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This paper discusses certain imporiant aspects of the noise behavior
of a pumped resistive diode containing shot and thermal noise sources.
The derivation of the following result has a ceniral role in the discussion.
It is shown that the noise behavior of a pumped diode which does not contain
1/f noise sources can be derived in a very simple way from Nyquist's
theorem. This follows from the fact that the small-signal terminal behavior
of such a diode can always be represented, in the frequency range of practical
interest, by means of a connection of two linear and time-invariant nel-
works of which one is noiseless and the other is dissipative, contains only
thermal noise sources and s held at a uniform temperature.

I. INTRODUCTION

The process of frequency conversion and its applications are well
known and are extensively treated in the literature.*-2 This paper con-
siders the special case of a resistive diode frequency converter. An im-
portant limitation on the minimum noise figure of such a frequency
converter is imposed by the noise generated by the diode, and it is the
main purpose of this paper to study the properties of this noise.

Until a few years ago, much of the noise generated by the diode was
1/f noise. Therefore, since very little was known about this type of
noise, the early theories of frequency converters using positive resis-
tance diodes paid little attention to the noise performance, and some-
what later theories accounted for noise only in a very approximate
way. However, as the semiconductor craft has developed, 1/f noise
has been subject to considerable reduction and, even though its exact
mechanism has not yvet been completely established, in present diodes
it appears to be important only at very low frequencies.?® Therefore,
the study of shot and thermal noise in pumped diodes is of great prac-
tical importance.
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Strutt showed the method of treating shot and thermal noise in a
pumped diode many years ago.® Since that time the method has been
applied to tunnel diode frequency converters by a number of au-
thors?®2° However, in the case of a frequency converter using a posi-
tive resistance diode, it is normally believed that, in order to calculate
its noise figure, a detailed analysis of the noise behavior of the diode
is not necessary. o 12+

Consider a positive resistance diode which does not contain fre-
quency dependent noise sources. That is, assume that, for any fixed
voltage v applied to its terminals, the small-signal terminal behavior
of the diode is equivalent to that of an ordinary resistor held at a uni-
form temperature T. The conductance g of this resistor is equal to the
differential conductance of the diode and 7' is the so-called equivalent
noise temperature of the diode. Since in a frequency converter the
diode is pumped periodically by the pump, v varies with time. There-
fore, ¢ and T also vary with time, because they both depend upon v,
and one can write g = ¢ (¢) and T = T'(¢).

Normally it is convenient to represent the small-signal terminal be-
havior of the diode by means of a linear and time-invariant network
with several separate terminal pairs, one for each frequency of inter-
est. A study of the noise behavior of this equivalent network generally
requires that the self- and cross-power spectral densities of its short-
circuit terminal currents, or of its open-circuit terminal voltages, be
determined. Normally, however, the difficulty in determining the statis-
tics of these noise terms is overcome by making the assumption that
the equivalent network may be treated as an ordinary time-invariant
dissipative system which contains only thermal noise sources and is
held at a uniform temperature 7',. T, is normally assumed to be equal
to a certain time average of T'(%).

Even though no general proof has yet been given for this representa-
tion, it is widely used, mainly because it greatly simplifies the treat-
ment of the noise performance of a frequency converter. However, it
is often viewed with reservations for several reasons.’® One very im-
portant reason is that it is generally applied to cases, in which one can
easily show that it is not applicable, such as cases in which significant
1/f noise is generated by the diode. Another reason is that its validity
is not obvious even in the limiting case where the noise power available
from the diode is frequency independent and does not vary with the
applied voltage. In fact, even in this limiting case, it is often considered

to be not strictly valid,



THERMAL AND SHOT NOISE 1885

However, in this paper it is shown that, besides being valid under
certain limiting conditions, such a representation ean also be used for
formulating and interpreting in a very simple way the noise behavior
of a pumped diode under quite general conditions, including a negative
resistance diode.

In the following discussion it is assumed that the diode does not con-
tain frequency-dependent noise sources, so that its small-signal term-
inal behavior may be completely specified by the two time-varying
parameters ¢ (t) and T(t). Then it is shown that, in the limiting case
where 7' is a constant, the following theorem is true:

Theorem 1: If a pumped resistive diode is characterized by a time-
invariant equivalent noise temperature T, then its small-signal termi-
nal behavior can be represented by means of a {ime-invariant equi-
valent network which contains only thermal noise sources and s held
at a untform temperature Ty = T.

