rate”. In this case, we write d*(T) = P.(T, K), where the
dependence of P, on K as well as T is indicated expligitly. For this
case it is known that’

log K — h(8) — Blog (K — 1), B <—F
R..(8) = (9a)

0, 8=

where
h(B) = —Blogf — (1 —B)log (1 — ), 0= =1). (9b)

Shannon’s theorem, equation (8), tells us that

PG(TJ -K) _)'Y(Kr Ps C): T— 0, (10&)
where v(K, ps , C) is the smallest solution of
pRes(y) = C, (10b)

and C is the channel capacity. A graph of v(K, ps , C) versus C'/Sg for
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1.0

v(K,ps,C)

1 |
2.0 2.5 L 3.5 40 4.5

C/pg

Tig. 2 — (K, ps, C) versus C/p, (K-a parameter).

various values of K is given in Fig. 2. Notice that v(K, ps , C) decreases
from (K — 1)/K to zero as C/ps increases from zero to log K.

Let us also remark that the quantity P,(T, K) is related to M (T, M)
(the smallest attainable average word error probability). In faet it is
easy to show that

%X*(T, K" < PT, K) < \*(T, K") an
where n = pgT' (assumed to be an integer).

Now, in the general case [arbitrary Ps(x) and d(z, £)], it is usually
not possible to obtain a closed form expression for R.q(8). Theorem 1,
which is stated below, gives a useful bound on R..(8) for the case where
Ps(z) is a density and & is a bounded set. This theorem is an extension
of a result of Shannon.” The proof is given in Section 3.1.

Let & be the interval [—A4/2, A/2], where A(0 < A < =) is arbi-
trary. Let the source outputs X have density Ps(z), and let d(z, £) =
r(x — &), where r(u) satisfies

(@) r(w) = r(—wu),
(i) r(uw) = 0, with equality at u = 0, (12)
(i1z) r(u) is continuous at u = 0.
Then it can be shown (see Ref. 3, Appendix A) that for 0 < g =
1/A [22, r(u) du, there exists a unique Aq(8) which satisfies

A/2 As2
f r)e ™ P qu = g f TR By (13)
- —asz

a2
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Define the probability density gs(x) on & by

A2 -1
g,q(.l‘) — [-/‘_4/') G*Rntﬂ)r(r) d.’ﬂ] B—M(,ﬂ)r(:t), (143‘)
[note that [ r(x)gs(x) dv = B], and let
A/2
H,pB) = — gs(x) log gs(x) du, (14hb)

—A/2

be the corresponding “entropy”’.

Tor A = «, equation (13) has a solution in many cases. In particular,
when r(u) = | u |* (s > 0), equation (10) has a solution for 0 < 8 < .
Thus gs(x) and H,(8) are meaningful for 4 = « also.

We now state the lower bound on E.,(8) as Theorem 1.

Theorem 1: For the source defined above, for 0 < 8 < A7 [472, r(u) du,

Req(ﬁ) = Hs — H\(B), (153)
where
A/2
He = — f Pu(x) log Ps(z) da (15b)
—A/z

is the entropy of the source densily P s(x), and H,(B) 1s defined in equations
(13) and (14). Inequality (15a) also holds for A = o, when v(u) = |u |’
(s > 0).

Examples:

(i) Say & = the reals, and d(z, £) = r(x — £) = |2 — & [, where
s > 0 is arbitrary. Theorem 1 is applicable with A = . Solving equa-
tion (13), yields N,(8) = (s8) ' and

(s=1)/2

ga(@) = ——— < exp [— |« [*/(s8)],
)
so that
R.,B) =z Hs — I'Il(ﬁ); (1654)
where
1 QK‘TIG)B
H\@B) = _log | —F=— |, (16b)

and Hg is given by equation (15b).
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(47) Quadratic Distortion: Let & = the reals, and d(z, #) = (z — £)*.
Then from example (z), with s = 2,

Ren(ﬁ) = Hs — % 10g 2mef. (173.)

Further Shannon* has given the following upper bound to R..(8):
2
R.() < 3log, 8=, (17b)

where ® = [ 2°P5(z) dz. Note that when Ps(z) = (2r¢”) ™} exp (—2°/2),
the upper and lower bounds of inequalities (17) coincide for 8 =< o".
[Since R..(B) is non-increasing, R..(8) = 0 for 8 > ¢°.]

Another case of interest is ¢ = [—A4/2, A/2](A < ®), Pg(z) = A7,
and d(z, £) = (x — £)°. In this case Theorem 1 (applied for finite 4)
provides a lower bound on R,,(3) which is tighter than that of inequality
(172) and can be evaluated numerically. An upper bound can be found
by computing I[p.(z, £)], where po(z, £), a joint probability density
for X and X, is defined by the following: The variate X has density
Pg(z). The variate £ = a(X + ¥), where the Y is a Gaussian variate,
independent of X, with

EY =0 and EY® = gA*/(A® — 128),

and
a = (A* — 128)/A%

Note that E(X — X)* = 8. The information I[p,(z, £)] corresponding
to po(r, %) can also be evaluated numerically and is an upper bound to
R..(8). Figure 3 is a graph of these bounds on R,,(8), and also of dq,
the solution of psR.q(dy) = C.

(ti7) Sayx = [—A/2, A/2]. Let Pg(z) = A7 and d(z, £) = r(z — £)
where, in addition to satisfying conditions (12), r(u) satisfies

rfu) = r(w) if w=v (modA). (18)

[If, for example, A = 27 and X represents an angle, then equation (18)
must hold.] For r(u) satisfying condition (18), the bound (15a) on
R..(8) of Theorem 1 holds with equality, namely, R., = Hs — H,(8).
(Section 3.1)

(t) Threshold Distortion: Let & = [—4/2, A/2] and let d(z, £)
be the “threshold” distortion defined by

d(z, £) = di(z, £) = rs(z — £), (19a)
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o 0.4 0.8 1.2 1.6 2.0 2.4 2.8
C/pg, R(B)

Fig. 3— Bounds on g/A? versus Req(8) or dofA2 versus C/ps. (7) upper
bound; (%) — — — lower bound (Theorem 1); (&) — — — — — lower bound
(17a).
where

1 u| =8
riu) = f ! lulz s (19b)
0, |u| < 8.

