Uniform Approximation of Linear Systems®

By HARRY HEFFES and PHILIP E. SARACHIK
(Manuscript received August 6, 1968)

A method for reducing the complexity of the class of linear, time-varying,
dynamic control systems is developed where the approach taken is that of
uniform approximation (that is, modeling for a region of initial conditions).
The objective of the modeling procedure is to choose a linear time-thvariant
system of given dimension, that minimizes a “aporst-case” type of error
criterion. Some results from the theory of widths of sets in Banach space
are used to obtain bounds on the optimal approzimation error as a function
of the dimension of the approximating system. The use of these bounds in
choosing the order of the approximation is discussed. An example llustrates
the use of the derived resulls.

I. INTRODUCTION

In the analysis and design of control systems it is often useful to
have low order constant coefficient models for the system. The prob-
lem of modeling linear systems by lower order linear systems has
received considerable attention, but these analyses have usually been
restricted to the modeling of constant coefficient systems.

References 1 through 5 contain various approaches to the system
approximation problem; however, these analyses are generally re-
stricted to the modeling of constant coefficient systems or systems
which are forced with a given input or initial condition.

The control system analyst often finds himself dealing with non-
stationary systems, but little work has been done in the area of
optimally modeling this class of systems. The emphasis here is on
modeling the class of linear, homogeneous time-varying systems with
constant coefficient models. Reference 6 considers approximation of
forced systems. Rather than design the model requiring solutions of
the actual and approximate systems be “close” for a prescribed initial

* From a dissertation written as part of the requirements for a Ph.D. degree,
New York University, 1968.
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condition, the approach taken here is that of uniform approximation.
Initial conditions are assumed to lie in some set in Euclidean space
and a “worst-case” type of error criterion is defined. This eliminates
tuning the model to specific conditions which may not be met when
using the model. The material presented here thus generalizes previous
work in that it extends the class of systems considered to time-varying
systems and generalizes the error criterion to handle the more realistic
problem of modeling for regions of initial conditions.

The problem is of importance, for example, in trajectory analysis
where the linear time-varying system is obtained by linearizing a set
of nonlinear equations about a nominal trajectory. In this case the
time-varying nature of the system is described by partial derivatives
evaluated along the nominal trajectory. Solutions to the resulting
equations require simulation for each set of initial conditions. Using
a constant coefficient model eliminates the need for repeated simula-
tion.

The above example illustrates the use of a simplified model in
analysis. The designer is interested in reducing the complexity of
high-order nonstationary control system plants since this provides
a means for designing simpler controllers based upon the model de-
seription. The results presented here not only allow one to obtain
stationary models but simultaneously offer the opportunity to obtain
lower order models of the original system.

II. PROBLEM DEFINITION AND FORMULATION

The system we are considering is deseribed by the linear, time-
varying, homogeneous vector differential equation

&(f) = A@D=z@) (1)
with the outputs given by

y(t) = Ct)a(t) (2
where

z(t) is an n-vector

A(t) is an n X n matrix whose elements are bounded and piecewise
continuous on [¢, , 1.

C(f) is an m X n matrix whose elements are bounded and piecewise
continuous on [t, , ¢
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It is desired to obtain a constant coefficient system of kth order*
(k = m)

() = Ax() (3)

such that the first m components of the state vector £(t) closely approxi-
mate the components of y(f) over the finite time interval [¢, , t;]. Writing

g(t) = CzQ) 4)
with
(:1 = [Ime 0]

the approximation problem can be viewed as choosing the elements of
the k X k matrix A such that §(t) approximates y(t) over [t , ¢].

Since, in general, it is not known at the time of modeling what initial
conditions will exist in the system, it is desirable to have the approxi-
mating system depend on a prescribed range of initial conditions rather
than being tuned to any specific initial condition. The initial conditions
are considered to lie in a closed, bounded convex subset of Euelidean
n-space. That is,

I(to) e kR CE,,

and the performance eriterion is given by

J(D = maxmin [ - WO - Dd @F

zotR ForEr v it

where

[t. , t;] is bounded
y(t) is the solution of (1) and (2) with z(t,) = =,
§(t) is the solution of (3) and (4) with 2(t,) = &,
W (t) is positive definite and bounded for all ¢ € [¢, , ¢].