From this general theorem, which is already known to be valid un-
der certain particular circuit comditions,* a number of interesting re-
gults can be derived. One important result is of course that, in a fre-
quency converter which is bilateral and in which the noise temperature
of the diode has negligible variations with time, the noise figure can be
readily caleulated. In fact, under these limiting conditions the noise
figure can be related in a very simple way to 7" and to the dissipation
characteristics of the cireuit.*® **-+

Another important result is that, also in the general case where T'(f)
1s not a constant, the terminal behavior of the diode can be readily
derived from theorem 1. This is a consequence of the following gen-
eral property, which follows directly from the definition of T'(f) and
is stated as a theorem for emphasis:

Theorem 2: Constder a pumped diode characterized by the time-vary-
ing parameters T (t) and g(t). Its short-circuit noise current dn(t) 1s
wdentical to that of a second diode characterized by a time-invariant
temperature Ts and a differential conductance | g(t) | T(t)/T..

According to theorem 1, this second diode can be represented by an
equivalent network held at a uniform temperature T's. Therefore, by
applying to this equivalent network the generalized form of Nyquist’s
theorem derived by Twiss,** the correlations between the various fre-
quency components of dn(¢) can be readily determined. One finds that
these correlations are simply equal to the Fourier coefficients of g(t).
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This property is already known to be valid under certain particular
ecircuit conditions.1-2°

Now, consider a linear, reciprocal, passive and time-invariant one-
terminal pair network containing different elements held at different
temperatures. It is well known® that at a given frequency w, the effec-
tive noise temperature of this network can be expressed as a weighted
average of the various temperatures of the lossy elements. The weighting
factors in this weighted average are simply equal to the amounts of
power that are dissipated by the various lossy elements when the net-
work is connected, at its two terminals, to a generator delivering a
unit amount of power at the considered frequency w, . This result is
extended, in Section VIII, to a reciprocal and linear network containing
a time-varying resistance, by introducing the concept of average tem-
perature T,, of a pumped resistive diode. The significance of this param-
eter is best illustrated by the following example.

Suppose that one wants to calculate the noise power available from
the output terminals of a frequency down-converter. It is shown that,
if the frequency converter is bilateral, this power can be calculated
by replacing the diode with one having the same ¢-v characteristic and
a temperature equal to Ty, Where T’y is given by the relation

o _ POT®. o
v PO '

where { )av indicates the time average and P(f) is the instantaneous
small-signal power dissipated by the differential conductance of the
diode when a small-signal generator is applied to the output terminals
of the frequency converter. It is important to point out that T, de-
pends, in general, both on the characteristics of the diode and on those
of the circuit connected to it.

II. SMALL SIGNAL EQUATIONS OF A NOISELESS PUMPED DIODE

Let the diode current 7 be a nonlinear function f(») of the terminal
voltage v. It is assumed that the diode is pumped by a strong periodic
source at a frequency w, and its harmonics. Therefore » and 4 contain
large components v, () and .(t) of the type:

0

v(f) = 2. Vi exp jhot 2

=—c0

i) = 3 I. oxp jhut. @)

k=—w0
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It is assumed that v and ¢ contain, in addition, small components 8v (f)
and & (¢) and it is desired to derive the relation between $v(t) and
8i(t), for the limiting case 8v(t) — 0 and 8:(¢) — 0. Thus let

v =o(t) =v.(l) + &(l), 4)

1 =1(f) = 2.() + 6i(d). (5
The differential conductance of the diode is equal to the derivative of
f(v). Let it be denoted by gaz(v) and let

g(t) = galv.()]. (6)
Since v,(t) is periodie, also g(t) is periodic and therefore it can be
written in the form

o) = 3 go exp jhat. @)

k=—o0
Since ¢ = f(v) and gq(v) is the derivative of f(v), from equations 4, 5,
and 6 one has:

&) = g(t) ov(®) @®
in the limiting case 8v(f) — 0. This relation completely describes the
small-signal terminal behavior of the diode, in the absence of internal
noise sources.

