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Previous work on opttmum gain control is extended to an important
class of diversity receivers used for digital data transmission through fading
media and for radar. As in the single diversily case the optimum gain
(which yields minimum average cost of receiver saturation) is exiremely
insensitive to relative costs of saturation at the upper and lower dynamic
range bounds. The sensilivily to relative cost decreases as the order of
dwerstty increases,

Optimum gain and performance characleristics are given from which
dynamic range requirements for diversity recetvers can be deduced.

I. INTRODUCTION

A good part of detection theory literature deals with the determina-
tion of statistically optimum or near optimum receiver structures,
However, in any practical implementation of these receivers the signal
processing must be performed by components of finite dynamic range.
To effectively use the amplitude range of a signal processing chain
it is common to scale the received signal by adjusting the receiver
gain. Optimum gain settings for minimum average cost of excluding
(from a receiver’s finite dynamic range) the envelope of a narrowband
signal plus gaussian noise were presented last year! Here similar
results are presented for an important class of diversity receivers
used for comunications through fading media and for radar. For
the single diversity (M = 1) case, these results reduce to those
given previously.

II. PREVIOUS RESULTS

Consider the problem of determining the normalized attenuation,
@ to optimally scale a positive homogeneous functional, £, of the
received signal so that the average cost, [, of excluding ¢ from the
receiver’s dynamie range is minimized. It follows from Ref. 1 that
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the average exclusion cost is given by

= @ dst [ pu(® de M

in which d denotes the dynamie range of the receiver (such that D{(dB) =
20 log,p d, d > 1), v is the ratio of cost of saturation at the upper dy-
namic range bound to the cost of saturation at the lower, w is a vector
parameter determined by signal noise and channel eonditions, and p,
is the probability density function of §. When the optimizing value of a
is a stationary point of [ it can be found as a real positive solution to

p.(a) = vdp,(ad). (2)
If a, is the optimum @ then the minimum average exclusion cost is
l = Pm(aa) + V[]- - Pw(a'a d)] (3)

in which P, is the cumulative distribution corresponding to p,. Ior
v = 1, [ becomes the exclusion probability. Ref. 1 considered this prob-
lem in detail for the case in which & represents the envelope of a narrow-
band signal plus gaussian noise received through a Rician fading me-
dium. The results are based upon the solution of (2) for the case in
which p, is the Rician® probability density function defined by

P, (E) = Eexp [— (8 + ¥)/21L(y)) v, E=0 4)

where y is a suitably defined signal-to-noise ratio. (yas = 20 logioy).

III. GAIN SETTINGS FOR DIVERSITY RECEIVERS

In various diversity receivers formation of the test statistic leads
to the generalized Rician probability density funection given by

po(R) = RR(M) /)" exp [—(R® + /M) /2 xcalyR/(M)Y] (5)
B, v, =0
M=12 -

where Iy denotes the modified Bessel function of the first kind and order
K and w is the vector (v, M). Such is the case for example in square-law
combining M-fold diversity receivers for noncoherent frequency shift
keyed signaling through Rician or Rayleigh (if v = 0} fading channels,
in radar receivers using post detection square law integration of M
pulses, and in partially coherent diversity reception of N-ary orthogonal

1 In these cases the functional ¢ is the test statistic. More generally however,

the functional used for determining the optimum gain need not be actually
formed in the receiver.
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signals transmitted through 3/ independent slow Rician fading chan-
nels.**

The probability density function (5) has interesting properties. It
can be shown that (5) is the probability density function of the
square root of the sum of squares of M independent normalized
Rician variates, each variate having a probability density function
of the form (4) with y replaced by y/(M)%. For M = 1, (5) of
course reduces to the Rician probability density function (4), and
if in addition y = 0 it becomes the Rayleigh probability density
function. The density (5) can be viewed as the probability density
function of the square root of a noncentral chi-square variate with
2M degrees of freedom and noncentrality parameter y*. With y = 0
it becomes the density of the square root of a chi-square variate with
2M degrees of freedom.

In many practical cases y* is proportional to the ratio of the total
specular energy received via the M diversity branches to the sum of
the scatter and noise energy received via any diversity branch (as-
suming that this latter sum is the same for any diversity branch).
Thus y2/M can be thought of as the power signal-to-noise ratio per
diversity branch or per pulse in the case of time diversity if, as is
commonly assumed, the diversity branches are statistically independ-
ent but have identical parameters.

