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Upper bounds on error probability are derived for data transmission
systems which are subjected to gaussian noise and to the removal of the
low-frequency components of the signal. This error probability can be quite
low for random data, even though the eye pattern is closed. Both standard
format and partial response signaling are considered, as are binary and
multilevel alphabets. Numerical resulls are given for a high-pass filler
containing a single pole and for a cascade of several such identical filters.

I. INTRODUCTION

It is frequently desirable, or unavoidable, that the low-frequency
components of a data signal be eliminated. This may occur through
the use of capacitor or transformer coupling in the terminal equip-
ment or in the baseband transmission facilities. Another instance
results from the necessity of removing low-frequency baseband com-
ponents before modulation in order to provide a spectral guard band
in the vicinity of the carrier frequency.

Since de is usually completely attenuated, no linear operation can
correct for low-frequency removal. One commonly used approach
uses nonlinear feedback to restore the low-frequency components.
Another solution to this problem involves de-free signal formats.* *

We evaluate the penalty resulting from the removal of low-fre-
quency components from a standard format data signal (Nyquist I
shaping) and a partial response signaling format (multilevel exten-
sion of duobinary with precoding.)* Clearly, in both of these cases,
the degradation is most severe when the transmitted data sequence
contains long strings of identical digits. In fact, when the system
bandwidth is less than the signaling rate, which is usual in data
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communication systems, the received signal will be zero. This follows
from the fact that for a periodic input impulse train the lowest fre-
quency components are at dc and the signaling frequency, both of
which are filtered out. However, the degradation of a random signal
can be quite small when the cutoff frequency of the offending high
pass filter is far below the signaling rate.

We consider binary and multilevel data-transmission systems with
signaling formats as above, degraded by a single-pole high-pass filter
or a cascade of such filters. The systems are evaluated for error proba-
bility in the presence of additive gaussian noise. A previously derived
error probability bound® is used, which takes the form of a gaussian
distribution of the signal to noise ratio, in which the larger intersymbol
interference components subtract from the signal amplitude and the
smaller ones add to the noise power.® In general, the optimum splitting
of intersymbol interference terms between signal amplitude and noise
power cannot be determined analytically. We show that for inter-
symbol interference components, related by a single exponential damp-
ing factor, an optimum subdivision can be explicitly specified. Where
the eye is open, the error probability bound is given directly in terms
of the eye opening to rms noise ratio.

We also discuss the refinements of the generalized bound in the
case of interysmbol interference from a single exponential signal tail,
and then apply the results to Nyquist I shaped and partial response
signaling formats respectively. Single poles and a cascade of identical
poles are considered, and numerical results are given for practical
data system parameters.

II. DERIVATION OF A SIMPLIFIED ERROR PROBABILITY BOUND FOR SINGLE
EXPONENTIAL INTERSYMBOL INTERFEREN CE

Reference 5 gives an upper bound for the probability of error in
the reception of a random digital message perturbed by gaussian
noise and intersymbol interference. This gives
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where

N is the number of levels of the input random message.

o> is the variance of the additive noise.

{(?) is the signaling waveform.

1—1, is the signaling rate.

f, = {| f(kT) | for standard format signaling
, =
[ fl(k — H)T]| for N level partial response signaling with

precoding*
and
2N — 1) o standard format signaling
4 = N
2 p—
%1—) for N level partial response signaling with

precoding

We notice that the applicability of the error probability bound to
partial response signaling formats was not discussed in the original
paper but is presented here as a further extension of the result.’
The sets k ¢ K and k ¢ K include all members except & = 0. It is
also shown in Ref. 5 that
f { > fm (2)
{eK m§K
Thus, if the signal sample set {f.} excluding & = 0 is rearranged in
order of decreasing magnitude to form a set {g:}, then the sums in
equation (1) may be replaced by

Z e = E Jx
keK k=1 (3)

2

kg K k=M+1

I
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e

For an arbitrary signaling waveform, f(¢), the optimum M [in the sense
of minimizing the right side of equation (1)] must be determined by a
trial comparison method as decribed in Ref. 5.