IIT. SMALL SIGNAL EQUATIONS OF A NOISELESS DIODE IN THE
FREQUENCY DOMAIN

From equations 7 and 8 the relations between the different frequency
components of &v(f) and &({) can be readily derived*”. In fact, assume
that both év(t) and 8i(f) contain components at only the pairs of side-
frequencies ko, + pand kw, — p (| k| = 0, 1, 2, ete.; 2p < w,). Then
su(f) and 8i() can be expressed as follows:

o) = 280 3 Vou e itp + kot + 33 Vi exp o — ke | )

8i(t) = 2(Re)[g Iow exp j(p + kwo)t + :Z: Ig exp j(p — kw.,)t] (10)

and, on substituting equations 9, 10, and 7 into equation 8, one obtains
the following relations between the Fourier coefficients of the various
frequency components of §v(t) and 8(¢):

Iur = E gr—kVak + EZ gr+kVﬂk (r = 0, 1, etc.) (11)
k=0 =1
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I =2 gVae + 2 g-viVar (' =1,2, ete) (12)
k=1 k=0

which ean be written in the form:

{m} [[GM] lon.a]Hr..l} 13
Is] [Gea ]l [Gos)d LV5]

where the matrix notation is defined as follows:

I“u rIﬂ' I/vau Vﬂl
I,_“ Iﬂz Tfml Vﬁ?
= = = 7] =
Ia] I‘,-_; ' ‘Tﬂ-l Iﬁ;s 1’ Va] ‘Vﬂz ' I .ﬂ] v’ﬁs (14)
and the elements of the matrices [Gaal, [Gaf], cte., are
(Gnd)r.k = Gr—k (’rr k = 0, 1, etc-) (15)
(Gﬂﬂ)r.k = Gi—r (Tl k= lr 2r Etc-) (16)
(Gap)rk = Grew (r,k—1=0,1, ete) (17)
(Gaa)re = Grmi (r —1,k=0,1, ete). (18)

Equations 13 through 18 completely specify the terminal behavior
of the diode at the frequencies p & kw, in the absence of internal noise
sources.

IV. SMALL SIGNAL TERMINAL BEHAVIOR OF A NOISY DIODE

Up to this point the noise generated by the diode has been ignored.
In the general case of a noisy diode equation 8 has to be modified as

follows:
d(t) = g(t) () + on(t) (19)

where 8n(t) is the equivalent short-cireuit noise current of the diode.
Equation 19 corresponds to the equivalent cireuit shown in Fig. 1 in
which the spontaneous fluctuations of the diode are aseribed to a cur-
rent generator of infinite internal impedence, acting in parallel to the
differential conductance of the diode.

Now, consider the components of én(f) occurring in an infinitesimal
frequency range between w — (dw)/2 and w + (dw) /2. It is convenient
to account for these components by means of a single pseudosinusoid
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Fig. 1—Equivalent ecircuit of a time-v arying conductance containing noise
sources.

with random complex amplitude® %, Then, let N, and N, (b =
0, 1, 2, ete;; r = 1, 2, ete.) be the complex Fourier amplitudes of the
pseudosinusoids relative to the frequencies p + kw, and p — ko, ,
respectively. Noise components occurring at frequencies different from
these will be neglected since they have no effect on the small-signal
terminal behavior of the diode at the frequencies p % kw, . Then

on(t) = 2(Re){§ N exp jlp + ko)t + g N exp jlp — kw,,)t} (20)

and from equations 13 and 19 one obtains:
e -
1T5] [Goa ] [Ggs] ] Ns]

N a0 Nﬁl
_ A‘Tﬂ 1 ATﬂZ

N, =1 . and Nl =

where

(22)

Equation 21 completely specifies the small-signal terminal behavior
of a pumped diode containing noise sources. Tts physical interpretation
is often facilitated by introducing the equivalent circuit of Fig. 2. In
this equivalent circuit the diode is represented by a linear and time-
invariant network in which the terminal voltages and currents oceur
at the same frequency. Their Fourier coefficients are equal to those of
the various frequency components of 82 () and 8i(¢).

The network of Fig. 2 is completely specified with respect to its ter-
minal pairs by its admittance matrix

[G] — Ij[Gaa] [Grzﬁ]] (23)
[GﬁaJ {Gﬁﬂ]
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Fig. 2 — Time-invariant equivalent network of a pumped diode.

and by the noise column matrix

Nﬂ]
Nl = [Nﬂl} @)

which represents the complex Fourier amplitudes of its short-circuit
terminal currents. The self- and cross-power spectral densities of these
noise currents are

(Naé?fw , (Nﬁj;r?r) , and (Naé?rg*r) (25)

where ( ) indicates the statistical average. They are conveniently rep-
resented by the matrix



THERMAL AND SHOT NOISE 1891

1 1
af (NINT), (26)

where superscript’ denotes the Hermitian conjugate.