The above performance criterion corresponds to the worst case error
in the approximation, corresponding to a given model, when the initial
condition on the model, Z(t,), is chosen optimally in terms of the initial
conditions on the actual system. The modeling objective is to choose
A to minimize J,(A)(that is, minimize the maximum approximation
€rror).

The approximation problem will be cast into a Hilbert space setting

* Notice that % is not restricted from above. It may be desirable to have k
> n if the original system is time-varying.
+ In all that follows the prime denotes transpose.
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which will permit the use of many of the general results to be presented
in the next section. Vector spaces of solutions of the original system
equations and any member of the class of approximate system equations
are established. These spaces are then imbedded into an encompassing
Hilbert space. It then is shown that the problem of finding an optimal
approximation can be viewed as a problem of finding the ““best’’ subspace
(of a given form) of the Hilbert space to use in approximating solutions
of the original system. Writing the output vector of the original system
in terms of the transition matrix leads to

y(®) = COPE, L)z (t.) (6)

where the transition matrix ®(2, ¢,) satisfies
4 a1, 1) = AWa(, 1) @

with initial conditions
o,,t,) = 1. (8)

Now if the original system is completely observable®® on the finite
interval [t, , ¢;] the columns of the m X n matrix C(#)®(Z, t,) are linearly
independent as vector-valued time functions. That is,

CH®(, t.)x(t) = 0 forall telt, ]

implies z(t,) = 0. For an observable system, the initial state can be
determined uniquely from knowledge of the output. Since z({,) = 0 =
y(t) = 0 and, from observability, y(f) = 0 = z({,) = 0 the linear in-
dependence of the columns of C(£)®(¢, {,) follows.

Let 9y be the linear space spanned by the n columns of C(f)®(t, t.).
The solutions of the original system lie in <§ , which is of dimension » for
an observable system. Notice that the number of components (m) in
the vector y and the dimension of the space Y need not be the same. If
the system is not completely observable on [, , ¢,] the dimension of Y is
less than n.

The solutions to equations (3) and (4) can be written as

g(t) = Ce™~*1(2,) 9)
where

= t!

and
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_(i Ae-to) __ A(t=io)

2’ = Ae . (10)
It is thus seen that solutions §(t) lje in the vector space spanned by the
k columns of the m X k matrix Ce®'~**). Denote this vector space as
%, . If 4 is such that the approximate system is observable then Y, is
of dimension % and the & columns of Ce®“~'* form a basis

{g.;i=1,---,k]

for the k-dimensional vector space Y, of approximating solutions. These
basis elements can be written as

g‘(t) = C'e‘l“_‘“)K.- (11)

g = {g0); et , 1]} (12)

where K is the sth column of the k X k identity matrix. If the approxi-
mation is not observable the dimension of % is less than k. In any case
vector spaces Y, with basis elements of the form (11) characterize the
approximating systems where A is a k X k real matrix. Defining

D = {Ys; &1s 0 1 8 Span‘yk} (13)

where g, (f) is given by equation (11) and 4 is any real constant k X k
matrix casts the problem into finding an element of . minimizing J, .

The problem of finding an optimal approximation has been cast into
the problem of finding an extremal space Y% & D, of approximating
solutions. A Hilbert space 3¢ containing Y and all members of D, will
now be constructed. _

Recall that the elements of 4 and Y, are real, vector-valued, time
functions having m components. Thus each element of the Hilbert
space 3¢ to be constructed will have m components. The inner produet in
3¢ is defined by

o) = [ sOWOuo a (14)

where W (t) is a real symmetric m X m matrix which is positive definite
fort ¢ [¢, , t,;] and whose elements are bounded for ¢ [to , t/]- Notice that
this is the same matrix appearing in the performance criterion given
by equation (5). The norm of an element in 3¢ is given by

yll = &, h (15)
The Hilbert space 3¢ is defined as
3¢ = {y; y has m components, || ¥ || < =}
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where || ¥ || is given by (15) and the inner product given by (14).
Since
tf — t,_-, < o0

and the elements of A() and C'(f) are bounded it follows that solutions
of equations (1) and (2) are bounded thus yielding

Y C 3.
Since elements of 9, are bounded over the finite interval [¢, , ¢]
Y, C 3.