In this case, the bound (15) of Theorem 1 is
R.(8) = Hs — h(B) — log 26 — Blog (4/26 — 1), (20)

where 2(8) is defined in equation (9b). There is a case where inequality
(20) is satisfied with equality, namely Pg(x) = A™' and A/(28) =

0, gz

K, =1,2, --- . For this case, we show in Section 3.1 that
[IogKn—h(ﬁ)—Blog(Ko—l), Déﬁéh'}(_l,
R..B) = - ’ (21)
] K, — 1

K,
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Notice the striking similarity of equations (21) and (9) for the discrete
K-ary source. We will have more to say about this later.

When A/(26) is not an integer, we show (in Section 3.1) the right
member of (21) is an upper bound to R.(3) with K, replaced by
[4/28]" = K. . Thus with inequality (20),

A
log [ﬁ] — h(B) — B log [% - 1] = R..(8)
SlogK. — k(@) —Blog (K. —1). (22

A Result for Finite T for the Threshold Distortion is as follows.
Tetax = [—A/2, A/2], Ps(x) = A7, and d(z, &) = d;(x, £), the thresh-
old distortion given in equations (19), as in example (i) above. In the
system of Fig. 1, let d*(T) = Q(T, A, §), where the dependence on A
and & is indicated explicitly. The results in example (i) [equation (21)]
and equation (10) imply that for A4/26 = K, , lims.,, Q(T, 4, §) =
limp., P.(T, Ky) = v(K,, ps, €). This correspondence between @ and
P, is extended to finite 7 in the Theorem 2 (proved in Section 3.2.).

Theorem 2: Let K, = [A/28]", K = [A/268]". Forall T,
P(T,K.) = (T, A, 8 = PT, K.). (23)

The quantities P, and Q are defined, of course, for the same channel and
source output rate ps .

A case of partieular interest is A/26 = K, , an integer, so that K, =
K_ = K, and Theorem 2 yields

P:(T7 K,) = Q(T: 4, 5); all T. (24)

For this case we deduce from equation (24) that (for all 7") the optimal
encoder for the analog source is a K -level “uniform” quantizer with
quantization levels [(2i — K, — 1)8]72, followed by an optimal ‘“‘digital”
encoder. This is the only known case for which analog-to-digital con-
version is known to be optimal for T < <« for the transmission of analog
data.

2.3 Case Where The Source Has No Statistics

Suppose that the source output is, as in Section 2.2, a sequence of
symbols from the source alphabet &, which appear at a rate of ps per
second. However, in this case, as distinet from above, we assume that
there is no known statistical model for the source. Say that, as in Sec-
tion 2.2, the encoder waits 7' seconds during which time n = pgT source
symbols x = (%, Za, -+, &,) & X" have appeared. Again, as above,
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the encoder output is fz(x) &€ W, , the channel output is Z ¢ 3, and the
decoder output is X = f,(Z) ¢ X". The encoder-decoder pair and the
channel statistics induce a probability density for X on &" which de-
pends on x (the source output). Denote this density by f(% | x). As-
suming, as in Section 2.3, that a non-negative distortion function
d(z, £) on ¢ X X is given, then the average distortion when the source
output is x is

1w = [ L5 ae, w i, (25)

where x = (v, , %2, -+ ,x,) and & = (£, ,4,, -+ -, £,). Since we cannot
take a meaningful statistical average over x, we adopt as our fidelity
criterion, the “guaranteed’” distortion
d = sup d(x). (26)
xeX"
Let d*(T) be the smallest attainable value of d for a given delay T
(which corresponds to n = psT').

For the special case where ¢ = {0, 1, --- , K — 1} and d(z, £) =
du(x, £) [given by equations (5)] let d*(T) = P,(T, K) where the de-
pendence on K is made explicit. Consider P,(T, K) (the average error-
rate in Section 2.2). Clearly,

P.T, K) z P.T, K).

The following theorem [taken together with equations (10)] shows that
as T — =, P, and P, are asymptotically equal. The proof is in Section
3.4.

Theorem 3: For the communication system described above with K-ary
source alphabel, source outpul rale ps , and channel capacity C,
limit P,(T', K) = y(K, ps , C), 27
T
where v(K, ps, C) s given by inequality (10b).

A second important special case is X = [—A/2, A/2], and d(z, ) =
ds(x, £), the threshold distortion given by equations (19). In this case
let d*(T) = Q(T, 8, A). The quantity @ can be related to P, , and
Theorem 4 (proved in Section 3.3) is analogous to Theorem 2, though
somewhat sharper.

Theorem 4: For 0 < 8 = A, let M (8) be the integer satisfying

A
M—-1= @?) < M. (28a)
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Then for all T,
Q(T, 4, 8) = P[T, M (38)]. (28b)

The quantities P, and Q are defined, of course, for the same channel
and source output rate pg .

In constrast to Theorem 2, this theorem asserts the equality of cor-
responding values of @ and P, for all values of A/(25). Also as in Theo-
rem 2, this theorem implies that the optimal encoder for the source
X = [—A/2, A/2], with d = d; [with a fidelity criterion as in equation
(26)] is a uniform quantizer [with M (§) levels] followed by an optimal
digital encoder (see part () of the proof of Theorem 4).

Theorems 3 and 4 can be combined to obtain the following.

Corollary: For 0 < & < A, let M(5) be as in Theorem 4. Then
hm Q(T: A: 6) = T[Af(a): Ps C]) (29)

T—e0
where v 1s given by tnequality (10b).
2.4 Generalization to Arbitrary Source Alphabets

In this section we consider the case where the source alphabet &
is an arbitrary space with an arbitrary metric or metric-like function
defined on it. We then give a generalization of Theorem 4. First we give
some preliminary definitions.