Now let the properties of the equivalent network of Fig. 2 be briefly
examined. Since g, = g*, (k = 0, 1, 2, ete.), from equations 15 through
18 one has that the admittance matrix [G] is Hermitian, that is:

(@] =[G (27)

It is interesting to note that this condition is equivalent to the condition
that

IM)(VIGIV]) = 0 (28)

for all V], which requires that the total reactive power flowing into the
nonlinear resistance at the various side frequencies p =+ kw, (k =
0, 1, ete.) be always zero. This property is a direct consequence of the
general energy relations derived by Manley and Rowe for nonlinear
resistors.”” Because of equation 27 the average small-signal power dis-
sipated in the admittance g(¢) can be expressed as

(B®)’9®)) = VIN(G] + [G1NV] = 2VITGIV]. (29)
Therefore, if

g(t) >0 (30)
at all times, then [(/] is both Hermitian and positive definite and the
equivalent network is dissipative.

Now, consider a linear and dissipative network which contains only
thermal noise sources and is characterized by an admittance matrix
equal to [G]. If such a network is held at a uniform temperature T,
then the various spectral densities of its short-circuit terminal currents
are simply given by the elements of the matrix

ET((G] + [GI).

From this generalized form of Nyquist’s Theorem, proved by Twiss,**
and from equation 27 one has that, if condition 30 is satisfied and the
matrix 26 satisfies the relation

(NINT') = 2kTdf[G], (1)

then the small-signal terminal behavior of the diode ean be represented
by means of an equivalent network which contains only thermal noise
sources and is held at a uniform temperature 7'.
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Of special importance is the particular case in which the circuit con-
nected to the diode is resistive at the harmonies 2w, , 3w, , ete., of the
pump frequency and, at these frequencies, does not contain generators.
Under these conditions it is always possible to choose the origin of time
in such a way as to make v,(f), 7.(f) and g(f) even functions of time.”
In this case, since all of the coefficients g, (k = 0, 1, etc.) become real,

Je = G-k >» (32)

and therefore [G] becomes a real symmetric matrix, because of
equations 15 through 18. If, in addition to equation 32, condition
30 is satisfied, then the equivalent network of Fig. 2 can be realized
by means of an ordinary resistive network.?

Of course, in the general case where the origin of time cannot
be chosen to make all the coefficients g; real, the diode cannot be
represented by a reciprocal (bilateral) network.

Condition 31 is never satisfied if g(¢) becomes negative for some
values of £ In fact in this case [G] is indefinite, while (N]N]T) is
always a positive definite or semidefinite matrix. On the other hand, if

g) <0 (33)

for all values of ¢, then [G] is negative definite and of special interest
becomes the condition

(NINJY) = —2kT df[G]. (34)

In fact, consider a pumped negative resistance diode which satisfies
this condition. If a frequency converter is made from such a diode
by imbedding it in a lossless network, then its noise measure, defined
by Hauss and Adler,® is independent of the characteristics of the
lossless network and is simply equal to T'/T,, where T, is standard
temperature, 200°K. Therefore, if G, is the exchangeable gain of such
a frequency converter, its noise figure F is simply equal to

F=14T7/T,(1—-1/G,). (35)

V. SHOT NOISE IN A PUMPED DIODE

Assume that the diode only contains shot noise sources and that
in the frequency range of interest transit time effects can be neg-
lect’ed-ﬂ, 11, 28, 31, 32

Assume for the moment that the voltage v applied to the diode
is time-invariant. Then &n(¢) can be treated as white noise over the
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frequency range of practical interest. Therefore, if S denotes its spec-
tral density, it can be expressed as

sn(t) = S*(), (36)

where 2(t) is white noise with unit spectral density. S will in general
depend upon the voltage v applied to the diode and it is convenient
to express this voltage dependence in the following form:

S = S;(v) = 2ET.(v) | gu(v) | (37)

where kT;(v)/2 represents the exchangeable noise power at the
diode terminals, per unit bandwidth. In equation 37 the occurrence
of the factor 2, in place of the usual factor 4, results from the fact
that here both positive and negative frequencies are considered.