*In the partial response case, fi must be replaced by fi—fo in both numerator
and denominator summations of equation (1) since only the unintentional inter-
symbol interference should be included there.
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For an exponential signal tail,
fo = e, 0<r<l; k=23 (4)

Thus, since f(t) is already monotonically decreasing for all { = T,
the ordered sets {f,} and {g.} are identical in this case.

Z f.t fl[]- r ]
i 1—7r 5)
o0 2 fz 2M

E=M+1 fe = ?‘

To minimize the right side of equation (1), it is sufficient to maximize
=W -1 Emz R el

Q= 2 P2 .
2[’" 2 ] 2[”:'* N }

Differentiating @ with respect to M gives

T

= ff)( Y o
Ve = )

z=7" (==

(6)

where

A

and

O =Dsa-a <. (®)

Three separate cases must now be examined.

@ If fo — (N — 1)f,/Q — r) <0, then the eye is closed. From
equation (7) it follows that dQ/dM < 0 for 0 < z = 1. Therefore
the positive maximum of € occurs at the boundary x =1, so the optimum
value of M is M,,, = 0.
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(#2) If
2 —
: a(N 1) >1,
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it is implicit that f, — (N — 1)f,/(1 — 7) > 0, and the eyeis open. In

this case it is again true that dQ/dM < 0 for 0 < z = 1,and M,,, = 0.
(i) If

CEas e e
3 L+ 1-=1

it is again implicit that f, — (N — 1)f,/(1 — 7) > 0, and the eye is open.
In this case a positive maximum for @ occurs in the interval 0 < z < 1.
Solving for the point where dQ/dA = 0, we obtain

Mot - auN — 1) .
(50 - =)

Notice that condition (8) is automatically satisfied.

Since the solution for M, as given by equation (9) is not necessarily
integer, the error probability bound as given by equation (1) must be
modified in terms of the actual choice of an integer /. We will arbitrarily
use the next higher integer. Letting [M,,.] denote the next higher integer

to M,,. and
- 3( + 1)(1 — ")
AV S VAV

equation (6) may be expressed as:

[S,, _ Im“(l _ r[antl)]z
2[on + Tnur™ " /2)

0<

(9)

Q= (10)

where

oiz .
Ima:(SrA - Imu:) !
b = plMostI=Mope r<b<l1.

rl”nptl = b

(11)

Inix = (N — 1)f,/(1 = r) denotes the maximum intersymbol inter-
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ference and S, = f, denotes the signal amplitude. Combining equations
(10) and (11),

{S _ [Imnx(sp - Imu) —_ bgizjl}z

2Q j— ? Sr - Imﬂx — [(SD — Imux)’ + ba:zlz .
o + bPoaz E:[(S, — Imnx)z + b2crﬁz]
" (S:z - Imax)z

Sincer < b < 1,

[(S, — Imax) + boazl” (S,, — Im,)z (S,, - I,,,,,)*
20> oal(Sy — Lae)” + bonz] T +be> +rz.
In terms of the error probability,

P, < Aexp[—@Q] (12)
| B oz
2

For the situations where M,,, = 0 (that is, cases 7 and 77) equation (1)
becomes

n

P<Aexp{—- S, 1K
) . 1N+1)(1—r),]
2["”"‘3(1\?—1 1o ) To

ITIT. ERROR PROBABILITY PERFORMANCE WITH A STANDARD FORMAT INPUT
DATA SIGNAL

(13)

Figure 1 is a block diagram of the system considered. Although a
baseband system is shown, a system using linear modulation and de-
modulation can readily be fit to this model. P(w) is the basic shaping
filter and it is assumed that the receiver is matched to this shaping
filter. For simplicity, P(w) is chosen to be real. The added noise is
white gaussian. H(w) is the narrow high-pass causal filter whose effects
are considered. Since H(w) is narrow, it makes little difference whether
the noise is added ahead of, behind, or somewhere in the middle of
this filter.

The source generates symbols randomly from an N-ary alphabet
at a rate of 1/T symbols per second. The transmitted signal may be
represented by

-]

s(t) = 2 ap(t — kT)

k=—c

where the a;’s are independent, zero-mean random variables which take
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one of N equally spaced values with equal probability, and p(f) is
the impulse response of P(w).

