Minimal Synthesis of Two-Variable
Reactance Matrices*

By T. N. RAO
(Manuscript received July 3, 1968)

A simple algebraic method stemming from ideas in minimal state-variable
realization theory is developed for the synthesis of two-variable reactance
matrices. The method rests mainly on the factorization of a one variable
polynomial matriz which is para-Hermitian and positive semidefinite on
the tmaginary axis, and always yields a realization minimal in both vari-
ables.

I. INTRODUCTION

Two-variable reactance functions and matrices, originally intro-
duced to represent the characteristics of lumped passive networks
with variable elements,*? have become more important because of
their application to the synthesis of lumped-distributed networks.
Ansell first showed the two-variable reactance property of networks
composed of lossless transmission lines and lumped reactances.® The
two-variable theory has also been applied to the synthesis of net-
works consisting of lumped resistors capacitors and uniformly dis-
tributed RC lines,* * which are of importance in microelectronic struc-
tures.® 7 Besides the various applications, the two-variable reactance
theory is of theoretical interest in itself since it can be shown that
passive RLC synthesis is a special case of two-variable reactance
synthesis.?

Koga® demonstrated that every nXn two-variable reactance matrix
W (p, s) can be realized as the impedance seen at the first n ports of
a lossless (n+gr)-port network in the p-plane terminated at its last
gr ports with unit induectors in the s-plane; g is the rank of W(p, s),
and r is the highest degree of s in the least common denominator of

* This work is based on Chapter IIT of the author’s dissertation, “Synthesis of
Lumped-Distributed RC Networks” submitted in partial fulfilment of the re-
quirements for the Ph.D. degree at Stanford University, May 1967.
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the elements of w. The method is quite complicated and rests heavily
on the theory of algebraic functions and the structure of para unitary
matrices. Also it does not guarantee the use of a minimum number of
elements. Youla® solved the problem of synthesizing a lossless two-
variable scattering matrix by adapting an earlier method for syn-
thesizing one-variable scattering matrices.® The method could be
adapted to the direct synthesis of an impedance matrix but appears
to be unduly complicated because of the need to find the transforma-
tion required to transform a generally unrealizable coupling network
into a realizable one.

A simple algebraic method stemming from ideas in minimal state-
variable realization theory and having similar beginnings as that of
Youla® is developed here for the synthesis of two-variable reactance
matrices. The method rests mainly on the factorization of a one-
variable polynominal matrix which is para Hermitian* and positive
semidefinite on the imaginary axis. Such a factorization is well known
in n-port network theory and once it is accomplished, the coupling
network is obtained by simple matrix operations. Furthermore the
method always yields a network minimal in both types of elements.

We first introduce some basie definitions and necessary theorems,
and later we add more as the need arises. The synthesis procedure is
developed in Section III. Since the various proofs involved are rather
indireet and tend to cloud the simplicity of the actual procedure, the
synthesis procedure is outlined in Section IV. The reader interested
only in the procedure and not in the theory behind it may go directly
to Section IV where step-by-step instructions are given for the syn-
thesis of any two variable reactance matrix. In Section V an example
is worked out. The notation used in this paper is almost the same as
found in earlier work to assure easy reading for those familiar with it.?
Capital letters indicate matrices; bold face letters indicate matrix
transposition. A superscript dagger indicates the substitution of —s
or —p for s and p respectively, in the case of two-variable functions.

IT. BASIC DEFINITIONS AND THEOREMS

The basic notion in the two variable theory is that of a two variable
positive real matrix, which is a straightforward extension of the same
notion in the one variable theory (See p. 96 of Ref. 11 and p. 32 of
Ref. 8).

* A matrix A(p) is said to be para-Hermitian if A(p) = AYp) where the bold
face letter denotes matrix transposition and the superscript dagger denotes re-
placement of p by —p. : . e T
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Defingtion 1: An n X n matrix W(p, s) is said to be a two variable
positive real matrix if

(¢) W is real for real p and s.
() W is analytic in the domain Re p > 0 and Re s > 0.
(i55) W + W* is positive semidefinite in the domain Rep > 0and
Res > 0.

By statements such as: “W is analytic” in the definition and in
what follows, we mean, “each element of W is analytic.” A two vari-
able function is said to be analytic at a point if it has a total differ-
ential at the point. The bold face letter indicates matrix transposition,
and the superseript star indicates the complex conjugation of each
element.

If W (p, s) satisfies conditions (ii) and (iii) of the definition and not
necessarily condition (i), it will be called a two variable positive
matrix.

Definition 2: An n X n matrix W(p, s) is said to be a two variable
reactance matrix if

(?) W is a two variable positive real matrix.

(@) W+ Wt=0.

The superscript dagger indicates the operation of substituting —p
and —s for p and s in the original matrix. This definition of a two
variable reactance matrix is similar to the corresponding one in the
one variable theory. (See p. 102 of Ref. 11 and p. 32 of Ref. 8.) Anal-
ogously, as in the one variable case (p. 117 of Ref. 11), it is generally
hard to check if condition (i) of Definition 1, which involves the
whole domain Re p > 0 and Re s > 0, is satisfied for a given two
variable matrix; we would like to find an equivalent set of conditions
that are easier to check. In the case of two variable reactance matrices,
the following theorem proved by Ozaki and Kasami® in the scalar
case, and extended to nonsymmetric matrices by Koga, (p. 33 of Ref.
8) serves this purpose.

Theorem 1: The necessary and sufficient conditions for an n X n matrix
W(p, s) to be a two variable reactance matrix are:

(?) W s rational in p and s, and real for real p and s.
(@) W s analytic in the domain Re p > 0; Res > 0.
(¢1) W = —WH,
(iv) For any (po, so) with Re po = Re sy = 0, which is a regular
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point of W, poles of W(p, , s) and W(p, s,) are simple and restricted to
the imaginary s and p azes respectively.

(v) aW/3p and dW /ds are positive semidefinite Hermitian for Re p =
Re s = 0, except at poles.

The proof of this theorem can be found on p. 33 of Ref. 8. We will
interpret the above conditions on a physical basis. Assuming that a
network realization consisting of reactances in the p and s-planes
exists for W (p, s), condition ¢ is fairly obvious, since the general loop
impedance will be a real rational function in p and s. Condition %7 is
also an obvious consequence of this reason, since the substitution of
—p and —s in W(p, s) is equivalent to changing the sign of all ele-
ment values and hence of every branch and loop impedance. Under
the assumption of existence of a two element kind of reactance net-
work corresponding to the given W(p, s), condition iv is also clear,
because p is fixed as a pure imaginary number, the p-type elements
can be considered as “frequency insensitive reactances,” and their
presence in a network consisting of pure reactances in the s-plane can-
not create poles off the imaginary s axis. Similar reasoning justifies
condition v for s fixed at any imaginary number, the positive semi-
definiteness of aW/dp can be considered as an extension of the posi-
tive slope of a reactance function in the one variable theory.

The necessary and sufficient conditions for a two variable reactance
function are not discussed separately, since scalars can be considered
as a special case of a reactance matrix.

If W(p, s) has a pole at p = py, independent of the value of s, po
is said to be an s-independent pole of W. The following theorem (see
p. 34 of Ref. 8) concerning such poles is important for the synthesis
method to be given.