Now, consider the general case where v is not a constant and let
the concise notation

T(@t) = Talo.()]
S(1) = Salve(D)] = 2kT(1) | () |

(38)

be introduced. Then #n(t) results from the superposition of statis-

tically independent random disturbances whose probability of occur-
rence is proportional to the deterministic and periodic function

h(t) = [S®) (39)

Since it 18 assumed that the duration of these disturbances is much
smaller than the reciprocal of the highest significant frequency
of h(t), equation 36 is still applicable and therefore

én(t) = h(t)z(t). (40)

Now let consideration be restricted to the fluctuation components
occurring in infinitesimal frequency intervals of width df, centered at
the frequencies p =4 kw,. Then, since z(f) is white noise with unit
spectral density, from equation 40 one has that én(f) can be expressed
as follows:*'*°

sn(t) = h(t) i: 2(df)} cos [(sw, + pt) + @] (41)

where ¢, are statistically independent random phase angles distributed
uniformly over the range (0, 2r).
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Let h(t) and S(¢) be represented by the Fourier series

S(t) = i S; exp jko, i (42)
h(t) = E H, exp jke,t. (43)

k=—c0

From equation 39 one has that S, and Hj are related through the
relations:

Sr = Z H;H,_k . (44)
k=—om
Introduction of equation 43 in equation 41 gives:

() = @) S S Hlexp il + Do + pt + 0]

f=—g0 g=—00

+ exp jl0r — St — pl — @]}

It

@t > Z H,_, exp je, exp j(kw, + p)t

a=—c0 k=—o0

+ H,_, exp —jo, exp —jlkw, + p)i (45)

2(Re){(df)* > 3 Hi-. exp e, exp j(ha, +p>z}.

k=—om sa=—o

From this last relation and from equation 20 one obtains

0

N = (df)* _Z_: Hy_, exp J‘Pu (46)
Nﬁk = (d]‘)} Z_: H—k—l‘ exp jga. - (47)

Hence, since
. . 1,
(exp jo, exp —je,) = { '
0, r# s
from equations 46 and 47 one obtains:
M = i H,._,H

af e (48)
= Si—r
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and
(Nul‘Ng) — i Hk— Hr+1
df e (49)
= Sk+r .

Now, consider a time-varying conductance equal to S(f) and let
[8] denote its admittance matrix. Then [S] is obtained from equations
15 through 18, and 23 by formally replacing g, and G with S, and 8
throughout. Therefore the elements of [S] are equal to the various
Fourier coefficients S, and, from equations 48 and 49, one obtains
the final result

(NINT') = df[S]. (50)
V1. NOISE BEHAVIOR OF THE DIODE

The preceding section showed that if a diode contains only shot
noise sources, then the self- and cross-power spectral densities of
its short-circuit terminal currents are simply equal to the Fourier
coefficients of 2kT (t) |g(t)|, over the frequency range of practical
interest. Let us examine the significance of these relations, which
are valid even if the diode contains thermal noise sources.

Tirst, consider the special case of a positive resistance diode char-
acterized by an equivalent noise temperature T';(v) which is ap-
proximately constant over the range of voltages of interest, so that
the approximation

T,(v) = T = constant (51)
can be made. In this case since equations 38 give
Se = 2kTg,, (52)
one has
[S] = 2kT[G] (53)

and therefore from equation 50 it follows that the spectral density
matrix satisfies condition 31. One concludes that, if T;(v) is inde-
pendent of v and condition 30 is satisfied, then the small-signal
terminal behavior of the diode can be represented by a time-invariant
dissipative network held at a uniform temperature T, as stated in
theorem 1.

Thus, in the limiting case (51) and under the restriction g(f) > 0,
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equation 50 can be interpreted as a direct consequence of theorem
1 and Nyquist’s theorem. Now, a little reflection shows why equation
50 also is valid in the general case where 7'(#) is not a constant
and the restriction g(t) > 0 is removed. In fact, two diodes having
the same S(¢) have the same short-circuit terminal currents, no
matter what their differential admittances may be. Notice that from
this rather obvious property theorem 2 follows at once. That is, the
short-circuit terminal currents of a diode characterized by an equi-
valent noise temperature 7'(f) and by a differential conductance
g(t) are identical to those of a diode characterized by a constant
temperature 7's and a differential conductance