It is assumed that there is no distortion other than H(w) and that
Q(w) = P*(w) is a Nyquist shaped filter of bandwidth less than 1/T,
so that

q(kT) = 0, all k= 0. (14)
If we let P(0) = 1, then
1
1) = 5 [ Q@) do = T/P. (15)
The power of the transmitted signal is
_ (@) f _ o
S = oot | PP) de = 73 (16)

where ¢ is the variance of a; .
The signal presented to the sampler may be written in the form

r(t) = 2. alqlt — kT) + e(t — KT)] + n(f)
k=—c0
where e(t) is the error signal caused by the low frequency removal,
H(w). From equations (14) and (15),

1
r(mT) = af..[f + 6(0)} + 2 aellm — B)T] 4+ n(mT).  (17)
k#m

The effect of the low frequency removal is both the reduction of the
signal amplitude [since e(0) is negative] and, more important, the in-
troduction of intersymbol interference.

The Fourier transform of the error signal is

E(w) = Q(w)[H(w) — 1] (18)
so that

C)

e(t) = f_‘ q(t — x)h_,(z) dx

where h_,(f) is the inverse Fourier transform of [H(w) — 1].

In all cases of interest, H(w) — 1 is much narrower than Q(w). The
time function h_,(t) therefore is virtually constant over a time interval
equal to the effective duration of ¢(f). We may therefore approximate
g(t) by a delta function, whose area is unity since @(0) = 1.

o

ot) = f_ o — D@ da.
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NOISE t=kT
SOURCE TRANSMIT HIGH — PASS RECEIVE
{aK} = FILTER [—= FILTER FILTER |—= SAMPLE —=
P(w) H(w) P(w)

Fig. 1 —System block diagram.

If H(w) is causal (which is the case we are interested in}), then

0 t<0
e(l) = 13h_,(0Y) =10 (19)
LL_l(t) t>0

where e(f) is the negative of the impulse response of a narrow causal
low-pass filter. The generalized bound given in equation (1) can be
applied to this case as:

1 2
SN — JP+m—w—nEm@l

P¢ < ANN 1) exp 1— T N2 — 1 ke K . (20)
1 2[«& + 2 e:J J

3 ix

The quantity o> is the noise power at the sampler input and is also
equal to the noise power at the receiver input, measured in a bandwidth
equal to half the signaling rate. For the N-level system,

2 — N2 - 1.
[ 3
In terms of the signal power, equation (16), equation (20) may be
rewritten as

L2 -1 [1+60) - N -1 2 |l

N &Py~ = (21)
20“2[T§' + E gf}

kyK

Pl

where g(t) is the normalized error signal
9(0) = Te(t) o)
G(w) = T[Hw) — 1].

To apply the simplified bounds derived in equations (12) and (13), we
must first speeify the high pass filter, H (w).
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3.1 Single Pole Filter

A very common type of low frequency removal results from the
use of a single capacitor or transformer. The transfer funetion is

ST

19 =531

where 7 is the time constant of the low frequency removal circuit. Its
corner frequency is then 1/(277). From equation (22), the normalized
error signal is

T

G(s) = T 1 (23)

and
o) = —= oxp (~;‘)u(t)

where u(2) is the unit step function. Introducing the normalized quantity

a= 2—; , (24)
then
0 E<o0
g(kT) = 1—% k= 0. (25)
—a exp (—ka), E>0
Letting
Tfy = 1+ g(0)
Tf = | ¢ |, k=1,2,--- (26)
and
r=e°,
the normalized eye opening becomes
ry, - & =DTh 1—_1)1fo1 15— —(Nlilgf’f_u <0. 27)

Thus, M,,. = 0, and equation (13) becomes
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AN — 1) XJ (1 - g) 1

P, < S5 ]— : - (28)
T
‘LS exp (2a) — 1
When @ < 1, we may approximate equation (28) by
P« Do . (29)
20”(5 + 9)
a S 2

The error bounds for binary, 4-level and 8-level systems are plotted
in Figs. 2, 3, and 4, respectively, as a function of the signal to noise
ratio, S/¢? , and the normalized reciprocal time constant, a. The dashed
curves are the exact values for no low-frequency removal.

