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A first order perturbation expansion is carried out in order to analyze the
effect of small spatially uniform strains on the lowest order (even) TE and
TM modes in an anisolropic dielectric wavegquide. This generalizes the
results of an earlier paper in which the effects of certain special cases of
uniform strain were calculated. Unlike in these special cases, the perturbed
modes are, in general, neither purely TE or TM, and one effect of two of the
offdiagonal components of the strain s to tilt the plane of polarization and
change the relative phase of the two polarizalions. To first order, the modes
are not exponentially attenuated. Some numerical examples are considered
in order to illustrate the results. It is found that, under appropriate condi-
tions, the effect of the small strain may be gquite large in relalion to ifs
magnitude.

I. INTRODUCTION

The concept of a multilayered dielectric waveguide is central to
the theory of the GaP electro-optic diode modulator.*® As part of a
detailed study of the properties of electro-optic diode modulators,
Nelson and MeKenna* have investigated the possible diserete modes
which can propagate in a number of such waveguides and have cal-
culated the detailed properties of the lowest order mode of each
polarization,

In the fabrication of a p-n junction a certain amount of strain is
always introduced. Because of the photoelastic effect’® this strain will
induce a change in the dielectric matrix deseribing the unstrained p-n
junction. In general the strain will be spatially nonuniform, making
it extremely difficult to calculate modes in such a structure. However,
a knowledge of the effect of a spatially uniform strain on the mode
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structure would provide insight into the effects of nonuniform strain.
The effects of certain special cases of uniform strain on the modes of
a simple model of a dielectric waveguide were calculated in Ref. 4.
In the present paper we complete this investigation and calculate the
modes in the same model dielectric waveguide when subjected to an
arbitrary uniform strain. We use first order perturbation theory in a
small parameter describing the magnitude of the strain.

Although the work presented in this paper was motivated by re-
search on the theory of the electro-optic diode modulator, the results
have considerable relevance to the theory of the GaAs injection laser.
Here too, various dielectric waveguide models have been used to
explain the light containment.*-* The same problems of strain exist,
and the results of this paper give a qualitative picture of the effects
of strain on modal structure. The effect of strain on completely
different types of electro-optic light modulators have been studied by
Kaminow'® and by DiDomenico and Anderson.*

II. FORMULATION OF THE PROBLEM, AND RESULTS

In Ref. 4 the symmetric step model was used to study the effects
of strain, This very simple model exhibits many of the main features
of interest in dielectric waveguide models.

The model consists of an anisotropic crystalline slab bounded by the
planes * = 4 w, whose refractive index is raised uniformly by some
constant amount, the physical origin of which is still obscure, and which
is embedded in an isotropic medium of relatively lower index of refrac-
tion. The central slab represents the junction region whose anisotropy is
caused by the junction field E, acting through the electro-optic effect.’
The direction of the z-axis is always taken parallel to E;. The isotropic
medium represents the normal GaP.

The model is determined by its dielectric matrix, which in the absence
of strain and for certain orientations of E,; with respect to the erystal
axes can be diagonal in a coordinate system having its z-axis parallel to
E,. For such orientations of E;, the diagonal matrix elements of the
dielectric matrix K" (2), « = 1, 2, 3, depend only on z. (We use z, ¥, z
for the coordinates rather than x,, 2., 2;.) The matrix elements in the
absence of strain are then defined by the equations

K =K. , lz | <w (1)
K@ =K, , |z | >w (2)
where & = 1, 2, 3 (see Tig. 1).
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Fig. 1 — (a) The coordinate system used in the symmetric step model. (b) A
graph of K.(x).

There are two orientations of E; of particular interest which allow us
to diagonalize the dielectric matrix in the desired coordinate system.
If E; is in the [111] direction, then the x, %, and 2 axes can be taken in
the [111], [110], and [112] directions, while if E; is in the [100] direction,
the x, ¥, and z axes can be taken in the [100], [011], and [011] directions.
The set of axes determined by the unstrained model will be used in all
the strain calculations and the dielectric matrix will always be referred
to these axes. See Ref. 4 for further details of the model.

In the presence of a uniform strain, the dielectric matrix is in
general no longer diagonal, and we can write for the dielectric matrix
elements Kqpg(z),

Koo(?) = K@) + 18ae, a=1,2,3 (3

Kap() = nSas , a 7 B. )

The symmetric matrix (5Sq) 1s the contribution of the photoelastic

effect!® which we have written in this form for convenience in the

perturbation analysis. The matrix elements Sy are spatially constant.