That %, and ‘g are subspaces of 3C follows from the faect that any finite-
dimensional linear set in a normed space is closed'’.

The set of funetions to be approximated are solutions to the original
system equations with the initial conditions z(¢,) satisfying

z(t.) e B C E,

where R is a closed, bounded convex subset of Euclidean n-space.
Writing

F = {y;y@) = CO2Q, t.)z(t.), z(t.) e B} (16)
gives
JJ(4) = max min ly =71 17)

where the modeling objective is to find
d; £ inf maxmin ||y — ¥ []*. (18)
YipeDe yeF  Feli
Before proceding to solve the formulated approximation problem,
some results from the theory of widths in Banach space are outlined.
Lower bounds on the optimal performance are found as a function of
the dimension of the approximating system.

III. WIDTHS OF SETS IN BANACH SPACE AND LOWER BOUNDS*

Classically, approximation theory was concerned with the follow-
ing problem. Given a function to approximate and a set of approxi-
mating functions (sinusoids, exponentials, and polynomials, for ex-
ample) find that linear combination of approximating funetions which

* Ref. 7 contains an excellent treatment of widths of sets in Banach space.



MODELING CONTROL SYSTEMS 215

minimizes some distance function. Notice that here the approximat-
ing functions are given as part of the problem statement.

Rather than approximate a single function, the problem under con-
sideration is to approximate the class of functions & given by (16).
For a given class of functions ¥ it is desired to obtain a “best” set of
approximating functions rather than to choose the set arbitrarily. A
measure of comparison is introduced which enables one to evaluate the
efficiency of different sets of approximating functions. The following
definitions serve to illustrate these ideas.

Let ® be a Banach space containing a set of functions ¥ to be approxi-
mated by elements of an n-dimensional subspace, X, , of ®. It is desired
to find the “best” n-dimensional subspace, or equivalently the “best”
set of approximating functions to use in approximating elements of &.

ForagivenfeFand X, C ®

inf [|f—z |

zeXn
represents how well one can do in approximating a given f with elements
of X, . Taking the supremum of the above quantity over all elements
in ¥ leads to the following definition.

Definition 1: The deviation of § from X, is given by
Ex,(§) = sup inf |[f — = ||.

feF zeXp
The deviation represents the worst case approximation error over the
class § when using elements of X, . Notice that the deviation serves as
a performance measure of X, . Taking the infimum of the deviation
over all n-dimensional subspaces of ® leads to the following definition.

Definition 2: The nth width of F is given by
d.(F) = inf Ey(9)

Xnc@®

inf sup inf || f— 2z ||.

Xnc® feF zeXa
Some of the elementary results following from the above definitions are
(#) The monotonicity of the width:
do(F) = d,(F) 2 do(F) =
and
(1) The nested property: If §, C F, C - - then
do(F1) £ da(F) = -+
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Notice that
Ji(d) = E3,(5). (19)
In defining d? the infimum of the square of the deviation was taken
over the j-dimensional (j < k) subspaces in D, whereas in defining d,
the infimum was taken over all k-dimensional subspaces of ®. Using the
monotonicity property of the width, with ¢ serving as the required
Banach space, gives
J(4) z di(3) (20)
for any k X k matrix A.
Definition 3: U, is a closed ball of radius r m X, if
U, ={zeX,;|lz]| =7}
The following theorem, by Gohberg and Krein, is proved in Ref. 7
and will be found useful.