Let & be a set and let po(z, £) be real-valued function defined on
X X % with the properties

@) polz, 2) = po(£, z) (30a)
(77) po(z, £) = 0 with equality when z = . (30b)

If in addition py(z, £) satisfies
(@17) po(z, £) = polz, y) + 2o(y, £), (30c)

then py(x, £) is a metrie; but we will not require inequality (30c) to
hold. For z e X and A > 0, let 8,(A) = {£eX : po(z, £) < A} be the
(open) sphere of radius A about z.

A set A C « is called a “A-covering” (of &) if \U..4 S.(A) contains X,
and A is called a “A-packing” (of ) if S.(A) M 8S:(A) is empty for all
z, £e A,z # £ Let M(A) be the minimum number of points which can
constitute a A-covering of &, and let M (A) be the maximum number
of points which can constitute a A-packing. These quantities are related
by the following lemma (proved in Section 3.4).
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Lemma 1: Let n = sups,y,sex po(X, ¥)/[00(X, 2) + po(z, y)]. Then for A>0,
Mc(298) £ Mo (4). @31)

In particular, if p, is a metrie, v < 1. Inequality (31) is of course
meaningful only if » < .

Now consider the communication system discussed in Section 2.3
with an arbitrary source space *t. Let p, satisfy expressions (30a) and
(30b), and define the ‘“threshold” distortion d;(z, £) by

di(z, £) = {1: polz, £) = §, (32)
0, PD(IJ :f) < 8.

Let d be the guaranteed distortion defined by equation (26) with the
distortion d(z, £) = d;(x, #) [given by equation (32)]. Finally, let
G(T, 5) be the smallest attainable value of d for a system with delay 7.
(The dependence of @ on & is made explicit.) Of course G(T, &) also de-
pends on pg as well as the channel characteristics. The special case
treated in Section 2.3 is & = [—A/2, A/2], po(z, £) = |z — £]|. In
this case G(T, §) = Q(T, A, 5).

The following is a generalization of Theorem 4 and is proved in Sec-
tion 3.3.

Theorem 6: Let Mo(A) and Mp(A) be as defined above for the source
alphabet X [with a po(x, %)]. Then G(T, §) satisfies
P [T, Mp(3)] £ G(T, 5) £ PIT, M(3)], (33)
where P, is defined in Section 2.3. Note that P, and G are defined for the
same channel and source oulput rate ps .
Theorem 5 reduces to Theorem 4 on noting that fora = [—A4/2, A/2]
and po(z, £) = |2 — £,
Mp(8) = Mq(8) = M(3), (34)
where M (8) is defined by inequality (28a). Let us remark that although
Mp = M, the maximum é-packing is not in general identical to their

minimum §-covering. For example, when § = A/4, M(5) = 3, and the
maximum 8-packing is unique, namely

A A
{%E!OJ 2—}’

t To be precise, we must assume that the space & and the encoder and decoder
functions are measurable.
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which is not a é-covering. There are many é-coverings, for example

A A
{_E O3 }
2.5 Some Applications

2.5.1 Rate at Which Q(T, A, 8) Approaches its Limit

Consider again the source with & = [—A/2, 4/2], Ps(z) = A7,
and distortion d(z, #) = d,(z, £) [defined by expressions (19)]. Suppose
further that 4/(28) = K,, an integer and that the channel capacity
C = pslog K, . In this case v(K, , ps, C) = 0 [see expressions (9) and
(10)], so that from expressions (24) and (10a)

lim Q(T, A4, 8) = 0.
T—x
We will now obtain a lower bound on the rate at which this limit is
approached. From the first inequality in inequality (11), using n = psT,

P(T,K) = —A*(T T, (35)

Tor those channels for which expression (4) holds, the right member of
inequality of (35) ~ (2psT)". Combining expressions (24) and (35)
we have that

A, 4,8 2 5 1+ ED)), (36)

where £(T) — 0 as T — . Thus for the class of channels for which
expression (4) holds and these parameter values, Q(T, A, &), approaches
its limit no faster than 7 '. Determination of the similar bounds on the
rate of approach of @ to its limit for other parameters is an open question.

2.5.2 The sth-Mean Distortion

Consider the case where % = [—A/2, A/2], and the distor-
tion d(z, z) = |z — £|° (s > 0). When Pg(z) = A7", let the smallest
attainable average distortion d*(T) £ &(T). For the case of no source
statistics (as in Section 2.3), let the smallest attainable guaranteed
distortion d*(T) £ &(T). We establish some properties of & and &
below.

For any random variable ¥ (such that | ¥ | £ A), and any 4, ,
5,(0 < 5,5, < A),
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GPr{|Y|z6) SE|Y[2aPr||Y]| <5l
+ A'Pr{|Y |z &} (37
Tt follows from inequality (37) that for arbitrary 6, , 8, (0 < 6,, 8, = 4),
ST, A, 5) = &(T) £ 83[1 — QT, 4, 8)] + AQT, 4, 8),
(38a)
and

BQ(T, 4, 8) < &(T) = &1 — QT, 4, &)1+ A'Q(T, 4, 5), (38b)

where Q and ( are defined in Sections 2.2 and 2.3 respectively. Applica-
tions of Theorems 2 and 4 (and Q, § = 0) yields

SP(T,K.) =&(T) = & + A'P.(T,K.), (39a)
and
5P, M(8,)] £ &(T) = 6 + A'P,[T, M(5y)], (39hb)

where K. = [4/28,]", K_ = [4/28,]", and M (8) is defined by inequa.ljty
(28a). Thus & and & too are related to the digital error rates P, and I, .
Of course, 8, and 8, may be chosen to yield the tightest bounds.

Ezamples

() Since we know the asymptotic value of P, and P,as T — o,
we can apply inequalities (39) to obtain estimates of the limiting values
& = limit,_, &(7T) and & = limit,_.&(T). For example, when the
channel capacity C is large, setting 4/25, = exp [(C/ps)(1 + A)]
and A/28, = exp [(C/ps)(1 — ADI(A, , A, > 0), yields, after some
computation,

& = exp {—’f [+ a(cn} , (402)

& = exp {f:{i 1+ Eg(C)]} , (40b)

where £, , & — 0 as C — . Thus for large C, & and & decay roughly
exponentially in C.