We assume that n-2S.4 is of order unity, where n is the index of refrac-

tion of GaP and 4 is a small parameter. In Section IT we express 5Sqs

in terms of the strain matrix and give estimates for the size of 4.
We now seek solutions of the Maxwell curl equations

Il
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V X H = ¢K(2)-E, (6)

of the form
E = e(x) exp t(wt — Bkz), (M
H = h(z) exp i(wt — Bkz2). (8)

These solutions correspond to waves travelling in the positive z direc-
tion, where k = w(uoeo)! = 27/ is the free space wave number and \ the

free space wavelength of the light.
In the strain free cases (5 = 0), there are both TE and TM modes

and these modes can be either even or odd functions of x. At most
only a finite number of modes can exist, and Ref. 4 shows that for the
typical parameter values encountered in GaP diode modulators only
the lowest order even TE and TM modes can exist. For that reason
we confine ourselves here to solutions which in the limit of zero
strain (» = 0) reduce to even modes. However, the perturbation
technique used here applies equally well to solutions which in the
limit » = 0 reduce to odd modes.

When 7 # 0, we seek solutions of Maxwell’s equations of the form

e.(r) = A, exp —kp(z — w)
+ B, exp —kgle — w), z = w ©)
=C,expkr(z+ w) + D, exphs(z + w), 2= —w (10)
= F, exp tkfr + G, exp —ihgx
+ L, exp tklx + M, exp —ikmz, |zl = w (11)
for « = 1, 2, 3. The general solution in each region is a sum of four
linearly independent solutions, but in the regions |z | > w, the bound-

ary conditions at infinity eliminate two of these solutions. The expres-
sions for h.(x) can be obtained from equation (5). The various coef-

1A

ficients and parameters A, ..., p, ... can be expanded in powers of 4
A, =AY + A0 + -+, (12)
p =P+ qp + -+, and so on. (13)

In Section IIT we list the terms in these expansions of order zero and
one in 7, and in Section IV we outline their derivation. In this section
we merely discuss some of the features of the solutions.

We refer to solutions which in the limit as » — 0 reduce to even
TE modes as “perturbed TE modes”; similarly, we refer to “perturbed
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TM modes.” Expressions for the unperturbed TE and TM modes
(5 = 0) are given in equations (25) through (32).

Although the expressions we have obtained for the coefficients and
parameters are quite complicated, several features of the perturbed
modes stand out. If S;s # 0 or S.; # 0, then the modes cannot be purely
TE or TM. In general an important effect of the strain is to tilt the plane
of polarization. This tilt is in general a function of « but not of z. Since
the coefficients A,, ... are complex in general, the relative phase
between E, in the perturbed TE mode and E, in the perturbed TM mode
is a funetion of z. This relative phase at * = 0 cannot be determined
unless the method of excitation is known, since all the A, cannot be
determined, as is shown in Section IV. Ref. 4 considers the special case
where S,z = 8,3 = 0, S;3 # 0 and shows that the modes are rigorously
TE or TM. That paper calculates only such parameters as 8 and p, not
such coefficients as A, and B,. The parameters are expanded in two
small quantities 8 and A describing the unstrained dielectric matrix. If
we expand the expressions for the parameters in this paper to first order
in the same small quantities 5 and A (to second order for §) complete
agreement, is obtained with the Ref. 4 results.

In the absence of strain, the surfaces of constant phase for both
TE and TM modes are the planes z = constant. However, in the
presence of strain, the surfaces of constant phase are no longer planes,
and are different for the perturbed TE and TM modes.*

Finally, 8o + 5B is real in all cases. Thus at least to first order in
7 the modes experience no exponential attenuation as they propagate.

In order to get some feel for the magnitude of the effects involved,
we consider several numerical examples. We first estimate the order
of magnitude of % by relating it to observable phase differences.
Consider a plane wave whose free space wavelength is A propagating
over a distance I in a medium of index of refraction n + An. The phase
difference Ay which this wave would experience over the same wave if
the index of refraction were n is

27
A = 3= [(An). (14)
If yn® is the photoelastic contribution to the dielectric constant, then

An = (n* + mH — n = Iag. (15)

Therefore, we have

1 = MNe/nlr. (16)
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Now the upper limit of phase shifts observed'” in GaP at A = 6328 A
over a length I = 0.6 mm is about =/4. Taking'® n = 3.31 this yields
7 = 0.8 X 107* This probably represents an extreme upper limit, and
so we will assume n = 107° in our examples. Recent X-ray measure-
ments'® of strain in P doped Si yield a value of 5 of about 10™° when the
concentration of the dope is N, = 10'® atoms per cubic eentimeter.’