Theorem: If X,., 18 an (n + 1)-dimensional subspace of a Banach
space & and if U,., is the closed ball of radius r in X, then d,(Un.y) = 1.
This theorem and the nested property of widths can be used to obtain
lower bounds on d,(F). This lower bound can be obtained by eonstructing
a ball in an (n + 1)-dimensional subspace and choosing r such that
U,., C 7. Using the nested property then leads to
r = do(Uns1) = du(S). (21)
Since
d = da (22)
the radius of ball also serves as a lower bound on (J AL

Lemma 1: Let ®(, t,) and C(t) be the transition matriz and outpul
matriz, respectively, of the original system (1) and (2). Assume this system
to be completely observable on [1, , {;]. Let W(t) satisfy the previously staled
conditions. Then the matriz

M = j“; d'(t, t)C'(HW(E)C(D)B(t, t,) dt @23)

18 posilive definite.
Proof: Consider the quadratic form z;Mz, = || y [|* = 0 where
z(t,) = o, thatis, y(t) = CERE, t.)x, .
Now ||y||* =0=y({) =0onlt, ]
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Since the system is observable y = 0 => z, = 0. Thus M is positive
definite.
The following theorem provides the lower bound on the performance.

Theorem 1: Let R be the closed region of tnitial conditions on the
original system and let x(t,) = O be an inlterior point of R. Assume the
system to be completely observable on [t, , t,]. Denote the boundary of R by
AR and let

o’ & min 2/(t,)x(t,). (24)

z(to)edR
Let the eigenvalues of the positive definite matrizx M be ordered \,(M) =
MN(M) = -+ = M\(M). Then the performance, for any k-dimensional

approximating system, satisfies J,(A) = pNesi(M) for k < n.
Proof: Let
F = {y; y(®) = COB(Q, t.)z(t), x(t.) e RY.

A k 4 1 dimensional ball will now be constructed which is a subset of
&. Consider the &k + 1 dimensional ball of radius r

Ueir = {y; y@®) = COB(, t)z(t.), () & Evy C By, ||y £ 1

E.., and r will be chosen such that U,,, C &. Since M is real and sym-
metric it can be diagonalized with an orthogonal matrix T. Thus M =
T'AT and

[y ]? = [Tx)A[Tz(t)] = #Az

where
T =17"
N 0
A=| -
0 A
and
z = Tz(t,).
Defining
Epoy = {2); [Tx(t): =0, i=k+2 - ,n}
and

= Pz?\Hl(M)
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gives
Uer = {y; () = C(O(L, t)a(lo),
1y I = p'Nna(dD),  [Ta(t,)]; =
=k+2, - ,n}.
Thus fory e Uy,

|| y ||2 = x’(tn)Mx(tn) E 2 ?\ P Aki-l .

Since
2, =0 i=k+2 - ,n
and
A
—>1 for 1=k+1
Aka1
we have

It then follows, from the definition of p* and the fact that zero is an
interior point of R, that z, ¢ R and therefore y ¢ &. Thus U,,, C &
and the desired result

Jud) 2 di(®) 2 PMn(M)  kE<n

follows.

Remarks: Recalling that the eigenvalues of M are ordered, we
notice that the lower bound is a decreasing function of the dimension
of the approximating system. This result can be used to determine
what order aproximating system (at least) need be considered to
achieve a given performance. We emphasize that the bound depends
on the original system and is obtainable prior to the modelling proce-
dure. From an engineering viewpoint, if one has an approximating
system whose performance is “close” to the bound it may not be
necessary to seek the minor improvement. Notice that the only prop-
erty of R appearing in the lower bound is p and no attempt was made
to take the orientation of the set into account. The bound will there-
fore be least conservative when R is a hypersphere of radius p.
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1IV. EVALUATING THE PERFORMANCE FUNCTION

In this section the problem of finding the performance (or equi-
valently the deviation) of a given approximating system is considered.
The optimal choice of initial conditions on the approximating system
is obtained using some elementary Hilbert space concepts and it is
shown that

inf ||y —§ [

eV
is a positive semidefinite quadratic form in z(#,). Next, properties of
convex functions are used to evaluate the performance for different
classes of regions of initial conditions; namely, for ellipsoids and con-
vex polyhedra. The Powell algorithm for minimizing a function of
several variables, without calculating derivatives, is then outlined
and applied to the system approximation problem.