Since (5) arises in various applications, let us consider the canonical
problem. Specifically the solutions to (2) will be obtained in which p.,
is given by (5). Lettinga = A(2)* and & = v/(M )* leads to the following
transcendental equation for A:

A* = AT+ (M + /2] AT + [1/(d — D]
Aln Iyoi[ed d(2)}] — In Ty [A(2)H])
(6)
in which

»a 2Ind
A“_rlg—l @)

determines the optimum required attenuation for the Rayleigh case
with unity cost ratio (» = 1), and

Inw

2 A X

For the single diversity ease (M = 1), (6) reduces to the trans-
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cendental equation encountered previously.* One is thus led to seek
an iterative solution along the same lines. Before obtaining the
required iteration equations consider some properties of (6). The
equation can be written in the form

A* = A+ MA? + [1/(@* — D]{In [(eA d2)H" ' T1_i(ad d2)N]

— (M = 1) Ind — In [(@A@H" " L(@A@D]).  ©)

Combining the logarithmic terms on the right side of (9) and using

the fact that Ix(Z) — (Z%)/28K! as Z — 0 it is seen that the quan-

tity in braces goes to zero as y — 0. Hence the optimum attenuation

for the chi-square case (y = 0) is determined explicitly by 4 = A
where

AL & AT+ MAS. (10)

In the same manner it is seen that if A%, = 0, then A = 0 is a solution
to (9) for any ¥ and d. It is easy to show that the right hand side of (9)
is an even function of 4 having a minimum of 42, at A = 0. The left
hand side of (9) is of course a standard parabola centered at the origin.
These curves (¢) do not intersect if A2, < 0, (7%) intersect only at 4 = 0
if A%, = 0, and (#7%) intersect at positive (and negative) values of A if
A2, > 0. Thus meaningful values of 4 which minimize [ are stationary
if and only if 42, > 0. From (7), (8), and (10) this requires »d*" > 1,
which for M = 1 reduces to the constraint encountered previously.'

The solution to (6) or (9) can be obtained using the extrapolated
iteration scheme deseribed in Ref. 1. The iteration formulas require the
derivative of the right side of (9) which can be found using the identity

d/dg— [fﬂIﬂ(g—)] = g‘ﬂIn—l(r) n = --- '—21 _]-s 0: 1! 21 . (11)
The result is

wan _ 1@} { Iy-s[4 da()?] IM_E[Aa(z)*]}
P = 5@ 1A 1[4 da@] ™ Tuslda@?)) 12
in which f denotes the right hand side of (9) and the prime denotes dif-

ferentiation with respect to the argument.
For computational purposes it is convenient to define the functions

¥x(§) = (exp —1) Tx(?) (13)
which are uniformly bounded on the semi-infinite interval [0, oo].
For any argument ¢ these functions can be readily generated by
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numerical techniques using the recurrence relations and asymptotic
expansions for the modified Bessel funetions.

Using (12) and (13) the following iteration formulas to solve
(6) are obtained.

A?-'-::F.'—B.‘(AE—F-') .3575_1
Fi = AD + [(M 4 1)/2] 4]

A,-a(?)_% 2 Uy (A da(?)%):‘
d+ 1 T /@ -1l [‘“ Vo (Aa2))

a(®)! { g Yaral A da(@)'] _ xpy_g[A..a(Q)%}}
2(d2 — 1A, W[4 da(2)a] ‘I’J\rul[Aia(z}é]

_|_.
(14)

G(=

B =G/(1 — @) G, #1

The iteration is begun with 7 = 1,y small, and A} = A3, and stopped
when | (4;,, — A,)/A, | is less than the allowable error. By this method
the optimum required normalized attenuation was found for various
values of », v, d, and M.

Inasmuch as the optimum attenuation satisfies the nonlinear equation
(6) it will be helpful in interpreting results to find some useful approxima-
tions. Accordingly one notes that for v°/M >> 1 and d >> 1 the second
term in the brackets on the right side of (6) is negligible compared with
the first. Then taking I, (x) = exp x leads to a quadratic equation in 4
whose solution

. T A o, M+ D z]"
A=mGmra T [2111 ZHAct T3 4 (15)
approximates the required attenuation over the range specified.