: _2N -1 {;} _2N =1 ()
(that is, P, = i erfe To = N erfe o

where erfc (z) = @%@f et dt)-

It is seen that, in the region of 10-* error probability, these exact
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Fig. 2— Upper bound of the error probability of a binary standard format
system with a single-pole high-pass filter.
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Fig. 3—Upper bound of the error probability of a 4-level standard format
system with a single-pole high-pass filter.
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Fig. 4 — Upper bound of the error probability of an 8-level standard format
system with a single-pole nigh-pass filter.
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curves differ from the corresponding bounds by approximately a
factor of 10 in error probability, or 1 decibel in signal to noise ratio.
In the binary case, it is seen that a simple high-pass filter with a
time constant of 50 bit intervals introduces a degradation of only
about 1 decibel in the region of 10-% error probability. On the other
hand, a time constant of 10 bit intervals leads to totally unacceptable
performance. For the same amount of degradation and the same
symbol rate, the 4- and 8-level systems must have high-pass time
constants respectively 5 and 21 times that of the binary system.

3.2 Cascaded Single Pole Filters

In many cases, several single-pole high-pass filters are contained
in the transmission path of the system. If n identical networks are
used, then the overall high-pass transfer function is

st \"
mo = () (30
In many cases, a transfer function containing a large number of real
poles of different values can be approximated by a transfer function

of the form of equation (30).°
The Laplace transform of the error signal is

Gale) = T[(STS-:‘ 1)" - 1]'

To find g, (t), we first evaluate

pon (o] - £ 1 L E ()2
on (it - £ e 120

T (e (Y
g"(”_—re"p( r)kz.;k!(k+1)( ) t>0.

At the sampling times,

0, m < 0
g.(mT) = | =", m=0 (3D
—a exp (—ma) YE( " )(—ma)" m >0
Z\k+1/ kO

where again a = T/
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This function may also be expressed in terms of the generalized
Laguerre polynomial,”
N) (—2)*

(-1 _ l S S
L) =0 2 (L *k — 1)

ga(mT) = — exp (—ma)Ly" (ma), m > 0.

n
m

It has been found empirically in several numerical examples that
the best error probability bound was obtained when all intersymbol
interference terms were added to the noise (that is, My, = 0). The
resultant bound is therefore

N =1 ] L-3) o
N 2”5[%: + 3 (% exp (—mﬁ)Linl'(’n“))ﬂ]J' |

m=1

P, <

An example of practical interest is the evaluation of the perform-
ance of a baseband binary 50,000 bits per second data set without
dc restoration, operating over a transmission facility using trans-
former coupled repeaters. The transformers each have a corner fre-
quency of 15 Hz, and therefore a time constant of

1
T = o X 15 10.6 msec.
so that
2% 107° _
= 001068 = 0.00188.

The results of Fig. 2 indicates a degradation of only about 0.1
decibel when a single transformer is introduced. However, several
transformers are usually present in actual systems. The error signals,
g.(t), and error probability bounds have been computed for both 14
and 28 transformers. The error signals for these two cases are shown
in Fig. 5. Remember that one millisecond is equal to 50 bit intervals.

Figure 6 shows the error probability bounds for these situations;
28 transformers lead to unacceptable performance while 14 transformers
introduce a degradation of 3 decibels at 107" error rate. It is significant
that n transformers produce more degradation than a single transformer
with a corner frequency n times greater. Also, under the assumptions
of this paper, all of the above results apply independently of the roll-off
characteristic of Q(w), as long-as it is a member of the Nyquist I class.
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Fig. 5 — Errors signal for a cascade of transformers with 15 Hz corner fre-
quencies.
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Fig. 6 — Upper bound of the error probability of a 50,000 bit/sec binary sys-
tem with a cascade of transformers with 15 Hz corner frequencies.
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IV. ERROR PROBABILITY PERFORMANCE WITH AN N-LEVEL EXTENSION OF
A DUOBINARY INPUT DATA SIGNAL

The system model considered here is identical to Fig. 1 except
that (i) a precoder which converts the input N-level sequence {a;}
to another N-level sequence {b;} according to the relation

bﬂ = [an;l - bn—l](mOd N) (34)

is inserted between the source and the transmitting filter, P(w), and
(7%) a decoder follows the sampler which decodes the received levels
modulo N to recover the original symbols a, . The important point for
our application is that by including precoding at the transmitter, no
knowledge of any symbol or sample other than the received sample,
7% , 18 involved in deciding a, .