It can be shown that the matrix (7S .s) is approximately related to the
strain matrix (e.s) by the equations

3
nSn‘.ﬂ = —n' Z Pﬂﬁ.uvep" (17)
g, r=1
where » is the index of refraction and P ,4,, are the elasto-optical coeffi-
cients. Crystals of class 43m have only three different elasto-optic
coefficients when referred to the crystal axes. (See p. 251 of Ref. 10.)
For GaP these are®

P, = —0.151, P, = —0.074, P, = —0.082. (18)

Since'® n = 3.31 for GaP, and n2S,s is at most of order one, it
follows that the magnitude of the strain is roughly proportional to 7.
In order to obtain the values of the elasto-optic coefficients in the
coordinate system used in this paper, it is necessary to make a trans-
formation of the elasto-optic tensor from its representation in the
crystal axes. We will not. do that here; rather we take (5S.5) as given.
In Table I we define three possible strain contributions to the dielectrie
matrix, labelled a, b and ¢. Matrices a and b were chosen to demon-
strate the effect of the off-diagonal elements S;» and S.a, respectively
(Ref. 4 considered the effect of S;4 alone), while ¢ was chosen to dem-
onstrate a possible effect when all the off-diagonal elements are nonzero.

For a GaP diode modulator we can write> *

K,=n'1—35), a=0123, (19)
where n = 3.31 is the index of refraction of GaP'” and the quantities
8, @ = 1,2, 3 are functions of the applied bias voltage V. In the original

TABLE I —StrRAIN CONTRIBUTION TO THE DIELECTRIC MATRIX*

Type n Sn Saz Saa S1a Sz S
a 100 0 0 0 10 0 0
b 10-¢ 0 0 0 0 10 0
¢ 10-¢ 7.07 7.07 7.07 7.07 7.07 7.07

* Components of the strain contribution, S;; , and the magnitude parameter 7.
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symmetric step model &, is independent of V. For E, || [111] Ref. 4
showed that

6, = —26, 8, = 63 = §, (20)
where
b= — Eﬂ'ung/(3)%: (21)

and where I is the (spatial) average junction field, r, is the electro-optic
coefficient, and n is the index of refraction. For a typical diode (diode
KC46CA of Ref. 9), E,(measured in V/m) is related to the diode half
width w(measured in m) and bias voltage V(measured in V) by’

E, = (2 — V)/(2w). (22)

The half width can be determined by capacitance measurements® ?
and related to the bias voltage by

w(V) = 0.139 X 107°(1 — V/1.8)"*. (23)

Using the value r,; = —0.86 x 107* m/V,* we can now calculate
81, 82, and 8 as functions of V.

Tor this diode, 8§, = 1.612 x 10 % However, it has been shown
that the voltage dependence of the parameters of the symmetric step
model is not ecorrect, and the double walled waveguide much more
closely describes the true voltage dependence.*® We have not used
the double walled model because it is analytically complex. Instead,
sinee the modes in the single and double walled guides are very similar
in form beeause they both decay exponentially as functions of x out-
side the guide, we have used the single walled model but simulated
the voltage dependence of the double walled model. This has been
achieved by letting 8, vary with voltage. The voltage variation of 8,
has been obtained by requiring the equality of expressions (2.33) and
(3.18) in Ref. 4 for the decay constants p, and letting w, = w(0) and
we = w (V). This yields the relation

= (2.24 X 107 /w. (24)

In Table IT we list these basic constants describing the unstrained
diode as functions of V. Using these values, we can calculate from
equations (33) through (37) the parameters of the unstrained TE

* This is the unclamped value of 74 given in Ref. 18. Aftér these calculations
were made it was determined that the clamped value ro = —097 X 10722 m/V
should be used. However, since our results supply only qualitative information
about actual diodes, we have not redone the numerieal example.



1940 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968

TABLE II— CHARACTERISTICS FOR A TyprcaL GaP Diope*

Bias
voltage w

(40] (1075 em) 10% & 104 &2 104 &3 104 5o

-2 1.87 —1.17 0.58 0.58 12.00
—12 3.04 —2.51 1.25 1.25 7.38
—24 3.85 —3.67 1.84 1.84 5.82

* Given as functions of the applied reverse bias voltage V. The half width of the
junction is w, and the components of the unstrained dielectric matrix are K; =
n¥1l — &),7 =0, 1,2, 3, where n = 3.31 is the index of refraction of GaP.

and TM modes for A = 6328 A. These values are listed in Table III.
Finally, in Tables IV and V we list the parameters of the correspond-
ing perturbed TE and TM modes respectively. The accuracy of those
terms less than 10~* is uncertain in case ¢ of Tables IV and V. In
Figs. 2 through 7 we plot some of the components of the perturbed
TE modes correct to first order in 5. In Figs. 2, 3, 5, 6, and 7 the
imaginary part of the component is negligible and is neglected, while
in Fig. 4 the real part is negligible with respect to the imaginary part
and is neglected. In all cases the e; component is negligible compared
to the e; component. We have chosen the undetermined coefficients
go that at @ = 0, 2 = 0, e, in the perturbed TE mode and e; in the
perturbed TM mode have zero phase to first order in 7.