[ g(®) | [T(®]/ T, (54)

where T, is an arbitrary temperature. It is important to point out
that, even though the foregoing two diodes have the same short-circuit
terminal currents, they are not equivalent since they have different
conductances. On the other hand, the terminal behavior of a diode
characterized by a voltage-dependent temperature T';(v) and a con-
ductance gq(v) is equal to that of the parallel connection of the two
diodes (see Fig. 3) with voltage-independent temperatures T; and
Ty and with the differential conductances gq (v) and ggz(v) defined
by the following equations:

ga(®) + g2 = 9. (55)
gu@Ty + g20)T: = g.@)T.(@) (56)

where T'; and T's are subject to the only condition
T, < Ty(v) < Ty (57)

which guarantees that ga:(v), ge2(v) and gq(v) have all the same
sign. Notice that the equivalent circuit of Fig. 3 and the original
diode have the same short-circuit terminal currents because of equa-

I

b A
Tz +9dz (V!

Fig. 3— Representation of an arbitrary noisy resistive diode by means of two
diodes with voltage-independent noise temperatures 77 and 7.

== 3
T4V, ggv | Ty, 944tV
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tion 56, and have the same differential conductances because of
equation 55. An important feature of this equivalent ecircuit is that
theorem 1 is applicable to both diodes and it can therefore be studied
by standard techniques. Particularly interesting is the limiting case
Ty = 0. In fact in this case one of the two diodes becomes noiseless
and the other has the time-varying conductance

g2(t) = gualv.()] = gOIT®/ T2, (58)
when the pump voltage v,(t) is applied to it. Hence, by comparing
equation 54 with equation 58 one obtains the following result. If
g(t) > 0 and T, > T(t) for all values of £, then, by connecting a
noiseless diode having the conductance

7)) = galo.(®)] = gO[T: — TO)/T. (59)

in parallel with the second diode of theorem 2, one obtains a circuit
completely equivalent to the original diode.

Now, consider the case where g(t) < 0 for all values of ¢ and
suppose that condition 51 is satisfied. Then

[S] = —2kT[G] (60)

and from equation 50 one has that condition 34 is satisfied. Hence,
the remarks about this possibility at the end of Section IIT apply.
In general, where T'(¢) is not a constant, equation 35 is not valid.
However, if Ty and T. are the minimum and maximum values of
T(t), so that

=T =T (61)

then one can say that the noise performance of the diode will be
bounded by the two limiting values obtained from equation 35 for
the two limiting cases T = Ty and T = T.

VII. TERMINAL BEHAVIOR OF THE DIODE IN THE IMPEDANCE-MATRIX
REPRESENTATION

In some cases it is convenient to use the impedance-matrix rep-
resentation, rather than the admittance-matrix representation, for
deseribing the terminal behavior of the diode. Let

"l = 1/g) = 3o o exp jka,t (62)

k=—c0

be the differential resistance of the diode. Then the impedance-matrix
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representation of the small-signal terminal behavior of the diode can
be written in the form

V] = [RlI] + N.] (63)

where the relations between the elements of the impedance-matrix
[R] and the coefficients r;, are identical to those between the elements
of [G] and ¢, (see equations 15 through 18). The column matrix
N,] consists of the amplitudes of the open-circuit terminal voltages
of the diode. If

0() = 2KT(t) [1() | = 3 0, exp jlw,t (64)

k=—o0

then one has
(NN I = df[0] (65)

where [0] can be obtained from equations 15 through 18, and 23
by replacing G and ¢g; with 0 and 0 throughout. Notice that equa-
tion 65, which is analogous to equation 50, follows from theorem 1,
Nyquist’s theorem?* and the fact that two diodes having the same
0(t) have the same N,], no matter what their differential resistances
may be,

VIII. AVERAGE TEMPERATURE OF A PUMPED DIODE

Consider a linear, reciprocal, passive and time-invariant one-terminal
pair network containing different elements held at different tempera-
tures. It is well known®® that at a given frequency w, the effective noise
temperature of this network can be expressed as a weighted average of
the various temperatures of the lossy elements. The weighting factors
in this weighted average are simply equal to the amounts of power that
are dissipated by the various lossy elements when the network is con-
nected, at its two terminals, to a generator delivering a unit amount of
power at the considered frequency , . This result is extended, in this
section, to a pumped diode.