Instead of the Nyquist shaping characteristic, the cosine filter is
used for the composite signal shaping characteristic, Q(w) = P*(w),
that is,

) = cosGo, o= (35)

=1b!

The system impulse response is given hy

2 [ eoswy1 ]
a0 =7 [1 =l

so its values at the sampling instant are

1
. o7 k=01
gtk — HT] = (36)
0 E#=0,1.
The power of the transmitted signal is
- <b§)nv /T B E
S= o |, Qe de = ope (87)

where ¢} is the variance of b, . If the input symbols a, are equally likely
and independent, then so are the precoded symbols b, . Thus, ¢f = o .
The sampler input waveform, r(t), may be expressed as

E

r(t) = kZ bilg(t — kT) + e(t — kT)] + n(t) (38)

=—w

where once again e(f) is the degradation caused by the low frequency
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removal, H(w). Substituting equation (36) in equation (38),
Hm = D) = ra = (b + b s + boe 1)
2 m m m—1 2T m' 2
+ 2 bielim — k — HT] +nllm — PT].  (39)

k=m
If H(w) is eausal as before, then e(— T'/2) will be zero. Making the same

assumptions as in the standard signal format case, we arrive at an ex-
pression for error probability analogous to equation (21)

EE\I B-&-v2lel

N? 942
2] 25+ at] |

keK

P, < 2( (40)

Here we consider only the single pole high-pass filter for H(w). The re-
sult for a caseade of n identical poles follows immediately.

4.1 Single Pole Filter
We start by examining the normalized eye. Letting

T = 1/2 (41)
Tfh = | g |; k=1,2,.--
and r = ¢
N -Df 1 _ (N = Dae
Tt 1=, — 2 [ —¢° < 0. (42)
Thus, M,,. = 0 and equation (13) becomes for a << 1
P, < 2( ) exp J 1/4 1 (43)

A=)

Figures 7, 8, and 9 illustrate the behavior of the error probability
bounds versus S/¢2 for binary, 4-level and 8-level partial response
signals with the normalized reciprocal time constant, a, as a parameter.
The dotted curves give the exact values of P, for the casea = 0

o, £, = o) e (429

We once again observe that in the neighborhood of 107 error proba-
bility, the exact curves for a = 0 differ from the corresponding bounds
by approximately a factor of 10 in error probability, or 1 decibel in
signal to noise ratio.
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Fig. 7 — Upper bound of the error probability of a binary partial response sys-
tem with a single-pole high-pass filter.
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Fig. 8— Upper bound of the error probability of a 4-level partial response
system with a single-pole high-pass filter.
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Fig. 9— Upper bound of the error probability of an 8-level partial response
system with a single-pole high-pass filter.

However, to achieve a S/N degradation of only 1 decibel in the
region of 105 error probability with a simple high-pass filter, the
time constant must be about four times that needed for the standard
format signal. The above statement is true for the binary, 4-level,
and 8-level cases, This more stringent requirement on the location
of the low frequency cutoff may be viewed as a tradeoff for the saving
in bandwidth associated with partial response signaling.

V. CONCLUSIONS

Although a high-pass filter will always close the eye pattern of
i a standard format data signal (Nyquist I shaping) or #i a multi-
level partial response signal (duobinary format), the error probability
may still be quite low for random data provided that the high-pass
filter is sufficiently narrow. This effect permits the use of capacitor or
transformer coupling in the data terminals or transmission facilities.
Multilevel systems require a longer time constant for these networks
than do binary systems for the same performance,

Upper bounds of error probability have been given for binary,
4-level, and 8-level systems with gaussian noise and a single-pole
high-pass filter (exponential time response). A binary system with
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a standard format input signal is degraded by only about 1 decibel
by a simple high-pass filter whose time constant is 50 bit intervals.
Four-level and 8-level systems require time constants of 250 and
1000 baud intervals, respectively, for the same performance.

A data system whose input is a binary, 4-level, or 8-level partial
response signal must have a low frequency cutoff which is two octaves
lower in order to achieve the same performance as a standard format
system.

The error signal for a multiple-order pole is an exponential multi-
plied by a generalized Laguerre polynomial. The performance of a
system with an nth order pole high-pass filter is worse than one with
a single pole n times as large.
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