This example illustrates how much tilting of the plane of polariza-
tion, or coupling of the TE and TM modes, is to be expected. The
S;2 component produces the main effect, which from Figs. 2 and 3,
is a maximum tilt of the plane of polarization of 3.5°. This effect

TABLE III— UnPeRTURBED MODE PARAMETERS*

'I‘y})e Bias

of voltage

mode ) Bo Po fo lo
TE -2 3.308 0.0226 0.1096 0.1180%
TE —12 3.309 0.0195 0.0796 0.1022%
TE —24 3.309 0.0160 0.0641 0.1007 %
T™ —2 3.308 0.0259 0.1089+ 0.1174
™ —12 3.309 0.0307 0.0759F 0.0994
T™ —24 3.309 0.0363 0.0552F 0.0953

* Describing the unstrained TE modes, and the parameters 8, po and Iy de-
scribing the unstrained TM modes as functions of the applied reverse bias voltage V.
The wavelength of the light is 6328 }.

t Derived parameters [, for the TE modes and f, for the TM modes. These derived
parameters appear only in first and higher order corrections to the field.
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TasLE IV—ParamerErs ForR PErTURBED TE MobDEs*

Type Bias n L4
of voltage
strain 49 M Re(p) Im(p1) Re(qi) Im(q) I m
-2 0 221 —221 0 0
a —-12 |0 257 —257 0 0
—24 0 312 —312 0 0
-2 |0 1.51 —1.51|0 0
b -12 |0 1.51 —1.51|0 0
-24 |0 151 | ~1.51]0 0
—2 |1.07 156 —0.3%1077| —156 | —2.14 (2.13 | —0.4X10~®
¢ —-12 |[1.07| 181 4+0.2%1077] —181 | —2.142.13 | —0.4X1078
-24 11.07| 221 —0.2X1077] —221 | —2.14|2.13 | —0.4X1078

* For all perturbed TE modes f; = ¢« = 0.

decreases with inereasing reverse bias voltage. However, it should be
noticed from Figs. 4 and 5 that the coupling effect resulting from
8.4 increases with reverse bias voltage. The e; component is roughly
proportional to 5, so a doubling of the strain would double the mode
coupling. Mathematically, the existence of this relatively large effect
results from the largeness of the factor ¢ given in equation (64) for
perturbed TE modes and in equation (84) for perturbed TM modes.
The TM modes exhibit a similar behavior,

TFrom Tables IV and V we see that the changes in the parameters,
%P1, 7q1, nB1, and so on, are indeed small, which gives us confidence
that the perturbation treatment is reasonable.

III. FORMULAS FOR THE SOLUTIONS

To list the formulas for the coefficients and parameters, 44, . . .,
p, . . . (which appear in the expressions (7) through (11) for the
solutions in terms of the various parameters deseribing the symmetric
step model and the strain matrix), we begin by writing down the solu-
tion for the strain free (n = 0) case for both the even TE and TM
modes. When 5 = 0, we have for the even TE modes

e(x) = es(x) =0, all z (25)
ext) = cos (o), |o| S w (26)
= cos (kfow) exp kpo(w — [z ), [z[zw (27)

while for the even TM modes
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TFig. 2 — The relative amplitude of the real part of e: for the perturbed TE mode.

e(x) = cos (klp), || = w (28)

= 2 cos (Haw) exp by — [, @] 2w (29)
@) =0, allz (30)
e(@) = i ézg;sin ), o] <w 31

= ig"% cos (klqaw) sgn () exp kpo(w — [z ), |z |2 w. (32)
040

The parameters in these equations are given for the TE modes by
the positive roots of the system of equations for po, B0, and fo

P =8 — Ky, (33)
fo=K:— 8, (34)
fo tan(kwfy) = po (35)

while for the TM modes the parameters are the positive roots of the
system of equations for po, Bo, and ly, consisting of equation (33) and

l; = Ky — (Ki/Ky)Bs, (36)
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Fig. 4 — The relative amplitude of the imaginary part of e for the perturbed

TE mode.
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Fig. 5 — The relative amplitude of the real part of e. for the perturbed TE mode.

KUIU tan(ku’lo) = K3pu- (37)

The expressions for h(z) ean be obtained from equation (5).
We now turn to listing the formulas for the coefficients and param-

eters of the solutions for the perturbed TE and TM modes. For both
the perturbed TE and TM modes we have the relations

pl — gj_’) _ ( 1 ) t 2 _ .
0 = (Pu 181 4?)”1(0 [I(u(lc-‘m + S:m) + .6(|(S|1 S:«:t) + 2'5?0:60813]

+ ( 1 ){[Ko(szz — Sa) — 183(811 - Sg) — 2'1-.?3[118(;813]2

4]UDKU
+ 4K0[|3n312 + iPoSw]g};, (38)
where p; corresponds to the “+4" sign and ¢; to the “—" sign. It is
also true, at least to first order in 4, that
ea(_l:) = eu(:r:)*, a=1, 2: 3, (39)

hence we only list those parameters determining the solution inz = —w.