The problem of finding
= inf |[y —F I (25)

ey
is equivalent to finding the best choice of initial conditions on a given
approximating system characterized by Y. & Di. It can be shown''
that there exists a unique §* ¢ Y, (v* is called the projection of y in the
space ;) such that

&=y =7 IF=llyll" = llg*I" (26)
Furthermore, since g, , g2, * * - » & spans Y, , ¥* has the representation
k
j* = 2 gt
where

F(Y: gl)
G, -, 8T =| - 27

_(Y; gk)
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and G is the Grammian of {g, ;7 = 1, --- , k}, that is,

[G(glr"'lgk)]i.f=(g::g!) 2:.7=131k
Any solution to (27) results in an optimum choice of initial conditions
on the approximate system. If the g,’s are linearly independent (this
corresponds to the system being observable) the Grammian is invertible
and #* is unique. Thus

¥, 81
) = 6@, )| (28)
(v, &)
where G' is the pseudoinverse'® of G.
The Grammian is given by
G, -, 8) = f”e“'““"’c""W(t)C’e"“"“ dt (29)
and ’
(v, 8:) = KiFz(t.) (30)
where F is given by
F= f‘” eV EW (OO D(L, L) dL. (31)

Using (30) in (28) gives
*(@,) = GFz(t,). (32)
Thus the optimal initial condition on the approximating system

is obtained by linearly transforming the actual initial condition with
the (k¥ X n) matrix G'F. Using the orthogonality property (26) yields

ly =7 IIF = |y " — 2 () G*(t.).

Letting
M= j: ! (L, t,)C'(W(HC()B(L, t,) di (33)
and using (32) and the symmetry of G (and thus G%) gives
Iy — 5*I* = 2’(t)(M — F'G'F)x(t,). (34)
In summary,
o' = inf ||y — ¥ |[* = «/(t) Da(t) (35)

Feli
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with
D =M — F'G'F. (36)

Thus, finding the optimal initial condition on the approximating sys-
tems leads to the positive semidefinite quadratic form (35) for the
approximation error. The above represents the first step in evaluating
the performance of any given approximating system.

Since D is a positive semidefinite matrix, 8* defined by (35) is a
convex function of the initial state z(¢,). The following theorem from
Ref.13 is useful in maximizing 8.

Theorem: If the absolute maximum of a convexr function, defined
on a closed, bounded, convex set, is finite then the absolute maxi-
mum is taken on at an extreme point of the set.

Remarks: An extreme point of a convex set is a point in the set
that cannot be written as a convex combination of two other points
in the set. Notice that an extreme point is a boundary point; how-
ever, generally not every boundary point is an extreme point. Thus,
if one is seeking the absolute maximum of a convex function defined
on a closed, bounded, convex set only boundary points need be con-
sidered. Also if the domain of definition is a convex polyhedron (a
closed, bounded, convex set with a finite number of extreme points)
the absolute maximum can be obtained by simply evaluating the
function at the extreme points and choosing the largest value.

Two general classes of closed, bounded, convex regions of initial
conditions are considered in this paper, the ellipsoid and the convex
polyhedron.

Let the region under consideration be an ellipsoid defined by

R = {z(t.); «'(t)Bx(t,) =< r°} (37)
where B is a positive definite, symmetric matrix and r is finite. Notice
that R is closed, bounded, and convex. Now the constrained maxi-
mization problem is one with an inequality constraint. Using the con-
vexity of R and &, the absolute maximum of the quadratic form is
seen to take place on the boundary of the set R. Thus the performance
can be written

J.(A) = max z'(t,) Dx(t,)

z(to)
subject to the constraint
2’ (t,)Bx(t,) = r*.
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It can easily be shown that the z(#,) maximizing the quadratic form
is the eigenvector of the matrix B-*D corresponding to the largest
eigenvalue and the maximum is given by

Ji(d) = Nuux(BT'D)1. (38)

A convex polyhedron is usually representative of the type of in-
formation one has as to the range of initial conditions. As an example
of this situation consider the original system to represent linearized
equations of motion of a space vehicle. Suppose it is known that the
range of initial conditions are in terms of bounds on position, ve-
locity deviations, and so on. For example,

| z,(t) | < 100 feet.

| z.(t,) | < 5 feet per second.

This particular region is described by a rectangular region in state
space with the extreme points being the corners

[100} [100} [— 100} [— 100} '
5 -5 5 -5
In general for this type of initial condition region, that is,

|$|'(tn)1,$_b‘- 1::1)"',”,

the region has 2" extreme points. Since 82 is an even function of z(¢,)
it is only necessary to consider 2" extreme points eliminating from
consideration the negative of any point considered.