Let us remark that parts of inequalities (40) are obtainable by other
means. Specifically, & = K,(s) exp [—sC/ps] follows from inequality
(16). Further, & < exp [—(sC/ps)(1 + £)] and & = exp [—(sC/ps)
(1 4 &)] ean be deduced from the work of Panter and Dite on quanti-
zation,® Finally the bound & = exp [—(sC/ps)(1 + £)] is new.
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(7%) In this example, we apply the first inequality of (3%a) to show the
possible gains (with the sth mean eriterion) obtainable by using coding
in a particular (though quite typical) case.

Suppose that the channel is the additive white Gaussian noise channel
with average power P, , one-sided spectral density N, , with no band-
width constraint.® To begin with, suppose 7' = 1/ps, so that n = 1
and there is no “coding”, that is, each T-second channel input depends
on exactly one source output. When the source is the K-ary digital source
(with equi-distributed symbols), it is known that the minimum attain-
able error rate is lower bounded by?!

! Kpr |}

where
) = @0 [ o a,

is the cumulative error function.

‘We now apply the lower bound of inequality (39a) together with in-
equality (41) to obtain a lower bound on &(7) when the channel
signal power P, made large, while 7 = 1/ps is held fixed. Setting
8; = P;', we obtain from inequalities (39a) and (41) and ®(x) ~
(2ra®) ™ exp (—a’/2) (as o — ), that (with 7 = p3! held fixed)

. a1 P,
e =e (L) zew{—50 n+aea) @
where £(P,) — 0 as P, — .,

Now suppose that for a given channel (and a given P,) we allow T
to become large. In other words, we permit “source coding” in blocks of
length n = psT. Sinece the channel capacity € = Po/N, , we have from
equation (40a) that

sP,
2NDPS

limit &(T) = & = exp {— 1+ Eq(Pu)]} ) (43)

T—00
where £,(P,) — 0 as Py — .
Now let # > 0 be arbitrary, and let P, be sufficiently large so that
for Py, = P, ,
[ &(Po) |, | E(Po) | < 6.
Then from inequality (42), with P, = P, , the best attainable mean sth

_ T This bound follows from Ref. 1 [equation (82)] when the signal energy nP
in that reference is replaced by PoT our signal energy, and M is replaced by K.
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error with no coding is bounded by

L1 P,
H (;) = exp [_QNO.OS 1+ 9)] (44)

The best attainable sth error with infinite delay T is from equation
(43) with P, = P, , bounded by

asen|-2lia-g) 5)

We conclude that coding with large delay offers a saving of at least a
factor of (2s) in power P, or rate pg (when P, = P,). This of course is
interesting when s > %. Similar results for s = 2 have been derived by
Ziv and Zakai.” This result can be generalized to arbitrary n (here we
studied » = 1) and arbitrary channels simply by using appropriate
bounds on P, (T, K).

II1. PROOFS OF THEOREMS
3.1 Proof of Theorem 1 and Related Examples

3.1.1 Proof of Theorem 1

Shannon [Ref., 2, pp. 155-156] has shown that for a difference dis-
tortion measure d(z, £) = r(z — £), that

Req(ﬁ) 2 Hs - ‘IJ(B); (46)
where H is given by equation (15b) and ®(8) is the maximum attain-

able entropy H {f(z)} for a probability density f(x) which satisfies

[ ir@}ﬂx} e < B, (47)

The entropy H{f(z)} is defined by
H@) = — [ 1) log o) da. (48)

A trivial modification of Shannon’s argument shows that when X =
[—A/2, A/2], inequality (46) remains valid if f(z) is further restricted
to satisfy

f@®) =0, |=z|> %- (49)

Now the density gs(z) [defined by expressions (13) and (14a)] satisfies
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conditions (47) and (49) and has entropy H,(8) [defined by equation
(14)]. We prove Theorem 1 by showing that if the density f(x) satisfies
conditions (47) and (49), then H{f(x)} £ H,(8).

Let us write gs(z) = Be™ where A = A(8) and where

Arz =1
—Ao
B — f e (Brr(x) d.’C .
—A/2

Then

A/2
— [ ) 1og gu(o) d

o
=
)
=
I

A/z2

—log B + X f r(x)gs(x) de = —log B + M3.

—A/2

Since f(x) satisfies condition (47),
As2

H.(8) = —log B + ) f @) da

v

—f f(x) log Be ™™ da = —f J(x) log galx) da.

Thus

Hifa) — 0@ < - [ @) log (o) do + [ 1) tog gs(a) d

A 5@ [gﬁg] 1=
=), @l ey <Lﬂf("') f@ ~1je=1-1=0

where the second inequality follows from log u = w — 1. Theorem 1
follows.

Note that Theorem 1 will hold for A = =« as long as we can find
gs(x). Examination of the derivation which establishes the existence of
gs(z) (Ref. 3, Appendix A) shows that Theorem 1 is valid in particular
for A = » and r(z) = s> 0.

3.1.2 Determination of R., (8) tn Example (iit)
Fore = [—A/2, A/2), Ps(z) = A7, and d(z, £) = r(x — £), where
r(u) satisfies conditions (12); Hs = log 4. Theorem 1 implies
R (B) =z log A — H\(B). (50)

We now show that if, in addition, r(u) satisfies equation (18), then
inequality (50) is satisfied with equality. Let X and X be random varia-
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bles such that the density for X is Pg(x) = A7 (x| £ 4/2), and X =
X + Y where the random variable Y is independent of X and has density
gs(y) = Be ™" [defined by equations (13) and (14a)]. The information
of p(x, £), the joint density for X, X, is

A/2
Ip(x, &)} = Hip.(£)} — » Py(x)H{p(E | 2)} dx,
where p,(#) is the density for X, p(£ | 2) is the conditional density for
X given that X = =, and H{ } is the entropy defined in equation (48).
Now p(z, £) = Ps(x)p(£ | ) = A7'Be™ ¥, so that

A/2 T+ A/2

po(®) = A7'B e dy = AT'B e ™ du.