For the perturbed TE modes po, fo, and By are the positive solutions
of the system of equations (33) through (35), and [, is then given
in terms of B, as the positive root in equation (36). The remaining
parameters are

Go = Po (40)
g = fo, (41)
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Fig. 6 — The relative amplitude of the real part of e, for the perturbed TE mode.
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S22/(2Bo).

(42)
(43)

The quantities p; and g; are now determined by equations (38) and
(43). Next we have

ft =0 = (SM - 2.30131)/(2fu)s

(44)
AN
06 V=y 7// / \\\‘\
= N
= "~

-6.0

-4.8

-3.6

-1.2

0
x (1o=%cm)

1.2 2.4
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Fig. 7 — The relative amplitude of the real part of e, for the perturbed TE mode.
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b

1 2 2
m = m’ [Sn(Ka - Io) - 2K3ﬁm3|. + S:;a(Kl - )80) =+ 281310360]-

(45)
where [, corresponds to the “+” sign and m, to the “—” sign, and in
equations (44) and (45) B, is given in equation (43). Notice that

from (43) and (44), f; = g. = 0 for the TE case.
The expressions for the coefficients are

AL = —By(BoS1z + puSes) cos (kfow)/[2Kopo(p: — @], (46)
37 = —q cos (kfow)/(pr — @), (47)
30 = i(po/Bo) 41", (48)
0= —ap, (49)
37 = pu cos (kfow)/(p. — 1), (50)

B:im) = 'i(pu/lsu)B{D): (51)

F" =@ =0, a=1,3 (52)
U R TC R S (53)
O = MY =0, «=1,2,3 (54)
M

F;” = %C [:F Sz:i.Bufn - SIZ(K:s - fr-;)] ) (55)
1
=Gy, (56)
A (1)

3(” = %C [:F Smﬁnfﬂ - SIH(I{l - 18(2))] ' (57)
3
(1)
La7 _ 17, cos (kwf,) {aS.5[285(K, — Ko)e — 1)
MV
b8y 2 5
=+ o Si[2p3(Ky — Kz — 11}, (58)
;1) = (.BUKZi/lGKl)L.;”: (59)
1(” = '_(ﬁoK:a/IoKl)M:’E“. (60)

LM = M =0, (61)
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where
a = [LK, cos (kwly) + poKs sin (kwly)]™, (62)
b = [L,K,sin (kwl,) — p.K; cos (kwl,)] ™", (63)
¢ = (K.K; — Ki6; — Kifo) ™, (64)

and p, and g, are the values appropriate to the TE modes.
Finally, we write down the three combinations

AV + BV = —i(8o/po)[4:" + Bs"']
— cos (kfaw)[(py — Ko)Siz + BapoSzsl/(2Kopa),  (65)
37 4 B = cos (kfow)[F:" + G2"], (66)
A + BV = [Fi" + G{V] cos (kfow) + i[F5" — G5"] sin (kfow)
+ [L{Y 4 MV cos (klgw) + i[Ls" — M;"] sin (klaw). (67)

The coefficients 7§ = (", and hence A" + B{", are arbitrary and
correspond to an overall multiplicative constant. They can be set equal
to zero with no loss in generality. We discuss this point further in
Section III. Moreover, the individual coefficients A", 45", B{*, and
B{" cannot be determined at this stage. However, the terms we have are
sufficient to determine each component of the field up through order
one in 7.

For the perturbed TM modes po, Lo, and By are the positive solu-
tions of the system of equations (33), (36), and (37), and f, is given
in terms of B, as the positive root in equation (34). The parameters
qo and p, are still related by equation (40), my and ly by equation
(42), and gy and f, by equation (41). The remaining parameters are

B = [1/@B)IK(K I + Kapi)_+ (17
([SuBy/ KK Kph + K3l + £
+ [KiSualt/ KKK, — Kopi + 1}, (69)
where
¢ = (kpo)(Kipi + K3l (69)

With the aid of (68) and (69) for 8,, p; and ¢, are determined by
equation (38), f; and g; by equation (44), and l; and m; by equation
(45).
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The expressions for the coefficients are

Al(m = —K, cos (kwl,)(28,8: — 2popr — 822)/{2p0Kn(pl - 91)]: (70)

A" = — K, cos (kwl)(BoS12 4 1PoS=3)/ 2008 Ko(pn — a)], (71)
12 = K, cos (kwly)(28:8: — 2poqi — Su2)/12pKu(py — q1)], (72)
;0) — _Ago)r (73)

where 3, is given by equations (68) and (69), p, and ¢, are the values
appropriate to the TM modes, and A " is related to A by equation
(48) and B{” to B{” by equation (51). Furthermore,