The convex polyhedron region also is important, for example, since
it may be used to simply approximate a more complex region. In gen-

eral, let
z%i=12 ---,N

be the extreme points of the convex polyhedron R. Using the con-
vexity of 8 in the initial state z(f,) the absolute maximum & over
R takes place at one of the ™. Letting

82 = z"VDx"?
where D is given by equation (36) leads to
JyA) = max (8, 8, -+, 6] (39)
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V. MINIMIZING THE PERFORMANCE FUNCTION

Since it is a fairly simple matter to evaluate the performance, whereas
evaluating the gradient of the performance function requires significant
computational effort, it is desirable to use a numerical procedure not
requiring a gradient computation. Notice that Ji(A) is not generally
differentiable. Here, for completeness, the Powell method of minimizing
a function of several variables without calculating derivatives is pre-
sented.'* Reference 15 contains a summary of the various minimization
techniques available not requiring the computation of a derivative.
See Refs. 14 and 15 for a more detailed description of the methods
and their convergence properties.

Consider a real, scalar, valued function of N real variablesa, , - - , ax
written f(a). Powell’s iterative scheme concerns itself with finding the
minimum of f(a) without computing its derivative.

Each iteration of the modified Powell procedure starts with a search
down N linearly independent directions

My M2y """y NN

starting with an initial guess a, and defines a new set of directions for
the next iteration.
An iteration of the recommended procedure, suggested by Powell, is:

(@) for j = 1,2, --- , N caleulate \; such that f(a,_, 4+ A;n;) is
minimum and define a; = a;_; + A\j; -
(#%) Find the integer m, 1 < m = N, such that f(a.-,) — f(a.) is

a maximum and define A = f(@n_1) — f(@m).
(#7) Caleulate f; = f(2ay — a.) and define

fi = f(a.)
f2 = flaw).
(#v) If either f; = f, or

(f: - 2f2 + fa)(fx - fz - A)z = %A(ﬁ - fa)2

use the old directions #,, --- , ny for the next iteration and use ay
for the next a, , otherwise

(v) define = a, — a, and calculate N such that f(ay + \n) is
minimum. Use

My """y Mm=13 M Mmvry """ 5 N

as the new directions and ay + A# as the new a, .



224 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

The performance functions, for the two classes of initial conditions
being considered are given by (38) and (39) in terms of the matrix D
defined in (36). The major effort in computing the performance func-
tion is seen to lie in the computation of D. Sylvester’s expansion (see
page 83 of Ref. 16) for computing e is useful in the computation of
the matrices F' and G.

The basic procedure can be outlined as follows:

() Compute and store C()®(t, t,) for ¢ ¢ [t, , {;] using (7) and (8).

(#7) Evaluate M using (23).

(#45) If it is desired to compute the lower bounds to aid in choosing
the dimension of the approximating system, compute the eigenvalues
of M and obtain the bounds from the result of Theorem 1.

(&) Choose starting values for A and choose the directions for the
initial search in the modified Powell method to be

17 (o] [0}
0 1 :

,lof,---,1]0
_OJ L0 _IJ

where the above are k* vectors.

(v) Use modified Powell method to determine the minimum of the
performance function. Each element of the vector a in the Powell
method corresponds to an element of 4.

VI. EXAMPLE
A linearized missile guidance loop may be expressed in the form

H

m— ¢

& =1, Ty = Ty = U (40)
where z; is the lateral position deviation from a nominal trajectory,
To is the lateral velocity deviation, z; is the attitude deviation in the
given direction and u is the control signal. The relationship between
the attitude and lateral acceleration is given through the time-varying
gain H/(m — t) which accounts for the loss of mass because of fuel
consumption.
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Suppose it is desired to approximate homogeneous solutions to
(40) for initial conditions (at beginning of a stage) lying in a set
R (R is defined later) with solutions of a constant coefficient system.
The actual system (40) can be written in the vector-matrix form

i(t) = A(D)x(t) (41)
with output
y(t) = [1 0 0]z(t) = Cz(t) (42)
where
Il(t)
z(t) = (1)
xa(t)
and
0 1 0
Aty =|0 0O m‘tf ; (43)
0 0 0
Let
Ny ll* = fn (1) di. (44)