—A/2 i—A/2

when # = 0 this becomes, letting ¥ = w — A and using equation (18)

A/2 F+A/2
'pg(.ﬁ) 4’1_1_8 [ e—?\urfu) dﬂ _|_ A'lﬁle G—Aur(u) {iu
vE—A/2 A/2

42 i-As2
= A7'B f e ™™ du + AT'B e ™ dy.

iP—A/2 =472

Hence, since [ gg(x) = 1,
A/2
pu(d) = A™'B [ e quy = A7
Y —4/2

For # < 0, a similar proof yields p.(£) = A™". Thus H {p.(£)} = log A.
Further p(# | ) = ga(# — ), and a similar use of equation (18) yields
Hi{p(# | )} = H.(B), independent of x. Thus we conclude that
I{p(z, £)} = log A — H,(8). Since p(x, £) e M(B), this and inequality
(50) imply R.,(8) = log A — H,(B).

3.1.3 Proof for Kxample (iv)

We first verify equation (21) for the case A/(28) = K, , an integer.
That R (8) is greater than or equal to the right member of equation
(21) follows from inequality (20) (since Hs = log A) and from E.,(8)
= 0. To show that R,,(8) is less than or equal to the right member of
expression (21) we produce a density po(x, £) for which I{p,(z, %)}
equals the right member of equation (21). But first we digress to define
“entropy”’ for a discrete random variable.

Consider a discrete probability density f(z) = Zi a; 8(x — x;). Then
the ‘“diserete entropy of f(z) is defined by

Hplf(x)} = — Z a; log a; . (51)
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Now, say that p(z, £) is the probability density for two random vari-
ables X, X, such that X takes values at a countable number of points.
Then the marginal density for X, denoted p,(£) and the conditional
density for X given X = z [denoted p(# | )] are discrete densities. It is
easy to show that the information can be written

Iip@, 8) = Holps®) — [ p@Holpald |9} dz, (52

where p,(z) is the marginal density for X.

Return now to Example (). Let 0 < 8 £ (K, — 1)/K,, and let
po(z, £) be the density for X, X, where X has density Ps(z) = A~ and
X has conditional density po(£ | ) given as follows. Partition the
interval [—A/2, A/2] into K, subintervals {I;}5°™* of width 23. Let =,
be the midpoint of I; ¢ = 0,1, 2, --- , K, — 1). Then for z & I,

" B A
po@ @) = (1 = B) 8¢ — =) + 7 — 15 ; 8(& — z,).

In other words, X is an imperfectly quantized version of X. With proba-
bility (1 — ), X is the midpoint of the subinterval in which X lies, and
with probability 8, X is uniformly distributed among the remaining
(Ko, — 1) midpoints. Note that Pg(z) and p,(£ | z) together determine
po(z, £), and that po(z, £) e M(B).

Further, by symmetry, X is uniformly distributed on the K, mid-
points, so that

Hp{po:(£)} = log K,

where pos(£) is the marginal density for X [corresponding to p,(z, £)].
Also

Hp{po(2| )} = h(B) + Blog (Ko — 1),
independent of x. Thus equation (52) yields
I{po(z, £)} = log K, — h(B) — Blog (K, — 1),

the right member of expression (21). This establishes equation (21) for
0 <8 = (K, — 1)/K,. Since B, [(K, — 1)/K,] = 0 and R,(8) is non-
increasing, we have R.(8) = 0 for 8 = (K, — 1)/K,, establishing
expression (21).

It remains to verify the upper bound of expressions (22). But this
follows immediately on noting that for fixed A and 8, B.,(8) is a decreas-
ing function of 8. Thus decreasing & to &' = A/2[A/23]" results in an
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increase in R,,(8). Since A/(24’) is an integer, we can apply expression
(21) to obtain the upper bound of expression (22).

3.2 Proof of Theorem 2

Theorem 2 relates the attainable distortions for a digital source and
an analog source when connected to a given channel. The proof is in
two parts [corresponding to the two inequalities in expression (23)],
the second of which uses a bounding technique introduced by Ziv and
Zakai.”

In part (i) we are given an encoder and decoder for the digital source
(with appropriate parameters), which when connected to the channel
as in Fig. 1 results in an average Hamming distortion d = dy . We show
how to quantize the outputs of the analog source (with appropriate
parameters) to essentially simulate the digital source. When this
quantizer is connected to the digital encoder, we show that we attain
an average distortion for the analog source d; < dgy. This leads us
directly to the second inequality of expression (23).

In part (1) we establish the first inequality of expression (23) in an
essentially dual way. We begin by assuming the existence of an analog
encoder and decoder. We then show how to modulate the outputs of
the digital source to virtually simulate the analog source. Unf ortunately,
this is not as easy as the quantization in part (), and we have to make
use of an “averaging”’ argument in the course of the proof.

(¢) Let us denote by 8, , the analog source whose output is a sequence
X,, X,, -+ of independent random variables, each uniformly dis-
tributed on the source space X, = [—A/2, A/2]. The random variables
appear at a rate of ps per second. For this source we use the distortion
d(z, £) = dy(z, £) defined by equations (19). Assume first that 4/(26) =
K, an integer, and consider the following (uniform) quantizer. Partition
the interval [—A4/2, A/2] into K, subintervals {I,}5*™" of width (2)
where

I, = (e, €, i=20,1,---,K, — 1, (53a)

and
e = (26)[(1’ - %)] , 1=20,1,--- , K, . (53b)

To be precise, the first interval I, should be closed on the left. The quan-
tizer ¢ is defined by

glx) =1, if zel; (—% <z= 2é) (54)
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Let us now consider the digital source 8, whose output is a sequence
8., 8., --- of independent discrete random variables, each uniformly
distributed on the Kq-ary set ¢, = {0, 1, -+, K, — 1}. These random
variables also appear at ps per second. (Note that we use S, instead of
X, as in Seetion II to distinguish the outputs of 8, from those of 8, .)
Say that the distortion d = dj as defined in equation (5).