PP - G0 =0, a=1,2,3 (7

=M =13, 7
Léﬂ) = Méo) =0, 7

3 = —M" = (LK.)/(28,K5), 7
FO = FP =a =@ =0 7
FU) 2

P = cos (kwly) {B.aS,.[K, + 2cpi(K, — Kj)]

(1)

2

4 pbSulK, + 285K, — K)1}/UpBKy),  (79)

L

; = —3c[8Ss £ LK 8:/(8.K3)] (80)
MY

AP + BV = [F3V + GV cos (kwfo) + 2[Fy"” — G3"] sin (kwf,)
+ [LY 4+ MV cos (kwly) + i[LsY — MiV]sin (kwl,), (81)

where
a = [po cos (kwfy) — fosin (kwfo)]™", (82)
b = [f, cos (kwfy) + posin (kwfo)]™, (83)
e= (K. — lg — Bo)". (84)

Just as in the perturbed TE case, the coefficients eannot all be deter-
mined uniquely. We can with no loss of generality set

LY = —M&P = 0. (85)
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Once this choice is made, we have

=[S — W8 — LBe + (Sa — 2Ll) (LK1/B.K5)1/(28),  (86)
= [=8u — L — My + (Saa — 20ma)(LK./BoK5)]/(2Bolo),
(87)
37+ Bi" = {—(Supokw)/ Ko
+ i[3ew(K:681/ Ky + KiloSs/Ks — 2KoBo8:)]/(Kabo)} cos (kwl)

(88)
M4 B = —i(Bo/Po)[As"” + B3] + (K1 cos (kwly)/KoBopo)
N [_‘Km@i/ﬂ?a - .Busax(pg — K5)/(2p.K.)
+ PoBoSaa/(2Ks) — Z'PESm/Ka]- (89)

A knowledge of these terms is sufficient to determine each component
of the field up through order one in «.

IV. DETAILS OF THE CALCULATIONS

In standard fashion H can be eliminated from equations (5) and (6)
by taking the curl of equation (5) and by making use of the assumed form
of the solutions, equations (7) and (8). There results the system of
equations

8% — g+ 3 Kiea = 0, (90)

d’es ) 3
7 — Be; + Z K;.e. = 0, (91)

df =1

de; | .. de 2 _
w Tt 2 Kyeo = 0, (92)
where we have introduced the new independent variable

£ = ka. (93)

The standard boundary conditions®* on E and H yield the conditions
that e,, eg, deq/dt, and des/dt + iBe, must be continuous at § = ¢ = kw.

The general plan of the calculation is first to consider the equations
obtained by substituting into equations (90) through (92) the expres-
sions for e, in the various regions given by equations (9) through
(11). From these equations, one can determine up through first order
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in n all but one of the parameters and some of the coefficients as
functions of the parameter 8;. Upon substituting these values into
the boundary condition equations, a set of equations is obtained from
which 8; and some of the remaining coefficients can be determined.

Since the components of the electromagnetic field satisfy a linear,
homogeneous system of equations, it follows that if es(z), « = 1, 2,3
is a solution set, then so is (1 + ayn + a=n® + .. .)ea(2), a = 1, 2, 3,
where the constants a;, @», . . . are arbitrary. For example, if the
coefficients Aq, Ba, . . . given by expansions of the form (12) rep-
resents a solution, then the coefficients given by expansions of the form

A, = AY + gla A + AP+ -0, (94)
with the same @, used in each expansion, represent another solution.
Thus unless the corresponding zeroth order coefficient is zero, the first
order coefficient cannot be uniquely determined. We do, however,
have the arbitrary constant a, at our disposal. The multiplieative
constant (1 + a;n + ...) can only be determined from a knowledge
of the excitation of the mode.

If the assumed expressions for e, in £ = ¢ given by equation (9) are
substituted into equations (90) through (92) we get the set of homoge-
neous, linear equationsin 4,, « = 1, 2, 3,

(Kn + “]‘-Su - .32)A1 + nb’w‘fj-‘l + (ﬂsla - iBP)Aa =0, (95)
7?81244-1 + (Kn + "Jszz + 102 - .82)A2 + TISmAa = 0, (96)
("T»Sla - 'iﬁp)Al + nSEaAz + (Ka + TISaa + pg)Aa =0, (97)

plus a similar set of equations with 4, replaced by B, and p replaced
by q. The condition that these equations have a nontrivial solution,
the vanishing of the determinant of coefficients, yields a relation be-

tween 8 and p of the form

D(p, B) = 0, (98)
where D (p, B) is a quartic polynomial in p and 8. The second set of
equations involving the B, and g yields the same determinantal equa-
tion with p replaced by g,

D(q, 8) = 0. (99)

That, is, g is a second root of the quartie. If p, g, and 8 are expanded
in powers of 5 as in equation (13), equations (98) and (99) can be
expanded in powers of 5 and the coefficients of the various powers of
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n can be equated to zero. The vanishing of the lowest order term
yields equation (33), which is satisfied by both p, and qo, thus also
yielding equation (40). The vanishing of the first order coefficients
shows that p, and q, are the two roots of a quadratic which are
given by equation (38). These results are independent of the TE or
TM character of the mode.