Before proceeding to find the approximation it is instructive to
determine the lower bounds on the optimal performance. This will
naturally aid in choosing the dimension of the approximating system.
The matrix, M, defined by (33), is given by

T
M = f &'(t, 0)C'CP(L, o) di (45)
0
with

%q:(z, o) = A()a(1, o). (46)

The transition matrix, which is the solution to (46) with the identity
initial condition, is given by
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1 ¢ H{(m—— £) In (m; t) + t}

®(t,0) = |0 1 —H}n(m":‘)
00 1
Evaluating M leads to
T* T — Ty -7\, 1,
TS H{?—(m2 )ln(mm )+Z(T—2mT)}
7 T
M=13 73 M
13 M23 MSS J
with
_ T 5 4 @2 4+ m)(m — 1)
M”_H[3_3ﬁm_ 6
L (m =T (m—T)2(4T+5m)]
hl( m )+ 36
and
[(m3 3
T (m—T) g(m—T) 2, o
3 g T/ Tgm—D
.1n(m;T)+%{m3—(m—T)3}
M,, = H* :
_gw_m;mm_w
o (m =T (m — TY*4T + 5m)
ln( m )+ 18 J

Let the constants defining the problem be given by

15 seconds (normalized mass)

Il

m
T = 10 seconds
H = 15 (pound-seconds per slug ) X 107°
and let the region of initial conditions be given by
R = {z(0); |=z.(0)| = 30 feet, | z2(0) | = 2 feet per second,

| z3(0) | = 1 milliradian}.
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Evaluating M for the above values of the constants leads to -

10 50 206
M = 50 333 1570
206 1570 8082

with eigenvalues

M o= 8393, A =31, A =1L

We have

Jo = 8,393

J, =z 31
and

J, = 1.1.
Here Jy represents

max || y |I*.

zotR

The second order approximation thus has the possibility of yielding
a negligible approximation error. Thus in the remainder of this paper
the optimal second order approximation will be sought. Thus

S
Qgy Qg2

7 = [1 0]z.

The initial choice for 4 in the iterative procedure is

A’:[O 1}
0 0

which represents polynomial approximations to solutions of the orig-
inal system,
The extreme points of B are given by

and

30 —30 30 30

x(l) = 2 , :1:(2) — ‘2 , I(H} — _2 ﬂ.nd 13(4) — 2
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and their negatives. Thus
Jo(A,) = max {z'9" Dz} = 340
[}

where D is evaluated from (36). It is thus seen that the performance
function is far greater than the lower bound and the possibility exists
for a significant improvement. The result of applying the Powell
algorithm to this problem yields

Is = [0.244 0.827 }
0.177 X 107 0.629 X 107

and
Jo(A*) = 334
with the eigenvalues of A* given by
M(A*) = 0.245

(A% = 0.30 X 107%,
The above results are obtained after three iterations of the Powell
algorithm. The G, F and D matrices are given by

¢ = [271 771}
771 2230

P [43.14 206.0 1459}
112.2 832.6 4241

and
44X 107 —18xX 10" 12X 107
D=|-18X10" 73 35X 107% .
12X 107" 3.5 X 107* 4.2
Evaluating

max [(C(" Dx(") }
¢

gives the maximum approximation error occurring at the extreme point
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Figure 1 shows the solution of the actual and approximate system
for this worst-case initial condition. The solutions are obtained from

y(t) = 30 — 2t + ®,5(t, 0)
and
30
gty = [10)¢*G7'F| —2 |-
1

j(f) = 4.82¢€"" + 19.78 .

The matrix relating the initial conditions is given by G™F, that is,

&(0) = G7'Fz(o0).

o) =[ 100  1.86 —1.68}(0)_
—0.205 —0.271 248

80

[
/
70 A

80 /

50

Y(t) APPROXIMATE— — _|

SOLUTIONS IN FEET

P
30 ]

/ \\H(t

YEXACT

20
o

TIME IN SECONDS

Fig. 1 — Exact and approximate solutions in worst case.
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VII. CONCLUSIONS

A method for uniformly approximating solutions of linear, time-
varying, homogeneous differential equations has been presented. The
problem of approximating systems subject to control or reference
inputs is considered in Ref. 6 for the class of exponential polynomial
control inputs.