Forv°/M < 1, on the other hand, one may take I, (z) & (z/2)"/M!
in (6). Some further approximations and manipulation lead to the
result

A AL+ 2] /M K1 (16)
which is exact for y = 0.
When the solution to (6) is found for given parameters the mini-

mum average exclusion cost can be determined. For the probability
density function (5), (3) becomes

1=1— Qula, A(2)"] 4 vQule, 4d(2)}] (17)
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where

Qu@. 1) = [ £/ o (=67 + D)/ ALa@) & (8)

v

is the generalized Marcum @-function.®

1V. EFFECT OF COST RATIO ON REQUIRED ATTENUATION

Since one cannot easily decide how much better or worse it is for
the receiver to saturate at its upper limit than at its lower limit, the
ratio, v, is generally difficult to assess accurately. It is interesting (even
fortunate!) that here as in the single diversity case the solutions
obtained using (14) show that the optimum receiver attenuations
for a wide range of cost ratios do not differ appreciably from those
for the minimum exclusion probability case (v = 1).

For given v, y, d and M one may define the sensitivity, S,, of the
optimum attenuation to the cost ratio by the difference in required
attenuation between the given case and the corresponding minimum
exclusion probability case. Specifically, the sensitivity to cost ratio is

Sc(”t v, d, M) £ 20 log;q A(p, v, d, M)

— 20 log,o A(w = 1, v, d, M) (19)
in which the functional dependence is shown explicitly. In (19) a positive
value of S, indicates an increase in required attenuation compared with
the minimum exclusion probability case. It can be shown that (4) the
sign of (19) depends only on » (positive if » > 1, negative if » < 1), and,
(@) | Se(v,v,d, M) | = | S.(»,0,d, M) | . Thus, one can define a maximum
sensitivity

S* 2 8.(v,0,d, M) = 10 log,, A%, — 10 log,, MA; (20)
where the second equality follows from (19) and (10). Using (7)
and (8), (20) can be written

S* = 10 logyo [1 + (vas/2MD)] (21)
in which
vas = 20 log,, v (22)

is the cost ratio expressed in dB. S* is an easily calculated bound which
gives, with the correct algebraic sign, the maximum change (in dB) of the
optimum required attenuation from the optimum for the minimum ex-
clusion probability case. Figure 1 is a plot of S*. It follows from (21)
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Fig. 1 — Maximum change in required receiver attenuation caused by nonunity
cost ratio.

that for cost ratios in the range —MD = vy < 2MD, the maximum
change in required receiver attenuation is less than about 3 dB. Equiva-
lently, with v, », and d fixed, the maximum sensitivity, S* decreases as

the order of diversity, M, increases.
Since the optimum attenuation is extremely insensitive to cost

ratio for typical parameters, the minimum exclusion probability
case (v =1) is of special import among all average cost criteria of
the form (1). The nwmerical results presented in this paper, there-
fore, include only the case v = 1, although the formulas derived apply
more generally and can be used to generate numerical results in an
entirely similar manner.

V. EFFECT OF DIVERSITY ON REQUIRED ATTENUATION

It is interesting to consider how the order of diversity affects the
optimum required attenuation. Accordingly, in a manner analogous
to (19) one can define the difference in required receiver attenuation
resulting from diversity by

Salv, v, d, M) = 20 log,o A(v, v, d, M)

— 20 logyo A(v, v, d, M = 1). (23)
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Let
Aﬂ(”] FYP dJ 1.14') ’é 20 lOglu A(V, FY! dl M) (24)

be the required normalized attenuation in dB. Then (23) can be
written

Sn(v, v, d, M) = Av,y,d, M) — Ay, v, d, 1). (25)

Values of S, (1, y, d, M) were obtained for various v, d, and M
using (14) and (23). These are shown in Fig. 2 where all quantities
except M are in dB. The optimum normalized attenuation A,(1, v,
d, M) required for the minimum exclusion probability case can be
found using (25). Specifically one finds S, (1, y, d, M) from Fig. 2,
and adds to it the quantity A,(1, y, d, 1) from Fig. 6 in Ref. 1.
Notice that in Ref. 1 only the single diversity case (M = 1) was
considered so that the functional dependence of A, on M was sup-
pressed in the notation. That is, A,(v, v, d, 1) here is identical to
A, (v, Ys d) in Ref. 1.

From Fig. 2 it can be seen that if y is sufficiently small (or large),
8,, is positive (or negative) so that more (or less) attenuation is
required if multiple diversity is used than would be required if the
same specular energy were concentrated in a single diversity branch
or pulse. Also for sufficiently small (or large) y the required attenua-
tion increases (or decreases) as the order of diversity, M, increases.
There is of course a transition region which bridges the above cases
and in which, for y fixed, the differences S,, cross one another depend-
ing on the particular values of M, and D (and, in the general case,
v). The curves for yag = 15, for example, exhibit this behavior.