Suppose that 8, can be connected with delay T to a channel as in
Fig. 1 with (digital) encoder f§” and decoder {3, and average distortion
dy . Wenow show how to connect the “analog” source §, to the
channel [with the help of f§” and f§”] to attain an average distortion
d; < dy . Consider the system in Fig. 4. In T seconds the output of
the analog source is an n-vector (n = psT)X = (X,, --- , X,). The
“quantizer” output is the n-vector S = (S,, Sz, -+-, 8,), where S, =
q(X,) (k = 1,2, --- , n). Note that the S, are independent and uniformly
distributed on {0, 1, --- , K, — 1}, as are the outputs of the digital
source 8, . The digital encoder and decoder f§’ and f};’ are as given
above, and the output of the latter is the K,-ary veetor § =
(S,, ---, 8,). Thus

Ed(")(S, S) = (Z}; .
The “converter” output is the n-vector X = (X ., X, -+, X,) where
X, = @28, — K, + 1)é.

In other words if S; = ¢, then X, is the midpoint (e; + e:,.)/2 of the
7th subinterval. Disregarding the case when X, is equal to one of the
endpoints e, of the subintervals, (an event with zero probability), it is
clear that | X, — X, | = sif and only if S, = S, (k = 1,2, --- , n).
Thus

d; = BEd™ (X, X) = Ea(S,8) = dy.
It follows that

P,(T A) : (55)

Q(T, A: 5) 1'2—5

1A

when A4/(26) is an integer. The second inequality of expression (23)

DIGITAL DIGITAL | & &
ANALOG | X | quan- | S | eNcoder || cpannel l—{ENCODER| S | con- | X
d TIZER 1d) f.(¢|] VERTER
fe D

Fig. 4 — An analog communication scheme,
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follows on noting that Q(T, 4, ) is a nonincreasing function of 6. Thus
decreasing & to ' = A/2K . does not result in a decrease in Q(7', 4, 5).
Since A/(26') is an integer, we can apply inequality (55) to obtain the
second inequality of expression (23). This completes part (7).

(i) Let us suppose that the analog source 8, defined in part (i) is
connected with delay T to a channel as in TFig. 1. The T-second source
output is the n-veetor X = (X, , X,, ---, X,) and the decoder output
is the n-vector X = (X,, X., -+, X.). Say we attain an average dis-
tortion

d; = Ed" (X, X).

Letting £[d{" (X, X) | X = x] be the conditional expectation of (X, X)
given X = x, we can write

d; = f Eld" | X = x] i dx. (56)
[—A/2, 472" Ve

Suppose that (4/25) = K, , an integer. Let us partition the interval
[—A4/2, A/2] into K, subintervals of width 26 as in equations (53).
Let & be the set of left end-points of these subintervals, that is,

&= e (87)

Now consider the n-cube [— A /2, A/2]". Note that the random n-vector
X is uniformly distributed on this cube. The partition of the interval
[—A/2, A/2] defines a partition of the n-cube into K} subcubes, each
the product of n subintervals. Let the members of €" be denoted by the
n-vectors §;,j = 1, --- , K, and let C; be the corresponding subcube.
(That is, C; is the product of the subintervals whose left end-points are
the coordinates of £; .) Then clearly,

A A" R,
[—3 SN 2L
- - i=1
where 2 denotes disjoint union. Thus we can rewrite equation (56) as

Kng,
d; = 2 [ %E‘[dé’” | X = x] dx
i=1 Y05 4

Kn

< I 1 (n) -
= — — o Bldi" | X = § de, :
2 K e @y ELOT IR = 8 A e 08)
where the second equality follows from the change of variable of integra-
tion to « = x — ¥, , and the fact that A = 26K, .

Some insight into what we have done may be gained by considering
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the special case where K, = 2 and n = 2. In this case the n-cube
[—A/2, A/2]" is a square, and there are K* = 2° = 4 members of &"
denoted &, , £, &, and £, . (See Fig. 5.) The subeubes are C, , C; , Cs,
and C, as indicated.

Let us consider now the digital source $; defined in part (¢) whose
output is the sequence S, , S, , - - - . We would like to transmit the out-
puts of §; through a channel (as in Fig. 1) with delay T, so that the
source output must be an n-vector (n = psT)S, and the decoder output
an n-vector S. The fidelity criterion is

de = EdP (S, §).

Now suppose that we are given an encoder-decoder, {5, {5, for the

analog source 8, [for which A/(28) = K,], connected with delay T, to
a given channel. Say this encoder-decoder attains an average distortion
d; . We show that there exists an encoder-decoder for the Kg-ary
digital source 8, , connected with delay T, to the same channel such that
the average distortion dy < d;. From this we deduce immediately
that for A/(28) = K,,

P(T, Ko) = Q(T, 4, 9). (59)

The digital encoder is given schematically in Fig. 6a. The analog en-
coder which we are given is 1’ (x), x e [—A/2, A/2]", and is realized in
the right box of Fig. 6a. The function of the “modulator” is to assign to
each n-vector §e {0, 1, --- , Ky — 1}", a member of [-A4/2, A/2]". This
is done as follows. Let & be the set defined by equation (57). For s e
{0,1,2, --- , K, — 1}, let

26 28
i
I Cz Ca 268
3 & A
Io Ci Ca 26
£
! ID Ed Il
A

Fig. 5 — A digital encoder.
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s as)ra [ ame | 29 -1 sV s)ra]

MODULATOR fg(a)
(a)
ANALOG &_cl@) AR (<) PRRNSY
=fp (2 =Ty (Z)=g:1(X)
z DECODER X=fp~(z) QUANTIZER o (Z)=d
£l
B b
e —— g A
source| S | mop- X=9(s)+‘1{ ANALOG || ANALOG | X | quan-| 8
54 ULATCR T EncopeR [ CHANNEL = pECODER TIZER
i — il
(c)

Tig. 6 — (a) Digital to analog encoder. (b) Analog to digital decoder. (c) Digital

communication scheme.
00 = @5 - 5]

be the sth member of & Fors = (8,,8, -+, 8,)¢e {0, 1, ---, Ky — 1},
let

9("’ (S) = [9(31); 9(82)1 ) Q’(Sﬂ)]
When the input to the modulator is s, its output is
o+ g(n)(s),

where @ = (ay, ag, - , a,) € [0, 28]" is a fixed vector. Thus the digital
encoder is

©() = 19l + g G

The digital decoder is given schematically in Fig. 6b. The left box is
the analog decoder f3” which we are given. Its output % is a real n-

vector. The right box is a quantizer. When its inputis & = (£,, -+, £.),
its output is g, (%) = 8 = (§,, --- , &), where §,(k = 1,2, --- ,n)isa
member of {0, 1, --- , K, — 1} which minimizes | g.(§) + ar — £ |.