One of the objectives of modeling with constant coefficient systems
was to obtain closed form approximations. Use of Sylvester’s expan-
sion allows one to derive these closed form expressions. However,
more general classes of approximating systems can be sought while
still maintaining the property that approximations are in closed form.
For example, a general model of the form

i = p(t) Az

where p(t) is a scalar valued function possesses the closed form
solution

2() = exp [1 f, p(7) dr]x(tn)

and p(f) as well as A may be sought as part of the modeling procedure.
A complexity constraint can be imposed on p(f) by considering it to
be a polynomial of given degree and the search for the model reduces
to finding the coefficients of the polynomial as well as the elements of A .

VIII. ACKNOWLEDGMENTS

We greatly appreciate the valuable suggestions of D. L. Jagerman,

Harry Heffes thanks Bell Telephone Laboratories, Incorporated, for
their financial assistance under the doctoral support plan; Philip
Sarachik thanks the Air Force Office of Scientific Research for their
financial assistance under grant AF OSR 747-66.

REFEREN CES

1. McBride, L. E., Jr., Schaefgen, H. W., and Steigler, K., “Time-Domain Ap-
g;-oximation by Iterative Methods,” IEEE Trans. Circuit Theory CT-13,
0.4, (December 1966), pp. 381-387.
. Mitra, D., “On the Reduction of Complexity of Linear Dynamic Models,”
United Kingdom Atomic Energy Authority Report AEEW-R520, 1967.
. Davison, E. J., “A Method for Simplifying Linear Dynamic Systems,” IEEE
Trans. Automatic Control, Vol. AC-11, No. 1, pp. 93-101, January 1966.
. Nordahl, D. H., and Melsa, J. L., “Modeling with Lyapunov Functions,”
Proc. Joint Automatic Control Conf., 1967, pp. 208-215.
. Meier, L., III, “Approximation of Linear Constant Systems by Linear

(=L B - ]



-7

10.
11.
12.
13.
14,

15.
16.

MODELING CONTROL SYSTEMS 231

Constant Systems of Lower Order,” Ph.D. Dissertation, Stanford, Calif.:
Stanford University, 1965.

. Heffes, H., “Approximation of Linear Time-Varying Systems by Linear Con-

stant Coefficient Systems Over Finite-Time Intervals,” Doctoral Disserta-
tion, New York University, June 1968.

. Lorentz, G. G., Approzimalion of Functions, New York: Holt, Reinhart and

‘Winston, 1966.

. Kreindler, E. and Sarachik, P. E., “On the Concepts of Controllability and

Observability of Linear Systems,” IEEE Tran. Automatic Control, AC-9,
No. 2, (April 1964), pp. 129-136.

. Kalman, R. E., “Mathematical Description of Linear Dynamical Systems,”

J.SIAM Control, 1, No. 2 (1963), pp. 152-192,

Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces,
New York: MacMillan, 1964, p. 58.

Akhiezer, N. I. and Glazman, I. M., Theory of Linear Operators in Hilbert
Space, New York: Ungar, 1961.

Penrose, R., “A Generalized Inverse for Matrices,” Proec. Cambridge Phil.
Soc., 61, pt. 3 (July 1955), pp. 406-413.

Haldley, G., Nonlinear and Dynamic Programming, New York: Addison Wes-
ey, 1964.

Powell, M. J. D., “An Efficient Method of Finding the Minimum of a Func-
tion of Several Variables Without Caleulating Derivatives,” The Com-
puter Journal, 7, No. 2 (1964), pp. 155-162.

TFletcher, R., “Function Minimization Without Evaluating Derivatives—A
Review,” The Computer Journal, 8, (1966), pp. 33—41.

Frazer, R. A., Duncan, W. J., and Collar, A. R., Elementary Matrices, New
York: Macmillan, 1946.