Theorem 2: A two vaeriable reactance matrix Wy(p, s) can be de-
composed as

Wo(P: '5) = Wl(p) + W2(s) + W(P: S)

where W, and W, are reactance matrices in p and s, respectively, and W
78 a two variable reactance matrix with no p-independent or s-independent
poles.

Any given two variable reactance matrix W, (p, s), by virtue of the
above theorem, can be realized as a series connection of networks hav-
ing Wy, Ws, and W as their impedance matrices, as shown in Fig. 1.
Since W, and W, can be realized by existing techniques (See chapter
7 of Ref. 11) the given W, can be realized if a method of synthesis is
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e ey
N-PORTS Wi (p)
Wo (P,S) = N-PORTS W, (5)
W(pls} —
N-PORTS
o I —

Fig. 1 —Interpretation of theorem 2.

found for W. Henceforth we assume that the given reactance matrix
has no p-independent or s-independent poles.

1IT. SYNTHESIS OF TWO VARIABLE REACTANCE MATRICES

Let us assume that there is a passive n-port network representation,
consisting of p- and s-type reactances, gyrators, and ideal transform-
ers, for a given two variable n X n reactance matrix W(p, s). In such
a network it is always possible to replace each s-type capacitor by a
gyrator-s-type inductor combination and then isolate all the s-type
inductors, of which we assume there are k, as shown in Fig. 2, without
changing the impedance seen at the preseribed ports. If we further
assume that the (n 4+ k)-port coupling network, consisting of p-type
reactances, ideal transformers, and gyrators has a Z matrix, then the
impedance matrix W (p, s) seen at the first n ports is given by

W(p, s) = 2u(p) — z2(p)[222(p) + sl "z (p) (1)
where Z(p), the impedance matrix of the coupling network is given by
Z('p) — (zll(p} zlﬂ(p)J' (2)

L‘fz](ﬁ) 222(D)

Since the coupling network is a lossless network in the p-plane

Z = -7t (3)
and we have
W, s) = 2u(®) + 22(0)222(p) + sb]'222(p). (4)

Next we show, by algebraic means, that every two variable reactance
matrix ean be decomposed into the form in equation (4), such that
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C n k
N-PORTS = 2(p) = zy(P) Z2(P)| N < k-porTs Fslk
W(pss) == Za1(P) Za22(p) | k

—

Fig. 2 — Extraction of S-type inductors.

Z(p) of equation (2) describes a lossless network. Once such a decom-
position is found, we can realize the given W (p, s} by realizing Z (p)
by any of the existing techniques (see chapter 7 of Ref. 11) and
terminating it at its last & ports with unit inductors in the s-plane.

To establish that any given two variable reactance matrix W(p, s)
can be decomposed as shown in equation (4), we first expand W (p, )
and the expression on the right side of equation (4) about s = o and
find the expressions that relate z;,, zis, and 2., with the expansion
cocfficients of W(p, s}. We then show that a set 211, 212, and 22, which
satisfies the above relations and at the same time guarantees that the
Z(p) of equation (2) is a reactance matrix in p, can always be found.

The given two variable reactance matrix W(p, s) can be assumed
to have no p-independent or s-independent poles by virtue of Theorem
2 and hence can be written in the form

By(p)s + Bi(p)s™ + --- + B,(p)
a(p)s” + ai(p)s™ + -+ + a.(p)

where the B;(p) are real polynomial matrices in p and the scalar

g, s) = a(p)s” + a,(p)s™" + -+ + a.(p) (6)

is the least common denominator of the entries in W (p, s). For any
ordinary value of p, W(p, s) can be expanded in the neighborhood of
§ = oo as’

Wip,s) = (5)

8

Wp,s) = A-(p) + z Ailp), @

Expanding the right side of equation (4) in the neighborhood of s = «

2ulp) + 2a@)emlp) + L] 2ap) = 20 4+ (D) LI (@)

=0

For the equality in equation (4) to hold, we identify

z2u(p) = A_i(p) = W(p, =) (9)
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and
Ap) = (—D'zizhoz,  1=0,1,2, ---. (10)
Since the Z (p) formed out of 211, 212 and a2
zw=[“*“ﬂ an
—Zys Rz
has to describe a lossless network in the p plane, we must have
Z = —Z7t
as given by equation (3), and hence
2 = —1, (12)
and
292 = “2;2 . (13)

With the identification in equation (9), equation (12) is always satis-
fied, since by equation (9)

Zn = -[’V(pr 00) = _W(_P: —oo)’

and thus z,; is uniquely determined. The problem is to chose a pair
212, 220 to satisfy equation (10) and at the same time guarantee that
equation (11) desecribes a lossless network in the p-plane. For Z(p) to
deseribe a lossless network, it must be positive real and satisfy equa-
tion (3).

Before proceeding further, we would like to know more about 4;(p),
the expansion coefficients in equation (7). By equating the right sides
of equations (5) and (7),

Bup)s’ + Bi(p)s™" + -+ + B.(p)
- o + o+ oo 40+ 5 AR as

=0 $§

Equating coefficients of like powers of s on both sides of equation (14),
(see p. 207 of Ref. 12, Vol. II).

ao(P)A-l(P) = BD('P)
a,(p)A-,(p) + ao(p) Ao(p) = Bi(p)

a:(P) A1) + a(p)Aop) + a:p)A:(p) = B:(p) (15)
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a,(P)A_(p) + a..(pAu(p) + -+ + a(p)A,_.(p) = B.(p)
and
a(p)Aip) + a.(p)Aioi(p) + -+ +a.(p)d;._.(p) = 0, fori = r.

From equation (15) an expression for 4,(p) can be written* in the con-
venient form (see p. 14 Ref. 9)

BO(P) au(p) 0 0 s 0
Bi(p)  alp) alp) 0 0
Adp) = (aEJrl%;;): Bz.(p) a?('P) al(-P) aUFP) : U (16)
Bip)  alp) ai(p) aie(p) -+ ao(p)
Bio(p) ain(p) alp) a(p) --- ap)
l=-1,0,1,2,---

B, =0, for 1 >r
a =10 for I >r

where the (I + 2) X (I + 2) determinant is expanded formally in
terms of its first column. In equation (16) the B; are matrices, the a;
are scalars, and the determinant is not a determinant in the usual
sense. From equation (16), it can be seen that 4,(p) is of the form

real polynomial matrix in
Ap) = = E (17)

Another important property of the 4;(p)’s is obtained from the rela-
tion
Wip,s) = =W(—p, —9)

which implies

A + DA - b (-p) - X AR )

1
8

Hence by equating like powers of s

*Alternate methods of obtaining these A ((p)’s are by diffe rentiation of W(p, &)
AW (p, 5)
Ap) = — 37—

gsltl

or by long division.
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A, = (—1)'A]. (19)

If, for the purpose of choosing a pair z;2, zs» that satisfies equation
(10) and, at the same time, guarantees that the Z(p) of equation (11)
describes a lossless network in the p-plane, we define P,;(p) as

!_ 212
|
| 219822
4 32
12%22
Pp) = |77 (20)
1
212892 |
Then
[~ 1 t f ot ot P S
212212 Z212222Z)9 Z12Za2Z1p  *** R12Z22Z)2
1 A ¢ 2t t it t
Z10%22Z1s  %12%20Z22Z12  Z1o%22Z33Z12 *  * B1o20Z29Zyy
2 1 2 t 1 2 ot t 2 it t
t Z19R22Z19  Z19R02Z3pZ1p  R1a¥p2ZpaZan v v Ryof20Z29Zyp
P1P1 = (21)
; t P B ot t 1 ot t
L 212822Z12  R12R22Z22212  212222Z00Z3p * * ¢ 212822221212