When the digital source S, is connected to the channel with this en-
coder-decoder pair, the result is schematized in Fig. 6c. (Upper case
X’s and 8’s are used to signify random. variables.) The portion of the
system in the dotted lines is precisely the analog encoder-channel-
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decoder which would produce an average distortion d; given by equa-
tion (56), 7f the analog input, X, where uniformly distributed on the
n-cube [— A /2, A/2]". But this is not the case here. In fact, X takes only
one of K7 possible values. However, the quantity £[d{”(X, X) | X = x|
is exactly the same in the system of Fig. 6¢ as in equation (56), forx =
9™ (s) + e(se {0, -+, Ky — 1}7). )

Let us write an expression for the average distortion dy for the
digital source. Note that S, # S, only if |X, — [g(Se) + ] | = .
Thus

dg(s,8) = di"[g™ () + o, X,
and

d,l-,r = Ed”(s, S)

IA

1 -
2 7 BldP (X, K) [ X = ¢™(s) + o, (60)
s 0

where ), is the sum over the K} equally-likely values of s. Let us now
average the right member of expression (60) over all « in [0, 25]", with
« assumed to be uniformly distributed. That average is

. 1 N .
fm 251m (‘)—g)" Z K; Eld:,X, X) | X = 9( )(S) + «f.

If we note that the set {¢™ (s)} are in one-to-one correspondence with
the K7 members &; of &", this quantity may be written as

%—l-f L BldX, ) | X = £ + o de
S Ko o 28)° 750 ! '

which equals d; by equation (58). Since there must be at least one
value of @ for which the right member of expression (60) is as small
as the average, we have proved inequality (59).

The first inequality of expression (23) follows from inequality (59)
on noting as in part () that Q(T, A, §) is a decreasing function of 4.

3.3 Proof of Theorems 4 and 5

Since Theorem 5 includes Theorem 4 as a special case we need only
give a proof of Theorem 5. Our task is further simplified since the basic
idea of the proof of Theorem 5 is the same as in Theorem 2 (Section 3.2).
Here too we break the proof into two parts. In part (Z) we assume that
we are given an encoder-decoder for the digital source and deduce the
existence of an encoder-decoder for the general source (which plays the
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part of the analog source in Theorem 2). In part (i) we do the opposite.
However we do not have the complications here which necessitated an
averaging argument in Section 3.2.

(i) We prove here that G(T, 8) < P.[T, M (5)], the second inequality
of expression (33). The proof parallels that of part (7) in Section 3.2.
Instead of the analog source space X, we have here a general space .
The distortion is ds(z, £) with | @ — £ | replaced by po(z, £).

To transmit the source outputs which belong to & we use the system
in Fig. 4. The digital encoder-decoder is for a Kg-ary source where
K, = Mc(5). We assume that it attains a guaranteed distortion dy .
The quantizer is defined as follows. Let {8.}5°~" be a minimum é-cover-
ing of &. For z ¢ X, let g(x) be the smallest 7(0 = ¢ = K, — 1) such that

xe Sp,(8). Then if x = (2,, 2, -+, 2,) & X" is the source output, the
quantizer output is s = ¢"(x) = [g(z1), ¢(x), -+, g(x.)]. The output
of the digital decoderisS = (S:, 8., -, S,) and the converter output
isX = (X, - , X.), where X, = B, when S, = 7. Clearly, if S, = S,

then po(X; , X;) < 6. Thus for any source output x,

Ja(x) = 31![9'(”)(3}] =
so that the overall guaranteed distortion d,
follows.

(i7) We prove here that PT, Mp(5)] = G(T, 8), the first inequality
of expression (33). As in part (7), the proof of part (:?) parallels that in
Section 3.2. Again &, is replaced by & and | x — & | by po(x, £).

::Q-m

d, , from which part (i)

IIA

As in Section 3.2, we assume that we are given an encoder-decoder
for the general source with guaranteed distortion d; . Weset K, = Mp(5)
and use the system of Iig. 6 to transmit the outputs of the Ko-ary digital
source. The modulator is defined as follows. Let [8,}%2;" be a minimum

s-packing of &. If source outputiss = (s,, 82, -+, 5,), then the modula-
tor output is g™ (s) = (8,,,8.., -, B..). The clutput‘of t}}e decodeg is
% = (X,, -+, X,), and the quantizer output isS = (S,, 8, -+ -, S,

where S, = 7 when X, e Ss,(5). If X, ¢ S5,(8) foralli (0 =7 = K, — 1),
then S, = 0.

Clearly, if p, (X, , X.) < 6, then S, = S, . Thus for any source output
s, the conditional expectation

du(s) = Jﬁlgm}(s)] =

d;
Thus the overall guaranteed distortion is dy < d;s , completing the proof
of part (i) and the theorem.
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3.4 Proofs on Packing and Covering

In this section we give a proof of Theorem 3, the main part of which
is a lemma on covering of the K-ary n-cube. We also prove Lemma 1
relating packing and covering in Section 2.4.

3.4.1 Proof of Theorem 3
We first establish the following lemma.
Lemma 2: Let (0 < 0 < (K — 1)/K) be arbitrary, and let r satisfy
R..(8) <r <logK,

where R,,(\) 1s the equivalent rate for the K-ary source given by expressions
(9). Using the terminology of Section 2.4, letx = {0,1, --- , K — 1}»
(the K-ary n-cube) and py(x, ) = dP(x, %). Then for n sufficiently large,
there exists a 6-covering of % with M = ™" points.

