On Solutions for Two Waves with

Periodic Coupling

By S. E. MILLER
(Manuseript received January 25, 1968)

An exact solution for the coupling effects between two waves with a
particular complex periodic coupling function is presented; the parlicular
coupling function gives the same wave inleractions as constant coupling but
at a translated value of differential phase constant. A transformation is
given which permits known theory for constant coupling to be applied to the
periodic coupling case.

Approxzimate solutions are given for periodically reversed coupling
(stnusoidal or square wave) befween two waves, and calculalions are pre-
sented which indicate the solutions are valid for arbitrarily long coupling
regions or arbitrarily large inlegrated coupling strengths. The region of
validity for earlier perturbation theory is defined and proved to include the
cases of interest for multimode circular electric waveguides.

I. INTRODUCTION

This paper describes some solutions for two waves with periodic
coupling. Coupled waves have been important in a wide variety of
communication devices: transmission lines, directional couplers, am-
plifiers, and in describing mode interchange phenomena generally.'
Multimode transmission lines have been advantageously described
through coupled wave equations, and a particular situation of im-
portance exists in the circular electric waveguide.

As first shown by H. E. Rowe and W. D. Warters,* periodic
straightness variations cause periodically reversed coupling from the
circular electric wave to several other waves, and this interaction
results in the most difficult tolerances on the fabrication and instal-
lation of the waveguide itself. Publications by H. E. Rowe and
W. D. Warters have provided a comprehensive understanding of the
fundamentals involved and have given explicit expressions based on
perturbation theory for ecalculating the loss versus frequency varia-
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tion resulting from such periodic mode conversion.* A subsequent
publication by D. T. Young* has indicated how the approximate
solution of Rowe and Warters may be transformed mathematically
to show explicitly the way differential attenuation smooths out the
mode-coupling effects on the loss versus frequency characteristic.
Young’s solution depends upon a valid perturbation solution. A
discussion of the accuracy of the perturbation solution is given by
H. E. Rowe;* when the differential attenuation is too small the per-
turbation solution breaks down and it is of interest to know exactly
where and quantitatively how this oceurs.

We show in this paper that a certain periodic coupling function
has exactly the same effect on waves of unequal phase constant as
uniform coupling between waves of identical phase constant. A trans-
formation is given to allow the use of earlier theory for periodically
coupled waves.

Also presented here is an approximate solution for the periodic
coupling distribution sketched in Fig. 2 valid for any value of dif-
ferential attenuation. It is true that known solutions for uniform
coupling, as in Fig. 1, can be applied to Fig. 2 by simplying solving
for the output values at * = A,,/2 and using these as the input bound-
ary conditions for the transmission region starting at * = An/2. The
resulting exact expression representing conditions at x = A, can be
expressed as a matrix and raised to the n* power to represent the
solution at £ = nAn. We seek here a simpler form of expression in
which the functional interrelations can be visualized without exten-
sive numerical calculations.

II. EXACT SOLUTION FOR TWO PERIODICALLY COUPLED WAVES

We start with the following equations for two coupled waves:

d
d_zEl(z) = —vE, + Czl(z)Ez (1)
L B) = cul@B, — 1aF, )

c(z)

Fig. 1 — Constant coupling.
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c(z)

+C

<k -
Ml Am
o

Fig. 2 — Square-wave coupling.

in which y; and y= are the complex propagation constants and c¢qs
and ¢, are coupling functions. Appendix A shows that the coupling
functions

sy = jc, exp (jk.z) = je,[cos kz + jsin k2] (3)

and
¢ = je, exp (—jk2) = je,(cos kz — jsin k.z] (4)
give the same solutions previously found® for k, = 0 provided that
kc = (BL‘ - 61) = Anﬁ (5)

where ¢, is a constant and

Yo = @m + B - (6)

When (5) holds, complete transfer of power between waves can

occur. When (5) does not hold, the resulting wave interactions can

be calculated using previously developed theory for k., = 0 and
substituting AB for A8 in the k. = 0 solutions, where

AB = A8 + k. (7)
11I. PHYSICAL REALIZATION OF IDEAL PERIODICALLY COUPLED WAVES

We describe here a physical realization of waves coupled according
to equations (3) and (4), and cite an advantage in mode selective direc-
tional couplers.

Figure 3 shows a mode-selective coupler between TEJ of rectangular
guide and T'Eg, of round guide. The thin dielectric lining is used to break
the TES, — TM¢, degeneracy. The longitudinal magnetic intensity &S
of the TES, wave is coupled to the longitudinal magnetic intensity A%
of TEJ in the off-axis longitudinal slots and is also coupled to the trans-
verse magnetic intensity A7 of TEJ in the 45° slots on-axis. In each case
the magnitude of the coupling is set by the length and width of the slot.
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Fig. 3 — TE",,-TE°, coupler using unequal phase constants in the rectangular and
round waveguides.