In the above matrix, the entry in the 7th row and jth column is PRTR LA
and by equation (13)
i+7

zizz-:zz;;z:z = (—1) 212253 ZIz . (22)
Since we wish the equality in equation (10) to hold

szzzﬂéthIz = (—1)"21222;2”'2;2 = (_1)i‘4 i+ioe (23)
If we define T';(p) as
) A\(p) Alp) - Adp)
—A(p — A.(p) — As(p) cor —Aua(p)
Ta(’[?) = AZ(p) A‘3{p) A4(P) * Al.+2@)
L(=D'4ip) (—D'Aia(@ (—1D'Aualp) -+ (—1)'Aa(p)

(24)
from equation (23), we can see that

T[ = PIP: . (25)
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Equation (25) suggests that a way of obtaining a pair 212, 222 would
be to form the matrix T;(p), factor it in the form of equation (25),
and then try to identify 212 and z2s from these factors. We do not know
in advance if the matrix T;(p) formed from the expansion coefficients
of W about s = o can always be factored as indicated in equation
(25) ; hence we first study the properties of T;(p), to see if it can be
factored in the desired form.

Consider the matrix 7;(p) when ! = r,  being the s-degree of g(p, s),
ag given in equation (6),

Ay Ay 4. e Ar A,

—4, —A, —4; e —4, —A T+l
As Ay Ay s Arp Arye

re=l : SR @

(—1) Uy (— 1), (1) e (= 1) gy (—1) dy
(=LA, (=LA (=1rdee o0 (=17 (—1)74s,
The matrix obtained by deleting the last ecolumn and row in equation
(26) is T',_1, and by equation (15) it is easy to see that the last column
is a linear combination of the first r columns. Hence*

rank T, = rank T',_,
and

rank ', = rank T, _, for I=zr—1.

The rank of T, is connected with the s-degree 8,[W (p, s) ] of W (p, s)
which is defined in Definition 3 (see p. 10 of Ref. 9).

Definition 3: The s-degree of a rational two variable matrix W (p, s)
is obtained from the rule

s = degree of W(p,s) = &[W(p, )] = max §[W(p, , s)]

where §[W (p,, s)] is the McMillan degree (see part IT of Ref. 13) of
W (pe, s). For any fixed p,, W(p,, s) is a matrix of rational functions
in s with its McMillan degree uniquely specified; hence the above
definition uniquely specifies the s-degree of W (p, s). The relationship
between the s-degree of W(p, s) and the rank of 7', is stated formally
in the following lemma.

Lemma 1: The rank of T,_,(p) is equal to the s-degree of W (p, ).

* By the rank of rational or polynomial matrix we mean the “normal rank,”
which is defined to be the rank everywhere except at a finite number of values
of the variable.
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The proof of this lemma for the one variable case can be found in
Ref. 14 and on p. 200 of Ref. 10, and for the two variable case on p. 17
of Ref. 9.

To show that the matrix T,_,(p) can always be factored in the form
of equation (25), we need the following lemma.
Lemma 2: The matriz T,_.(p) defined by equation (24) forl =r — 1
satisfies
@ Too =TI,
(#5) T._.(jw) is Hermitian and positive semidefinite.

Proof:

Since 4, = (—1)'A] by equation (19), the proof of ¢ is readily seen
from equation (26)

T.., = TI—l . (27)

To prove (i7), we first notice that by Theorem 1, for any real w, W (jw, s)
has only simple poles, which are restricted to the imaginary axis in
the s-plane. Hence W (jw, s) can be expressed in the partial fraction form

S Riis)
W(jo, ) = A_i(jw) + Z‘; p——- (28)
where, R;(jw) are the residue matrices at the poles jo;(w), and the a;(w)
are real.
It is shown in Appendix A that the R, (jw) are Hermitian and positive
semidefinite for each w. Now, if each term in the sum on the right side
of equation (28) is expanded about s = «, we have

Wi, 8) = Aouio) + 5 3 3‘3‘11 R (juw). (29)

1=1 g=0

For the purpose of comparison, equation (7), written with p = jw, is

Wi, s) = Ai(io) + E Al (30)

The right sides of equation (29) and (30) are expansions of W(jw, s)
about s = «, and because of the uniqueness of a power series expansion

i) = 3 o) Rl (31)

By noting that the a; are real and the R;(jw) are Hermitian and positive
semidefinite for each w, we have
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Aol = Z R.(js) =0 (32)*
Ay(i) = § E a (i) 33)
Agljo) = — Z &Ri(j) =0 34)
Aumoaje) = — E Q"R (ju) (359)

Agus(j) = — 2 & "Ri(jw) =0 (35h)
i=1
A (G) = =7 22 ai" "Ru(jw) (35¢)
i=1
Asuljo) = 25 "R (o) > 0. (35d)

By direet substitution of equation (33) into equation (24), T,_,(jw)
can be written as

R, Joeide s _C*TR.' e (fﬂfi)r-lﬂf
—jo: R, G?Ri .’fa?R.' e —(.'f'ﬂ-‘)rRr

TG = 3| T —iaiR: «ho o GoR | (36)

(=17 R (=1 R (1)) R+ (=17 ()R

The matrix sum on the right side of equation (36) can be written

I'R‘_ 0 0---0
0 0 0---0
0o 0 0---0

Tooi(jw) = 22 Ls % (37)
i=1

0 0 0.0

where

* By the notation A =z 0Oor A = 0, we mean that the associated Hermitian form
of A is positive semidefinite or negative semidefinite.



REACTANCE MATRICES 1756

1, 0O 0 ---0 ("
jer: 1, 1, 0 ---0

L, = oil, 0 1,---0 . (38)

L(=1)"(G)" 'L, 0 0 --- 1]
Since each R;(jw) is Hermitian and positive semidefinite for each w,
the sum on the right side of equation (37) is also Hermitian and positive
semidefinite. Hence, we have proved the lemma.

We have shown that T,_,, a matrix of rational functions, is para-
Hermitian and positive semidefinite on the imaginary axis. Such a
matrix can always be factored in the form shown in equation (25),
(see p. 133 of Ref. 15). It is tempting to factor 7',_, at this stage and
find z,s, 2, to satisfy the required eonditions, but we will factor aj” T',_,
instead of T,_, for the reason that the factors would be polynomial
matrices.

From equation (17) we ean see that ai” T, is a polynomial matrix
in p. To be able to factor a” T,_, in the required fashion, we have to
show that T = 2" T,_, is para Hermitian and positive semidefinite on
the jw axis. To do this, we obtain the required additional information
about the polynomial a,(p) from the following theorem. Since the
theorem contains more information than we need at this point, we will
only state it here; a proof is given in Appendix B.