The concept of average noise temperature 7,, of a pumped diode
is introduced in this section. Consideration is restricted to the case
where ¢g(f) = 0 and condition 32 is satisfied, so that the equivalent
circuit of the diode is passive and bilateral. It is shown that T,, de-
pends, in general, both on the characteristics of the diode and on those
of the linear and time-invariant ecircuit connected to it. However, if
certain conditions are satisfied, then it only depends on the diode
characteristics.
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Consider a one-terminal-pair network N consisting of a pumped
diode imbedded in a linear, time-invariant and bilateral two-terminal-
pairs network N’ (Fig. 4). Assume, furthermore, that the network
N can exchange power at a single frequency oy, at its terminals. Then
the average temperature T, of the diode is defined in the following
way:

T., is such that the noise power available from the terminals of
the network N does not change if the actual temperature-voltage
characteristic T3(v) of the diode is replaced with a constant tem-
perature equal to Ty .

Now let a small-signal generator of frequency o; be connected to
the terminals of the network N, and let 8i(t) and 8v(t) be the small
signals produced at the diode terminals. It will be shown that

f T i) (T dt
T, = =2 .

2x/we (66)
f 5i(t) &u(f) di

Notice that this equation is equivalent to equation 1.
Proof: It is convenient to represent the circuit of Fig. 4 by means of the
equivalent circuit of Fig. 5, where the network D represents the small-
signal terminal behavior of the diode and each terminal pair of D
exchanges power at only one frequency. Notice that in Fig. 5 the net-
work N’ has been represented by means of several separate equivalent
circuits, N7, N}, ete., one for each frequency of interest.

The network D can be decomposed into two separate networks
D, and D, each held at a uniform temperature.

In fact, let the diode of Fig. 4 be replaced by the two diodes shown
in Fig. 3 and let 8, (t) and 3i2(t) be the small-signal currents of the

— |

] 8L \

1 \

w, '{\f\.’) N 5«_;1 r'y {
[ |

! , T4v) |

gd(V) |

Fig. 4— Diode imbedded in a linear, time-invariant and bilateral network N’.
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Fig. 5 — Equivalent circuit of the network N of Fig. 4.
two diodes. Then, from equation 56 one has:

su(t) 8i(6) T() = dv(t) 86, () Ty + dv(t) 86a() Ta
which gives:
(o0(t) i(DT(D))aw  (B0(1) 86(1))neTs + (80(8) 81a()}usT’s. ©7)

(o(t) 6i(D)ee (ou(t) 81(1))uv

Since theorem 1 is applicable to both diodes of Fig. 3, it is clear
that the network D of Fig. 5 can be represented by the parallel
connection of two networks (D; and D.) of which one is held at a
uniform temperature T; and dissipates an average power equal to
(v (t) 811 (£) Jav, and the other is at T'» and dissipates (3v(£)812(¢))av.

Now, since both D; and D are bilateral, the noise power available
from the network N of Fig. 5 does not vary® if the temperatures

of D; and D, are changed so that they become equal to

(80(t) 86,(8))euTs + (B0(t) 8ia(D))uT2
(80(8) 812(D))ue + (80(1) 872(8))uv

which, together with eq. 67 gives eq. 66.

Equation 66 is of particular interest when w, = p, since in this case
it corresponds to the example considered in the introduction. Notice
that T, is not, in general, a function of the diode characteristics alone.
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In fact, it also depends both on the particular characteristics of the
network N’ in which the diode is imbedded and on the value of the
frequency w, at which T,, is defined, unless T'(f) is constant.

Under conditions of practical interest 7' always varies with time and
consequently a direct application of theorem 1 is never strictly valid.
Equation 66 shows, however, that if certain conditions are satisfied,
then T,, is little affected by the particular choice of w, and N’, and
consequently a direct application of theorem 1 may not introduce
significant errors. More precisely, suppose that either

1
~0 ~0 68
gd(v) or gd(v) ( )
for some values of v and that
Ti(v) =~ T' = constant (69)

over the range of voltages for which conditions 68 are not satisfied.
Under these conditions either T'(t) ~ T or 6v(f) 8i(t) ~ 0, for all values
of ¢, and consequently from equation 66 one obtains T, =~ T'. There-
fore in this case, and only in this case, T, can be regarded as a function
of the diode characteristics alone and theorem 1 is applicable, with 7'
replaced by 1.

An important application of the preceding result is given by an
ideal Schottky barrier diode. In fact, the relations derived in Ref.
22 between the noise figure and the conversion loss of such a diode
imply that its junction can be represented, under certain particular
conditions, by means of an ordinary resistive network held at half
the temperature T', of the junction.
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