Proof: Let {x:}} be a set of K-ary n-vectors. Let F(x, , Xy, - - , Xz)
be the number of members % of & such that d)’(x;, ;) = 8 for all
1=1,2,---,M.If{ F = 0, then {x,})" is a 8-covering of . We can write
F(xl y " :XM) = Zq)(‘i:xl y T 7T JXM):'
Rel
where
if dM(x,,% = | = P
B % e X) = [1if df’(x;, %) =z 0, all i=1,2, .M,
10 otherwise.

Now consider an experiment in which M = e™ n-vectors {X;} are

chosen at random from & independently with identical (uniform) dis-
tribution

Pr {X; =x} = K™
Then F(X, , X, , --- , Xy) is random variable with expectation
EF = Y E3x, X, ,X., -+, Xa),

®eX

where, as indicated, E®is computed with % held fixed. Now for a given %,
E®x, X, , - ,Xy) = Pr{® =1}

= PI‘ ﬁ {dg‘)(x) Xl) % 9|l

i=1

= [Pr {di" %, X)) = 6}]",
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where the last equality follows from the independence and identical
distribution of the random vectors {X,}. Letting a, = 2 oc;com (7;)
(K — 1)’K™" be the probability that d,(%, X;) < 6n, we have
Ed(#% X, , -, Xy) = (1 —a)" £ ™,
independent of x. Thus
EF = Me™"™,

Now it is well known (see for example, Ref. 8, p. 173) that for 0 <
< (K—1)/K,asn — =,

a, = e
Thus since M = 2™ and r > R..(8),

E(F) § ﬁfe—n"M — ern exp {_e[r—Req(ﬂ)]n+o{nl} __}O’ as M — ©.

—nReq(8)+a(n)

Now, there must be at least one particular set {x;}}* such that
Fx,%;, -+, Xy) = EF.

Thus if we choose n large enough so that E(F) < 1, F(x;, -+ Xx) = 0
(since F' is an integer valued function). Thus {x;}}' is the required
covering.

The proof of Theorem 3 now follows the standard proof of a source-
channel coding theorem, with Lemma 2 playing the role of the source
coding theorem. (See Ref. 2.) Roughly speaking the proof is as follows.
When y(K, ps, ) = (K — 1)/K, the entire theorem is trivial, since
we can attain a guaranteed distortion of (K — 1)/K without even using
the channel by simply letting the decoder outputs take the wvalue
1(0 = ¢+ = K — 1) with probability 1/K. Thus assume that 0 = v <
(K — 1)/K.

The channel can transmit ¢*” (where B < C, the channel capacity)
in 7" seconds with arbitrarily high reliability (see Section 2.1). By the
definition of v = (K, pg , C) [expression (10b)],

Re(v) = C/ps . (61)

Let € > 0 be arbitrary. In Lemma 2, let r = C/ps — €, , where ¢; > 0
will be chosen below. Then approximate the T-second source output
(a Kq,-ary n-vector, n = pgT) by a (covering) set with e™ = ¢*s” mem-
bers. Since rps < C we can transmit these n-vectors through the channel
with arbitrarily high reliability. Further, with ¢ > 0 arbitrary, and if

r > Ry + ¢, (62)
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we have from Lemma 2 that the error in making the approximation
will always be less than or equal to (y + ¢) for T sufficiently large. In
fact, if we set

fl = Rer|(7) - ch(’y + 5) > 0

[since R(y) as defined in equation (9) is strictly decreasing for v <
(K — 1)/K], then [using inequality (61)]

r= = C R+ Ry + )
ps ps 2

= Req(v + 5) > Ry + ¢)

and condition (62) is satisfied.
We conclude that for T sufficiently large, we can make

dp S v + ¢

for arbitrary ¢ > 0. Thus
limit P,(T, K) £ v + e—y, as e—0,

T—o0
which is Theorem 3.

3.4.2 Proof of Lemma 1

We say that A € & is a “maximal A-packing” if A is a A-packing,
and if for all v ¢ A, the union {v} \J 4 is not a A-packing. We establish
Lemma 1 by showing that every maximal A-packing is a (294)-cover-
ing. Let A be a maximal A-packing. If A is not a (2nA)-covering, then
there exists a v, € % such that po(ve, u) > 294, for all v & 4. From con-
dition (30b), v, § A. We claim that {»} \J 4 is a A-packing, con-
tradicting the maximality of A. If w ¢ S,,(A), then for all u e A (using
the definition of 7)

oot , ) = nlpa(ve , w) + po(w, w)],
so that

Pn(w:u)zw_Pu(Un;'w)>'2nTA'“A:A-

Thus w ¢ S.(A) and {v,} \J A is a A-packing, establishing the lemma.
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List of Symbols

X
Py(x)
Ps
€T

d”(:‘nl i) =

d'x, %) =
d -
d*(T)

d;(x, £) =
d(x)

d

d*(T)
Q(T, A, b)
Q(T, 5, 4)
P (T, K)

'Y(I{r Ps C) =
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the source output space

the source probability density function
source output rate (symbols per second)
(x; £ X) the 7th output of the source
(Ty, @2y v+ - ) 8 X"

set of “allowable” channel inputs

the set of all channel outputs

the coding delay

psT

the encoding function, fz(x) € Wr

the decoding function, fp(z) £ <"

the decoded n-vector, £ = fp(z) ¢ X"
number of code words in a code

1/T log N, the rate of a code

the word probability of error

smallest attainable word error probability for a code
with parameters N and T

average probability of error

the distortion function

0, x =

1, r # T

1/n Y %, dlxg , ix)
Ed™ (x, %)
the smallest attainable d for a given delay T'

Jl e — 2] <6

10 |o — &= 8

the expectation of d"(x, %) given x

SUDge d(X)

the smallest attainable value of d for a given delay T
d*(T) for d;(z, £) and v e [—A4/2, A/2]

d*(T) for dy(z, #) and x e [—A/2, A/2]

the minimum attainable per symbol error rate for an
equiprobable K-ary memoryless source

limy_, P.(T, K)
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¢

the channel capacity

P(T,K) the minimum attainable guaranteed per symbol error rate

for a K-ary source

G(T, ?) generalization of @, defined in Section 2.4
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