Theorem 3: 1If

By(p)s’ + Bi(p)s ™ 4+ --- + B.(p)

W(p, s) = ; =
P, 9 ay(p)s” + a,(p)s e o+ oadp)
is a two variable reactance matrix, then forall7z = 0,1, --- , r
: B, . ..
(2) o is a reactance matrix in p
(1) aa,- is a reactance function in p
i+1
(123) a; has all its zeros on the jw axis and these are simple

(i) _XB,X forall constant real n X 1 vectors, X, is a reactance
XB,,,X functionin p
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From this theorem, a,(p) can be represented as
a(p) = p’ I] (" + &) = *a(—p) (39)

where » = 0 or 1. Hence
Tr—l = angr—l = T:—l . (40)

From the form of a, shown in equation (39) and Lemma 1, it can be
seen that
T,_\(jw) 2 0 (41)

except when simultaneously, » = 1 and r is odd; in which case
T, ,(w) = 0. (42)

We will assume that 7,_, (ju) = 0 in developing the synthesis procedure
and discuss the needed modification when T,_,(jw) = 0 later.

If the s-degree of W(p, s) is equal to k, by Lemma 1 the rank of T',_,(p)
and hence of T,_,(p) is k. Since T',_, = T!_, and T,_,(jw) = O there
exists a factorization **'*"

T, ..(p) = M(p)M(p) (43)
where M (p) is an nr X k polynomial matrix and has a left inverse M ™" (p)

which is analytic in Re p > 0.
From the definition of 7'._;, we have

1
T...p) = P, (44)
M (p) can be partitioned into n X & blocks M ;(p)
[ Mop) ]
M,(p)
M(p) = T (45)
M_,__l(_p),
and hence
M'(p) = [Ms(p) : Mi(p)} -~ I M/_,(p)]. (46)

Now by comparison of equation (45) with equation (20), we can im-
mediately identify a suitable z,, as

2y = Mo, @)
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To find a suitable 2y, if we define T, as

-4, —A, A, - —A,
A, A, A, s A
—A —A -4, - —A4.
Tup) = . ¢ . ! o . . : (48)
(=D A, (1A, (=174, e (=17 Ay

from equations (20), (21), and (25) we see that z.,, must satisfy
1 t
ag*,: ﬂfzng = T,{ . (4:9)
0

Even though equation (49) does not uniquely specify zz2, We can choose
for 25,

e = MM (50)

From equation (19) and the definition of T4, we see that T, = —T,
and hence

Zay = _z;z- (51)

We now notice that by construction, the pair z, z defined by
equations (47) and (50) satisfies

(= 1D)'ziszhazin = A, (10)

forall0 < I < 2r — 2. Our aim is to find z;, and 2., that satisfy equation
(10) for all I = 0. It is not immediately clear that the pair 15, Zs2 defined
by equations (47) and (50) satisfy equation (10) for all Z = 0.

To see that the chosen pair 2, 2., does indeed satisfy equation (10)
for alll = 0 and not just for 0 < [ < 2r — 2, weintroduce the generalized
companion matrix Q(p) defined by"’

"o, 1, 0, 0, |
0, 0, 0,
w-| e
0, 0, 0, <o 0, 1.
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From equation (15) it can be seen that

T, = —T,_,Q. (53)
Hence, by equation (43)
2oy = —al M7, QM
= —M'MM'eM™
= -MaoM ",
and by equation (51)
2 = —M QM = M 'e'Mm. (54)
Hence
£, = —M'o'MM'eMm
= —aM7'e'T._ oM™
= —aMQ*'T,_ M
= —M'e’'m
and
= (—=D"'Met M, 1> 0. (55)

IF'rom the definition of @, we see that g(p, £) is its minimal polynomial,
and hence the matrix polynomial

gip, Q) = a, Q¥ + a2+ - +al, =0, (56)
and hence
g(—p, ") = 0... (57)
By equation (55)
9(p, 220) = M7 (=1)'a @t + (=1 e, 0" + - + a1, M,
and by equation (57) and Theorem 3

g(p, 222) = = M7 '[g(—p, QNIM = 0. (58)
TFrom the last equation in equation (15), from equation (58), and from
equation (10), which holds forfO'g Il = 2r — 2
Aoy = —ay Ay — @y g — -0 — a4,y

2r—2 2r—2 -1, 1
= 7212[0'1‘22; + @25 4+ - @255 ]le

_ 2r—1_*1
= g8z Zj2 .
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Hence
y 2r—1 ar—1_7T
Agemy = (=17 ENCrA AP

and by induction
A, = (— 1)13125‘;22:2

for all I = 0, which is the same as equation (10).

We thus have a set of three matrices 2, , 212, z.» such that the in-
finite set of equations obtained by equating the right sides of equations
(7) and (8) are satisfied. Hence the right side of equation (4) and W(p, s)
have the same Taylor’s series expansion in the neighborhood of s = .
By analytie continuation, for all p and s

Wip,s) = 20(p) + 2::(p)[222(p) + s1,]7"2,,(p),

where 2., , 212, and 2z, are defined by equations (9), (47), and (50),
respectively.

We have thus succeeded in decomposing W (p, s) as shown in equation
(4). Tt now remains to show that Z(p) formed from the chosen z,, ,
212, and z,.

Z(p) [ 20(p) Zlu(p)}

| — Zlg(p} 222(p) (59)

i My(p) W
Wip, = i
(p, =) () _
M)
L ai'tp)
is a reactance matrix.
To show that the Z(p) in equation (59) is a reactance matrix, we may
choose any standard test, but we will choose the one given below since

it is particularly suited for the problem at hand (see pp. 117 and 123
of Ref, 11):

aéf(p)ﬂr‘(pm(p)mﬂ*(p>J

Lemma 3: The necessary and sufficient conditions for a square mairix
Z(p) to be a reactance maitrix are:

() Z is rational and real for real p.

(#%) Poles of Z(p) are simple and restricted to the imaginary axis.
(@i5) Z +Zt = 0.
(iv) Residue malrices are positive semidefinite Hermitian.

Sinece all the entries of Z(p) in equation (59) are real and rational, con-
dition 7 is satisfied.
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From equations (13a) and (15), 2z, = A_;, = By/a, is a reactance
matrix by Theorem 3; hence its poles are simple and restricted to the
Imaginary axis. Also, the pole at p = o, if any exists, is simple for
this block. Sinee M, is a polynomial matrix, it is clear that the poles of
the off diagonal blocks 2,, and —z,, are in the zeros of a, and hence by
Theorem 3 the poles of z;, are restricted to the jw axis. However, it is
not clear that these poles are simple. To show that they are indeed
simple we will use the fact that 4, defined by

A, = a24, (60)
is a polynomial matrix. From equations (10) and (47)
t
4, = Moo (61)
Qo

and from equation (39) a, = =a, . We first consider a, = a, in which

case
- M, MD]*
Ao = l:aa”][aﬁ"‘ : (62)

Equation (54) then shows that 4, = A} and A,(jw) = 0. Hence there
exists an n X ¢ polynomial matrix, @, such that

A, = QQf (63)
where ¢ is the rank of A, . Equations (62) and (63) are two different
factorizations of 4, , hence:"”

M S
r—ol = Q[l.,: ka:r—a:]V (64)

250

where V{(p) is a k X k para unitary matrix, that is, VV = 1, . Since Q
is a polynomial matrix, and V(p) being para unitary can have no poles
on the imaginary axis (see p. 186 of Ref. 11), the left side of equation
(64) can have no poles on the imaginary axis. Hence @, which has
all its zeros on the jw axis, must divide M, . Thus z,, has all its finite
poles in the zeros of a, . By Theorem 3, the zeros of a, are simple and
restricted to the jw axis. In the above, we have assumed that a, = a ;
if @ = —a, and r is odd, the same proof holds; if 7 is even we can con-

struct a similar proof by factoring — A4, instead of 4, .
To show that the pole of z,;, at p = =, if any, is simple. Consider
the following representation for 4, obtained from equations (15) and (17)
@B, —aBy, _ By a, _ Bo ay (65)