Using (10) and (16) it can be shown that for y — 0

S,,,(V,. Y d, M) ~ 10 log[u M

1 + (vau/2MD) 1 + (v°/2M)
+ 10 lng [‘ 1+ (:Ucm/zD) :I + 10 logm |: 1+ (72/2) ] (26)

which is exact for y = 0. For the minimum exclusion probability
case and y = 0 (26) yields S,, (1,0, d, M) = 10 logyp M which is in-
dependent of d. Similarly it can be shown using (15) that

lim S,,,(V, Y, d, ﬂf) = —10 IOgm M (27)
y—s00
which is independent of » and d. The differences S, for yss = =
therefore appear as horizontal lines in Fig. 2. One also observes that
over the range of parameters shown, the limit (27) is approached within
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0.5 dB for 4z = 30. Noting that for v° < ¥ < +*, S, is bounded by
Su(, v*, dy M) < Sulv, v, d, M) < S.(v, 7%, d, M) (28)

it follows from (26) through (28) that for the minimum exclusion proba-
bility case all the differences S,,(1, v, d, M) lie between two horizontal
lines in Fig. 2 determined only by the order of diversity. | 8,.(1,v,d, M) | =
10 log,, M. The difference between the required optimum attenuation
for dual diversity and that required for single diversity with the same
total received specular energy is less than about 3 dB.

VI. EXCLUSION COSTS FOR DIVERSITY RECEIVERS

The optimum normalized attenuations obtained using the iteration
equations (14) were used to obtain the minimum average ex-
clusion costs (17) for the case v = 1. These are shown in Fig. 3(a)
and for smaller values of D in Fig. 3(b). The generalized @ funection
(18) was evaluated by computer, using relations derived from those
given by Sagon.®

It can be seen that for small values of y, the smallest dynamic range
D required to obtain a given exclusion probability decreases rapidly
as the order of diversity is increased; the most substantial decrease is
obtained in going from single to dual diversity. This trend is lessened
as the available signal-to-noise ratio y increases. As a matter of fact
if v is sufficiently large (for example, y = 20 dB) the dynamic range
required to achieve a given exclusion probability increases as M
increases. However at the large values of y where this latter effect is
apparent, even modest values of D yield extremely small exelusion
probabilities. Moreover on the types of channels where diversity re-
ceivers are useful one would generally encounter small values of v.

Consider a diversity receiver operating in a small signal-to-noise
ratio and let the dynamic range of the components used be such that
the probability of excluding the signal at any point in the receiver is
the same throughout. Then it follows from Fig. 3 and the foregoing
discussion that the dynamic range required of the components used
in the post-combining portions of the receiver may be considerably
smaller than that required of those components used in the individual
diversity branches.

VII. SUMMARY AND CONCLUSIONS

An important class of diversity receivers used for communications
through fading media and for radar is considered. The required gain
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Fig. 3 — Minimum exclusion probabilities for diversity receivers.
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is determined which minimizes the average cost of excluding from a
finite dynamic range the signal appearing in the post-combining por-
tions of the receiver. For the single diversity case (M = 1) the results
reduce to those given previously.

It is shown that the required receiver gain is extremely insensitive
to the relative costs of saturation at the upper and lower dynamic range
bounds, differing at most by about 3 dB from the optimum for the (equal
cost) minimum exclusion probability case for relative costs in the range
—MD = v, £ 2MD. One also finds that the sensitivity to relative cost
therefore decreases as the order of diversity increases.

The difference between the required optimum receiver gain for
various orders of diversity M, and that required for a single diversity
receiver having the same total received specular energy is considered.
Exact differences are given for the minimum exclusion probability
case, and it is shown that these are less than 10 log,oM dB independent
of other parameters. Bounds on the difference are also given for non-
unity cost ratio.

Performance characteristics derived show minimum exclusion prob-
abilities obtainable as a function of dynamic range for various signal-
to-noise ratios and orders of diversity. For a small signal-to-noise
ratio the dynamic range required of the components used in the post-
combining portions of the receiver can be considerably smaller than
that required of those components in the individual diversity branches
in order to achieve uniform exclusion probability throughout.

Notice that in some applications the normalization assumed in
writing (4) and (5) may depend upon M and vy. This fact must be
accounted for if ome is ecalculating the actual required attenuation
from the required normalized attenuation discussed in Sections IV
and V. The optimum exclusion costs however, depend on the normal-
ized attenuation and not on the normalizing factor. The results of
Section VI therefore apply directly.
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