Equations (95) through (97) can now be expanded in powers of 7
by substituting in the expansions of p, 8, and A,. The three similar
equations involving g, 8, and B, can be expanded in powers of 5 in
the same way. Because p, and 3, satisfy equation (33), equation (96)
vanishes to zeroth order in 7, while equations (95) and (97) yield

(Ko - ﬁg)Alw) - 'l':.Bupo« ;ﬂ) = 0- (100)
—iBepo AL + (K, + pi) A" = 0. (101)

The determinant of this pair of homogeneous equations vanishes because
equation (33) is satisfied, so a nontrivial solution exists. The quantities
B{® and B{” satisfy the same equations. Using equation (33), it follows
from equation (101) that A{®” and A{" are related by equation (48), and
B and B{" are related by equation (51).
To first order in #, equations (95) through (97) are
(Ko — B) A" — iBupods”
= —[(Sn — 2.60.31)A1m) + 845" + (815 — ipuﬁn - '?:plﬁn)Aém]s
(102)
Sle:m -+ (2'}30171 — 2881 + Szz)Aém + S:eaA::D) =0, (103)
_iﬁnpoAil) + (K, + PS)A:SU
= _[(SIH - fpoﬁ1 - 'iplﬁo)Afm + Sq ;0) + (Ssa -+ 2’po;p1)A§m]-
(104)

With the replacement of A, by B, and p by g in equations (102)
through (104) we obtain the first order equations satisfied by the B,.
At this stage we must differentiate between the perturbed TE and
TM modes. For the perturbed TE modes we must have

A" + B = —i(Bo/pa)[As” + B"] = 0, (105)
A;” + B)” = cos (kfow), (106)
while for the perturbed TM modes

Il

AP + B = —i/p)[AS” + B"] = (K./Ky) cos (klaw),  (107)
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@ 4 B = 0. (108)

If we now add to equation (103) the equivalent equation in B,, and
make use of the fact that A + B\”, @ = 1, 2, 3 are prescribed for the
perturbed TE modes, in equations (105) and (106), we get a new equation
involving only A and B}”. This equation together with equation (106)
can be solved for A{” and B{” to yield (47) and (50). Once 4" is known,
A and A” can be determined from equations (103) and (48) yielding
(46). We get B{” and B.” from equation (105). In the same fashion we
determine A and B, a« = 1, 2, 3 for the perturbed TM modes.

Equations (102) and (104) [and the two equivalent equations in B;"
and B{"] are two inhomogeneous equations whose determinant vanishes.
Thus the left side of (102) is a multiple of the left side of (104), and the
equations are compatible only if the right side of (102) is the same
multiple of the right side of (104). This can be shown to be the case, and
so (102) and (104) provide just one relationship between A and ALV,
There is a corresponding relationship between B{" and B;".

By replacing A ., B., p, ¢ by Ca, Da, —r, —s, respectively, in the
equations so far obtained, the formulas for the region £ = —o are ob-
tained. Here —r and —s are the remaining two roots of the quartic
D(p, B) = 0.

Next, if the assumed expressions for e, in |¢| < ¢ given by equation
(11) are substituted into equations (90) through (92) we get four sets
of three homogeneous, linear equations in ¥, , G, , L. , and M, ,
respectively, which hold for both the perturbed TE and TM modes.
These equations are obtained from equations (95) through (97) by
replacing A, and p by F, and —if, G, and 1g, L, and —1l, and M , and
im, respectively.

The determinental equation for each of these four sets of homo-
geneous equations can again be expanded in powers of 5, and the coef-
ficient of each power of 4 separately equated to zero. The vanishing
of the zeroth order coefficients vields equations (34), (41), (36), and
(42) relating fo, go, lo, and m, to By. The vanishing of the first order
coefficients yields equations (44) and (45) relating f, g1, ly, and m,
to ,8[.