Qo a; Qo Qg Qo
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Since B,/a, and B,/a, are reactance matrices and a,/a, is a reactance
function, according to Theorem 3, the right side of equation (65) be-
haves as Kp’ near p = «, where K is a constant matrix and » is an
integer such that —2 = v = 2. But z,, satisfies

t
A, = Z12Z,

and hence the pole of z,, at p = o, if any, must be simple.
We now have to show that the z,, bloek also satisfies condition (77)
of the lemma. By equation (54)

2z = —MTQM!™ = MT'QIM. (h4)

Since M " is analytic in the open right-half plane and @ has all its poles
in the zeros of a, , by equation (54) the poles of z,, are restricted to the
jw axis. To show that these poles are simple we will prove by contradic-
tion that ay2s. is polynomial.

From equation (52), the definition of 2, and equation (54) we see that
if @zs has a pole of multiplicity e at p = jw, . In the neighborhood
of this pole, we have the approximation

K
Ao R . (66)
(p — jwo)
where K is a constant matrix and « is a positive integer, and
K*
2

(67a)

2
Qotan X — 32
" (p — .7‘-00}2
Now by equation (55) z2, = —M '@**M, and hence in the neighborhood
of p = juwe

a ~ — B (67b)

» — jwn)ﬂ

where K, is a constant matrix and 8 is a positive integer. Since the poles
of ayzss are contained in the poles of M ™!, 8 £ 2«. By comparison of
equations (67a) and (67b), which must be equal, it is clear that either
a=8=00rK, = K= 0. Since z,, = —z1,, K = K*, and hence
K* = KK* = 0 implies that K = 0. Thus a,z,, can have no poles on
the jw axis and this, coupled with the fact that z;, can have poles only
on the jw axis, guarantees that aqz., is always polynomial. We therefore
conclude that all the finite poles of z,, are in the zeros of a, , and their
multiplicity eannot exceed that of the corresponding zeros of a, . Hence,
again by Theorem 3, all the finite poles of z;; are simple and restricted
to the jw axis. :
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To show that the pole at p = o of 2,,, if any, is simple, consider
equation (15) written in this form:

B
A, ==
Qg
B, a B, a
A, =228 _ 2o (68)
a, G, G G
pB_ma _a [&.& _ &_&] _ G By
! M A Qo G L@ Gy @ G a; Ay Gq

Owing to the reactance nature of B./a; and a;/a;., by Theorem 3,
and from the form of 4, shown in equation (68), nearp = =, A, behaves
as

A,‘ ~ K,'ph (69)
where K; is a constant matrix and »; is an integer such that
i+2zv =2 —0E+2). (70)
Also from equation (10)
Zutisty, = (—1)'A, &~ £K.p". (71)
Sinee 2,; has at most a simple pole at p = o, in the neighborhood of
p = a0
210 ~ Kp' (72)
where K is a constant matrix and ! is an integer such that I < 1. If
25 behaves as K,,p™ near p = o, where K,, is a constant matrix and m
an integer, then by equation (70), (71), and (72), ( + 2) = m + 2] =
—(Z 4+ 2). For such to be true for any fixed ! and all integral < = 0,
m has to be less than or equal to unity. Hence the pole of z,, at p = o,
if any, is simple.
We have thus shown that condition 7 of Lemma 1 is satisfied for
each block in Z(p), and hence Z(p) also satisfies it.

Since z,, 18 a reactance matrix, z,, = —zfl and 2., = —z;z by equation
(51), we have Z = —Z' and thus condition (¢77) of the lemma is also
satisfied.

Now to complete the proof that Z(p) is a reactance matrix, we have
to show that the residue matrices at the poles are positive semidefinite
Hermitian. To do this we need Lemma 4, which follows from the defini-
tions of a two variable positive real and two variable reactance matrices
(see p. 34 of Ref. 8).



REACTANCE MATRICES 183

Lemma 4. If W{p, s) is a two variable reactance matriz with no p-in-
dependent or s-independent poles, W(p, s(p)] 4s a reactance mairiz in p
for any reactance function s(p).

To prove that Z(p) satisfies condition @ of Lemma 1, which requires
that the residue matrix of Z(p) at any of its simple poles on the jo axis
is positive semidefinite Hermitian, we note that at any pole, p = ju,
of Z(p), if we set

9
s(p) = = o for Jw, | <

= Ip for wy =
in
IV('P: S) = zu + 512(222 + slk)_‘z;
[which is equation (4)] then by Lemma 4, W[p, s(p)] is a reactance

matrix in p for all positive I. Since Z(p) is real for real p and Z = —ZT,
the residue matrix H at the pole p = jw is Hermitian; if we write it as
" [Hn Hy %)

HY, Ho.

then, K, the residue matrix of W(p, s(p)] at p = juw, is given by
K =H, — Hu(Hy, + 11,) 'HE . (74)

Since H, H,,, and H,, are Hermitian, there exist unitary matrices U,
and U, such that

Ay =UH U, = diag|d, , d,, --- , d,] (75)
and
Apy = U%H,, U, = diag [\, Ay -0 5 Ml (76)
Hence
UKU, = Ay, — Jio(Aee + 11074 (77)
where
g = UH ,U,. (78)

If J,., denotes the 7th column of J,, , the right side of equation (77) ecan
be rewritten as

k
1
U"{KUI = A” - Zlm J12|'J=1k2i . (79)
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Since K is the residue matrix of a reactance matrix, for all I > 0, K is
positive semidefinite. A,, is also positive semidefinite, since H,, is
the residue matrix of the reactance matrix z,, . J:J%; is obviously
positive semidefinite and the left side of (79) can be positive semi-
definite for all positive I only if all the )\; are nonnegative. Hence A,

and H,, are positive semidefinite.
To show that H is positive semidefinite, we will show that H’ defined by

H' = (Ut + UDHU, + U) = [A“ J”} (80)
JTZ A22

is positive semidefinite. For this purpose, consider the Hermitian form

[X* X*] |:A11 J12:| {X1:|
1 2
J;kz Dzz X,

= X*¥A, X, + X5 JRX, + X4 X, + X8D,X, (81)
where
D, = Ay + 11, [ > 0.
Since
U*KU, = Ay — Ju.D3:J3%

is positive semidefinite, we obtain from equation (81) the following
inequality:

(X% X¥] {A“ J”} [Xl
Tt Dul| X,

> X4J . DuJhX, + XX, + X3 JEX, + X34,.X, . (82)

Since the right side of equation (82) can be expressed as G*G, where
G = [D¥*J%X, + AL’X,], the Hermitian form in equation (81) is
positive semidefinite for all { > 0; by a continuity argument we can
cee that H' and consequently H are positive semidefinite.

We have thus shown that Z(p) does indeed describe a lossless network
in the p-plane and thus W(p, s) has the network representation shown
in Tig. 2.

In the development of the synthesis procedure we assumed that
@ (jw) To1 () = T._.(jw) = 0. If simultaneously, a,(p) is an odd
function of p [in other words » = 1 in equation (39)] and r, the s-degree
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of the least common denominator of W(p, s) is odd, then T _(jw) 0.
In this case we factor —T',_,(p) which is para Hermitian and positive
semidefinite on the jo axis. We will then have

-7 ., = MM (83)
and hence, as before equation (44),

t
T-rfl = E M,.-}-'

T
Aoy @,

It is then clear that the identification of z,, and z,, can be done in
exactly the same way as when T',_,(jw) = 0.

It is of importance to notice that the number of s-plane inductors
used in the realization of Fig. 2 is equal to the s-degree, §[W (p, 8)]
which in general is smaller than the number required in Koga's tech-
nique. Appendix C shows that 8,[W (p, s)] is the minimum number of
s-plane inductors required in any realization, and that if a realization
is minimal in the variable s it is automatically minimal in the variable
p, the minimum number of p-type reactances needed in any realiza-
tion being the p-degree, 8,[W (p, s)].2¢

The main result of this section can be conveniently put in the form
of a theorem:

Theorem 4: Every two variable reactance matriz W(p, s) can be realized
as the impedance seen at the first n-ports of a lossless (n + k)-port con-
sisting of 8,[W(p, )] reactances in the p-plane, terminated at s last k
ports with 8,[W(p, s)] unit inductors in the s-plane. Furthermore, such a
realization uses the minimum possible number of reactances of each kind.
(The roles of p and s are completely interchangeable.)

Since several of the proofs involved in establishing Theorem 4 were
rather indirect and lengthy, while the procedure for synthesis, sum-
marized in Section IV, is itself rather simple.

IV. SUMMARY OF SYNTHESIS PROCEDURE

Given an (n X n) two variable reactance matrix W,(p, s), decom-
pose it as

Wo(P: s) = Wilp) + Wa(s) + Wip, s)

where W, and W, are reactance matrices in p and s, and W (p, s) is a
two variable reactance matrix with no p-independent or s-independent
poles. Such a decomposition is always possible by Theorem 2.
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Expand W (p, s) as

W(IP, S) = A..1(’P) + i %

=0
[which is the same as equation (7)] where the A(p)’s may be ob-
tained by equations (16) or (16a) or by long division.
Find g(p, s), the least common denominator of the entries in
W(p, s) and express it in the form

g(p, 8) = a(p)s” + ai(p)s’™ + -+ + ay(p).

[which is the same as equation (6) ].
Form the (nr X nr) matrix T, (p), defined by

Tr—l(p)
[ Ap) A,(p) Ap) - A._.(p)
—A,(p) — A,(p) — A4(p) e —4.(p)

Az('P) ;lg(p) A4(p) ter Ar+1(p)

(=D ) (DAL (DT AL - (1) T Ay a(p)

which is equation (24).
Factor T',_,(p) = a2 T',_(p), a polynomial matrix, as
T._.(p) = MM' (43)
unless simultaneously, a, = —a, and 7 in equation (6) is odd, in which
case factor —7,_,(p). The factorization must be such that M is a
(& X mr) polynomial matrix with ¥ = rank of T,_,(p) and M, the
left inverse of M analytic in the open right plane. The existence of such

a factorization is guaranteed by Lemmas 1 and 2.
Partition M (p) into (n X k) blocks of equation (45)

[ a(p) |

Mp) = ~7°

LM, _(p)]
Form the (nr X nr) matrix Q(p) defined by equation (52)
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With the identification of equations (9), (45), and (54)*

zn(p) = 4 (P,

M,(p)
d = 0 ,
an fiz au(p)
and 2, = M '(p)Q'(p)M(p),

the decomposition

W(p, §) = 2u(p) + 2a(P)lze(p) + 1] 'z )
is obtained. Notice that this is equation (4). It should also be noticed
that W(p, 8) can be decomposed as in equation (4) even if it has
s-independent poles, since the assumption that W(p, co) is finite is
enough to guarantee the validity of the procedure. For network reali-
zation it is usually more convenient to remove both p-independent
and s-independent poles; we therefore removed them at the start of
the procedure.

To realize W(p, s) as the impedance of a passive network, we per-
form the following operations.
Form the (n+k X n+k) impedance matrix Z(p) of the coupling
network
r 1
AL(p) o
0 = " : 84)t
|
M g mue)
ay(p)

Realize Z(p) as a lossless (n+k) port network in the p-plane and
terminate its last k-ports with unit inductors in the s-plane. Also
realize the reactance matrices W, (p) and Wa(s) as lossless p-plane
and s-plane n-ports, and connect all three networks in series as shown
in Fig. 1. The given W,(p, s) is thus realized as a passive network.

V. AN EXAMPLE
It is desired to synthesize the two variable reactance matrixi

* Equation (54) is used to determine z=(p), in preference to equation (50) since
equation (54) is easier to compute.

+ Equation (84) is the same as equation (59) except that for the z= block
equation (54) is used instead of equation (50) for the reason mentioned in the
previous note.

1 This example was given by Koga, (see p. 50 of Ref. 8).
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@+ DE+ 1D ps—1
p+s)ps+1) p4s

Wn(p,8)=-
ps — 1 ps+ 1
P+ s p+SJ

Since W,(p, s) has no p-independent or s-independent poles the first
step 1 of Section IV need not be performed, and W,(p, s) = W(p, s).
The least common denominator of the elements of W (p, s) is

g(p,s) =ps" + (@ + s+ p

[which is equation (6) ], and hence

@@ =p, alp) =@ +1),a@) =p, and r=2.

The least common denominator of the minors of W(p, s) is also g(p, s)
and hence

k= 8,[W(p, s)] = 2.
In the expansion, equation (7),

Wep,s) = A(p) + f 44(p)

-0 S

by the formula of equation (16) or by long division

1|p° 1 9
A_l('P) = 5':12 j p2jJ ’

P p

1 2 1 2 2 2 1
Ay(p) = _F[(p +1D* P’ + )}?
P+ 1) p’ — 1)
1 2 1 3 4 2 1
AL(P)=;,{@ +1° PG+ )J’
P+ 1) p'® -1
1 8 3 6 4 2 1 [ 2
Aulp) = _ﬂp + 3p +ij +3p+1 plp +1)J_
p"(p* + 1) p"(p* — 1)
T._.(p) = T.(p) defined by equation (24) is
—PpL —pED) | Pl P(p+1)
1| —pe+l) —pip*—1} ! pi(p*+1) pi(p*—1)

P p D) | Bt B pp)
—p (D) —pE—1) | pipE) P¥(p?—1)
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The polynomial matrix 7,(p) = pyT:(p) is factored by the method in
Ref. 16 as equation (43)

p(p*+1) —p(p*+1)
1 »(p—1) —p*(p+1)
T(p) = M(P)M(p) = 5
p-pr+2pt—p+1  —(p'+p*+2p +p+1)
p'—p —(p*+pY
o [p(p2+1) —p¥p+1) P+ +2p'+p+1 p‘+p3:|
@ ppr+1) Pp—1)  —(p—p*+2pt—p+1)  —(p'-p%)

The (4 X 2) matrix M(p) is partitioned as equation (45)
Mp) = [1_”_“(}’2}

M, (p)
i p’(p* + 1) —p’(p* + 1)
Y Pe—-O . e+l
2lpt =+ =1l —G +P 22 P+ D
p'—p° ~(@" +p")