Each of the four sets of homogeneous equations can be expanded in
powers of 5, just as for the equations describing the region £ = o. To
proceed further, we must again differentiate between the perturbed
TE and TM modes. For the perturbed TE modes, equations (52)
through (54) must be satisfied, while for the perturbed TM modes,
equations (74) through (77) must be satisfied. These values satisfy the
lowest order equations identically.
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For both the perturbed TE and TM modes, the first order equations
can be written as

(K, — BOFL" — Bofols" = — 8. Fi", (109)

_IBUfU l“) + (K:i - fﬁ)Fém = _Sean(’mn (110)

(Ko — J2 — BOFS
= —8,,F" — 8yuFy” — (S22 — 2fofs — 2Bu8)F:" . (111)

For both the perturbed TE and TM modes, equation (111) vanishes and
yields no information, while equations (109) and (110) have a nonzero
determinant and so ean be solved for Fi{*’ and F" yielding the solutions
given in (55), (57), and (78). If we replace F', and f by G, and —g, we
get equations which can be solved for G{" and G5" yielding solutions
given in (55), (57), and (78). The equations obtained when F', and f are
replaced by L, and [, and M, and —m, respectively, have a different
character. The two equations in L{" and M " corresponding to (111) do
not vanish identically and can be solved for L{" and M ;" . The solutions
are given in (61) and (80). The equations in L{" and L;", and M{" and
M, have a vanishing determinant. In the perturbed TE case, the
equations are homogeneous and yield (59) and (60). In the perturbed
TM case, the equations are nonhomogeneous but compatible, and yield

the relations
—Bolo " + (K.8:/K))Ls"
= ""%(Sla - Imsl - Il'nﬁ'o) - %(833 - QIoll)UoKl/ﬁuKa), (112)

BoleM " + (Ky85/K\)M;"
= _%(Sla + 1B + m‘lﬁﬂ) + %(Saa - 2lnm1)(loK1/.8nK3)- (113)

We finally turn to the boundary conditions at § = =0, of which there
are eight, four at each boundary. They can be grouped as follows

Ay + By, = Foe'’" + Goe™™" + Loe™" + Mo ™, (114)

C, + Dy = Foe™" 4 Goe™ + Loe™ """ + M,e™, (115)
—pA, — qB, = ifFue’" — igGhe™ " + ilL.e"" — imM,e ™,  (116)
rCy + 8Dy = ifFe™" — igGae™” + ille ™" — imMoe'™, (117)
Ay + By = Fie''" 4 Gue ™ + Lye™"" + Mye™, (118)

Cy + Dy = Foe™'" 4+ Goe™ + Ly """ + Mye™, (119)
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—pA; — qB; + i8(A, + B)) = i(fF; + BF)e'’” + 1(—gGs + BG,)e "
+ i(ILy + BL)e'"" + i(—mM; + BM e "™, (120)

rCs + sDy + 18(C, + D)) = i(fFy + BF)e " + i(—gGs + BG )™
+ i(ILs + BL)e™™ + i(—mbL, + BM )™ .  (121)

These equations split naturally into two groups, one group involving
only the subscript 2 and the other group involving only the subsecripts
1 and 3. These equations can be expanded in powers of 5. The zeroth
order equations are satisfied as long as (35) holds in the perturbed
TE case and (37) holds in the perturbed TM case.

For the perturbed TE modes, the first order expansion of equations
(114) through (117) yields four nonhomogeneous equations in A{" +
BV, ¢ + D", F{¥ and G{". The inhomogeneous terms on the right
side of these equations contain the parameter 8,. The determinant of the
equations vanishes, and then the condition that they be compatible
provides an equation from which 8,, given in (43), is determined. Once 3,
is determined, these equations yield (56) and (66). We can now choose
the arbitrary parameter a,—indicated in (94)—so that F{* = 0. Then
from (56) and (66) GV = A" 4 B! = 0. In addition, since 3, is real,
it can now be shown that r, = p¥, s, = ¢%, CV = A"* D = BO*
and €V + DIV = [A) 4 B!"]*, « = 1, 2, 3, which justifies equation
(39). Finally, the first order expansion of equations (118) through (121)
can be combined with equations (59) and (60), equation (102), and the
corresponding three equations in B{" and B{", C{"’ and C{", and DV
and D" to form a set of equations from which 4 4+ B® = [C{"
+ D% and M, @ = 1, 3, can be determined. These are listed in
(58), (65), and (67).

For the perturbed TM modes the procedure is virtually the same,
except that it is now the first order expansion of equations (118)
through (121) which has a vanishing determinant. The condition
that these be compatible then vields the expressions (68) and (69)
for ;. This set of equations also yields the result that

LY + M = 0. (122)
We can now pick the arbitrary parameter a, so that L{" = 0, which
combined with (122) yields (85). Equations (112) and (113) now yield
(86) and (87). The first order term of equation (118) then yields (88), and
this result, combined with the equation obtained by adding equation
(102) to the corresponding equation in B yields (89). Finally, equations
(114) through (117) yield expressions (79) through (84) for F{", GV,
LV, M;", AV + By,
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