To find M-*(p), a left inverse of M (p), it is enough to find a left in-
verse of M, if 1t exists, since

(M1 0] F’_ff} =1,.
M,
In our example ¥ = 2 and M, is a nonsingular matrix and hence

M—(p) is given by

=1 [P+ p@*+1)10 Of
M=) = o + 1) Lpz(p —1) PG+ 10 0}

From the definition of Q, equation (52)

0 01l 1 0
I
) 0 0| 0 1
Qp) = | -----—- E -----------
1 ol-E 1 0
| P
| .
! _D_
0 1: 0 ral
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Using equation (54)
2 = MT'Q'M
P+ 1 @+ 1"

2p 2p
=1 p+1
2p 2p

Hence the coupling network formed by p-type elements has the
(4 X 4) matrix of equation (84)

4, M
w=| "
Mo o'y
L al]
TP+ 1 » PP+l P 1
2p @' @'
p—1 p+1
| P P ) @)}
p’+1 pt+1 p’+1 _pt+ D
2)'p 2! 2p 2p
pPP4+1 p—1 (-1 p+1
L @ @)! 2p 2p

Z (p) can be verified to be lossless, and the given W,(p, s) can of course
be realized as the impedance seen at the first two ports of Z(p) when
it is terminated at its last two ports by unit s-plane inductors.

VI. CONCLUSIONS

The synthesis method for two-variable reactance matrices developed
here, in general yields a nonreciprocal coupling network even when
the given two-variable reactance matrix is symmetrie, and if a
reciprocal eoupling network is desired, Koga’s method for generating
a reciprocal network from the nonreciprocal one can be used.® This
procedure generally yields a reciprocal network at the cost of in-
creased numbers of elements of both kinds.

This method of synthesis of two-variable reactance matrices has
been successfully applied to the synthesis of lumped-distributed RC
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networks which are important in microelectronies circuits.” In prac-
tice, the only laborious step in the synthesis procedure is the factoriza-
tion of polynomial matrix in the desired form. Of great importance is
the approximation of desired characteristics by rational funetions in
two-variables; any work in this area would greatly enhance the use-
fulness of the two-variable theory. The synthesis problem of n-vari-
able positive real functions, for which many applications can be
found,” can be reduced to the synthesis of (n+1)-variable reactance
matrices.?* 2> when n = 1 the two-variable method developed here
gives rise to a new method of passive RLC synthesis, which is no more
complex than the existing methods.
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APPENDIX A

Partial Fraction Expansion of W (ju, s)

To guarantee the factorization of T',_;(jw) as MM' we needed Lemma
2, which asserts that T, , is para Hermitian and that T,_,(jw) = 0.
In the proof of Lemma 2 we used the fact that R;(jw), the residue
matrices of W(jw, s), are positive semidefinite. The proof is given below.
Under the assumption that W(p, s) has no p-independent of s-in-
dependent poles, for each real w the s-plane poles of W(jo, s) are simple
and restricted to the imaginary s-axis by Theorem 1. Hence, for any
fixed w, we can write W(jw, s) as
Wiio, ) = A-() + 3~

= s — jaulw)

(85)

where the a,(w) are real and the R;(w) are the residue matrices at the
poles ja;(«). As in equation (9), r is the s-degree of g(p, s), the least
common denominator of the elements of W.

By complex conjugation on both sides of equation (85)
o Biw)

W(jo, s) = A%,(jw) + 2

T jﬂfi(“’). (86)

Since W and A_, are rational in ju,

W*(jo, 8) = W(—jo, s*)
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and
A* (w) = A_(—jw).
Hence equation (86) becomes

~_ Biw)

i — .
]’lV( J, 8 ) A—l( Jm) + g S* + jﬂf:'(m) (87)
and
: . N R (w)
—W(— iy, —g%) = — — =
W( Jw, § ) A-—l( jw) + ; S* . ja;(w) (88)
Sinee equation (88) is an identity for s*, we have
Wl in —8) = —A_(—i o Riw)
W( Jw:l S) - A_—]( jw) + ; s — jag‘(w) (89)

From the definition of a two variable reactance matrix,
W(je, s) = —W(—jo, —s)
and by equation (19)
Ao (jw) = —A_(—jo).
Hence, by comparison of equations (85) and (89) we have the desired
result
Ri(w) = R¥%(w). (90)

To show that the E.(w) are positive semidefinite for each w, we first
notice that if

W9 = 0

where ¢(p, s) is a polynomial matrix and g(p, s) is the least common
denominator of the entries in W, E;(w) in equation (85) is given by
(see p. 308 of Ref. 19)

¥(@, 9)
RI = _— < . 1
© = 39,9 ®D
98 |p=ju
s=jai(w)
Denoting 8g/ds by g, and dy¥/ds by ¢, , for any n X 1 constant matrix
X, (p. 39 of Ref. 8)
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X*R.X = M
g p=ju
s=jai(w)
[(x*wxm — gX*¥, X)]
(X*yX)* pmiw
p=jai(w)
_ [2 (_ g )]‘*
T Las \X*¢X/ -
s=jailw)
Hence, if X*WX # 0
X*R ()X =[ (X*WX)” ] . (92)

a=jailw)

From definitions 1 and 2, and Theorem 1, X*WX is a two variable
positive function and for Rep = Res = 0

Re [X*WX] = 0
and
9 xWX) = 0
ds =
Hence
Q RWE) = — e D (XAWX) 2
ds (X*WX) "3s
for

Rep = Res =0

and consequently the left side of equation (90) is nonnegative.
Thus we have proved that the residue matrices, E.(w), are positive
semidefinite Hermitian for each w.

APPENDIX B
Proof of Theorem 8
Theorem 3: If

 B@)s + B@ " + -+ + Bup)
W, 8) =2 i + a@s + - + a®

is a two vartable reactance matrix, then for all i = 0,1, -+~ r
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B./a; is a reactance matriz in p.
a;/a;., 18 a reactance function in p.
a; has all its zeros on the j axis, and these are simple.
XB.X/XB; X for all constant n X 1 vectors, X, is a reactance function
m p.
Proof: For any constant n X 1 matrix X,
(X*B,X)s" + X*Bux)s' ™' + --- + (X*B.X)
as’ + a5 4+ - +oa,

is a rational function in p and s with possible complex coefficients.
For convenience, if we define

bs = X*B,-X
w(p, s) = X*WX
fo,8) = bs" + bs™ + -~ + b,

X*WX = (93)

and as before
9p,8) = aw +as + - +
equation (93) can be written as

wp, s) = ;‘%—3 94)

From the definition of a two variable reactance matrix, w(p, s) is a
two variable positive function, and hence for any p, with Re p, > 0,
w(po , 8) 18 a positive function of 5.*° Consequently, for all s with Re s > 0

f(EO ) S)
Re g(po , ) = 0. (95)

Since equation (95) has to be satisfied for all s with Re s > 0 and hence
for arbitrarily small s, it can be seen from equation (93) that

Re br(pﬁ) g O
a.(po)

for all p, with Re p, > 0. Hence, B,(p)/a.(p) is a positive real matrix

and since W = — W'
2)--12]
a,] a,

and thus B,/a, is a reactance matrix in p.
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If instead of starting from the positive function f(po, 8)/g(Ps, ),
we start from 0'f(po, 8)/8s"0"g(po, 5)/ds", which is also a positive
function® for all 0 < » £ 7, the same arguments used in proving that
B,/a; is a reactance matrix can be repeated to show that B:/a; is a
reactance matrix in p forall0 = 7 = .

Now to show that a;,,/a; is a reactance function in p, we can use a
similar proof based on the fact that 8" 'g(p,, $)/8s"™'[3"g(po , 5)/3s"
is a positive function.”

Again, it can be seen from the fact that

8" 'g(po , 8)/0s " [3"g(po , 8) /35"

is a positive function.” that b..,/b; is a positive function satisflying

][]

If X in equation (93) is chosen real b;.,/b; will be real for real p and
hence XB,,,X/XB,X for any real n X 1 matrix, X, is a reactance fune-
tion.

To see that the zeros of a; are all simple and restricted to the imaginary
axis: if any one of the a; has a double zero on the jw axis or a zero off
the jw axis, from the reactance nature of a.,,/a; for all0 = 7 = 7,
all the a; must have the same zero, and, consequently, W(p, s) will
have an s-independent pole contradicting our original assumption that
W has no such poles.

We have thus proved all the claims of Theorem 3.

APPENDIX C

Proof of the Minimality of the Realization of W(p, s)
in Both Vartables

In this appendix we show that the realization of W (p, s) that Sec-
tion III gives is minimal in both the p and s variables. From the def-
initions of &[W(p, s)] and &[W(p, s)], it can be shown that if
W (p, s) is finite at p = o0 and s = oo,

8,[W(p, )] = a.[a(p, 9)]
5D[W('P, S)] = 519[?1(19; 8)]

where the two variable real polynomial

i(p, s) = do(p)s" + di(p)s™ + -++ + dulp) (96)
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1s the least common denominator of all the minors of W(p, s). The
form in which 5 (p, s) is written in equation (96) immediately reveals
that

8.[W(p, 8)] = k.
And if 5(p, s) is written as
2(p, 8) = co(p)p™ + ci(P)p™ " + -+ + c.(p), (97)
it ecan be seen that
8,[W(p, 8)] = m.

c.1 Minimum Elemenis

Next we would like to find the minimum number of elements of each
kind needed in the realization of W (p, s).

Lemma 1 states that k, the rank of 7',_,(p), is equal to the s-degree
of W(p, s), and the realization obtained there uses exactly & s-type
elements. By equation (4)

W(p,s) = 2ulp) + zlz(’P)[zzz(P) + Slk]_lz:n@)-

Suppose that there exists a realization with k, s-type elements, where
ky < k = rank T,_,(p). Then,

Wp,s) = 2..(p) + 212(p)[222(p) + 81&.]_11_';2(?)

where the matrices 21,(p) and z,,(p) are n X ko and ko X k, , respectively.
Then by equation (25), T,_,(p) = N(p)Nt(p) where

212(p)
N(p) = 212(P)222(p)

zlz(p)é?@)
is an nr X k, matrix and hence, rank N(p) < k, . Also, we have
rank T,_,(p) < rank N(p) = ko < k = rank T,_,(p)

which is a contradietion, and hence k = rank T, (p) = 8[W(p, s)]
is the minimum number of s-type elements required in any realiza-
tion. Now by repeating the same argument with a realization of
W (p, s) where p-type elements are extracted instead of s-type ele-
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ments, we can see that any realization must contain at least m p-type
elements where m = §,[ (p, s) ].

c.2 Minimality of the Realization in Section I11

We next discuss the minimality of the realization in both p-type
and s-type elements, For the purpose of realization, the reactance
matrix W (p, s) was decomposed as

W(p, s) = zul(p) + 212(p)[222(p) + SIk]nlz:z(p) 4)
where
Z(p) =[ au(p) z”(p)} (11)
_lez('P) 230(P)

can be realized as the impedance matrix of a lossless (n + k) port
in the p-plane. W (p, s) is the impedance seen at the first n ports when
the above (n + k) port network is terminated with unit s-plane in-
ductors at its last k-ports. Since k is the s-degree of W (p, s), the
realization uses the minimum number of s-type elements. To show
that the realization uses the minimum number of p-type elements,
we have to show that §[Z(p)] = 8,[W (p, s) ]. For this we need a rela-
tionship that exists between the least common denominator of the
minors of W(p, s) and the determinant |z22(p) + s1u|.

Every minor of [zs2(p) + s1i]™* can be expressed as u(p, s) /¢(p, 5)
(See p. 21, of Ref. 12, Vol. 1) where x(p, s) and ¢(p, s) are polynomials
in s with coefficients from the field of rational functions in p. Further-
more,

o(p, 8) = | 222(p) + sLi |
is a monic polynomial in s of degree k.

Since W (p, s) has no p-independent or s-independent poles, every
zero of 5(p, s) is a zero of ¢(p, s), and since k = &[¢(p, s)] =
8:[n(p, s)1, ¢(p, 8) and n(p, s} /d,(p), which are monic polynomials in
s with rational functions of p as coefficients, must be identical. Hence

| 2aa(p) + 1, | = %ﬁ (98)

To show that 8§[Z(p)] = 8,[W (p, s)] (since we already know that 6(Z(p)] =
5,[W (p, s)]) it is sufficient to show that §[Z(p)] = 6,[W (p, s)]. To establish
this inequality, consider the matrix S(p, s) defined by

S(p, 8) = (Z(p) — sLullZ(p) + slauil™ (99)
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When s = 1, S(p, s) is the scattering matrix of a lossless network,
since Z(p) describes a lossless network and (see p. 184 of Ref. 11)

8lZ(p)] = 8S(p, V). (100)
Since S(p, 1) is para unitary (see p. 131 of Ref. 15)
. 8[S(p, D] = &[] Stp, 1) [I. (101)

Equating the determinants of matrices on both sides of equation (99)
| Z(p) — sluws

St | — 120 = stou |

1 (p S) | l Z(p) + 'S]-n+k |

Using a formula from the theory of determinants (see p. 46 of Ref.
12, Vol. T)
i S(p s) [ — [ (21, — sl,) 4 212(2es — S]-k)_lzlz |-|2'22 — sl, |
| (Zl] + S].n) + 312(222 + Slk)_IZIE |' | F2%) -I— SIk ! (102)
— | I’V(’p, —s) — sl, |_|522 — sl |

I W(pj S) + Slu l | %29 + Sl;, I

Now if |W(p, s) + s1,]|is written as

. k(p, s)
| PV(pJ S) + S]'n | - T’I(Prs) (103)

where h(p, s) is a real polynomial in p and s, since the left side of
equation (102) is finite at p = o0

&,[h(p, 8)] = &[n(p, 8)] = &[W(p, 8)]. (104)
Substituting equations (98) and (103) in equation (102), we have

hp, —s) n(p, s) n(p, —s) do(p)

I, =0 0 A 1 (0
_ Mp, —9)
= i, 9

and by equations (100), (101), and (104)

8[Z(p)) = 8[S(p, 1] = &[W(p, 8)].
We have thus shown that 8[Z (p)] = 8,[W (p, s)].

It should be noted that Z(p) is the impedance matrix of any loss-
less coupling network in a realization of W(p, s), minimal in s, and
hence we come to the important conclusion that if a realization of
W (p, s) is minimal in one of the variables it is automatically minimal
in the other variable.
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