The phase reversal of the longitudinal 7 coupling is accomplished
by reversing the slot position relative to the centerline, and the phase
reversal of the transverse A7 coupling is accomplished by reversing the
slant angle of the slot. One set of slots represents the sine term. It is
not necessary that any particular fraction of A, be used in a coupler,
since the coupling is always in the same phase relative to the desired
waves in the two guides. To accomplish the desired mode selectivity
the AB between the TES and TE?, waves is made equal to k, = 27/\,,
as in equation (5).

An advantage of a coupler of this form, compared with one in which
constant coupling is used with Ag = 0, is that the waveguides can have
the standard dimensions set by other considerations.

Other illustrations of useful coupling between waves of unequal phase
constants will be given in another paper which the author is preparing.

IV. SQUARE-WAVE OR SINUSOIDAL COUPLING

We present here the results of Appendices B and C which discuss
approximate solutions for the cases in which the coupling is a square
wave as in Fig. 2, or the corresponding sinusoidal

c(z) = sin (2wz/\,). 8)

Both solutions are expressed in the form and notation of a previous
publication® giving the solution when the coupling is constant, and
the boundary conditions E;(0) = 1.0 and E,(0) = 0 are impressed:

B\(z) = €7 {Ae™ + Be') 9)

Bye) = S (& — &™) (10)

.\/

L]
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in which
WGRE
A= L% - éﬁ*—\—/—ﬂ (11)
)4
B = é+% 2o v % (12)
o= Ay e N/ (13)*

2 2

v ET AR e
A = a;, — az

Ay, = Ao + tAB. .

The wave interactions are deseribed by the above equations provided
the following values of ¢, and Ag, given in Table I are used.

TABLE I — VALUES OF ¢, AND AB,

Coupling function
(see Fig. 2) c Ap.

Constant = ¢ c AB = (B — Ba)
Square-wave of 9 —_—
magnitude ¢ and 2e AR — =1 - c}\__,,,)
period Am T Am T

. 2wz c 2
¢ sin (ﬁ) 5 A — i,—n

These solutions, equations (9) and (10), have been obtained in Appen-
dix B by relating the rate of transfer of power (that is, transfer over a
short length interval) for the periodically reversed coupling to that for
constant coupling, and noting the effective value of coupling c, and
effective differential phase constant AB, . The solutions are correct
for z equal to an integral multiple of \,,/2, and may be in error by less
than approximately 0.2¢A,./T at intermediate values of z.

There probably should be a correction factor in AB, for sinusoidal

#7, corresponds to the + sign and 7y corresponds to the — sign.
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coupling similar to the radical shown in Table I for the square wave
coupling; the work done thus far has not defined what it should be, but
for small ¢, the radical is negligible for most purposes.

The values of AB: in Table I bear marked resemblance to equa-
tion (7); however, because the simple sinusoid or square wave cou-
pling phase is two-valued (versus z) instead of continually progressing
(equations 3 and 4) to provide coupling continuously in step with
the phase changes of waves 1 and 2, there are local maxima® in
coupling effects at other values of AB for sinusoidal or square wave
coupling. Appendix B shows that the wave interaction effects are
properly described for square wave coupling in the regions near

ABN,, = 21p 1)
p — ]_’ 3, 5, -
by the transformations
2 2

88, = 88— p 2 J1 - (=) (16)

m p]’r

2c

O = o (17)

Because ¢, drops off rapidly with increasing p the corresponding wave
interaction effects drop off also.

4.1 Numerical Comparison of Approximate and Exact Solutions

A few calculations have been made to find quantitatively the
error resulting from the approximations made in equations (9) and
(10) for coupling as in Fig. 2. An “exact” solution is obtained by
using exact uniform coupling theory on each interval of 0.5 An, the
output of one interval being taken as the input to the next interval.

We take first the simplest case,

Aa = 0.

Then equation (9) becomes

oA F—— [t(ﬂg_ﬂ)_]

P B - B g
-1(:05 [\/ ;cz] - i’% sml[\/ Tcz]J (18)

*Rowe and Warters noted this in their work recorded in Ref. 3.
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Ey |aa-o = —exp [1. (8, -g Bz)z]{ \;c- sin [\/# ?—rcz]} (19)

in which

v = (ﬁ%) +1 (20)

and AB, is as given in Table I for square wave coupling. We notice in
passing that for Ag, = 0

E, = cos (7% cz) (21)

E,

i sin (% cz) (22)

and the power exchanges completely back and forth between the
two waves as a function of z; this is of course identical to the be-
havior in uniformly coupled waves, but with a modified period given
by the 2/= factor.

We take for the first numerical comparison the condition

so that at A, = 0, E, = 0 and | E, | = 1.0. The additional specific
numbers used are

E, (2) 2cz
cz
CA /,f //
m
- A
/0
/(‘ l
CAm J_/ '/
K s
/ |
¢ !
€
/ |
[}
/ |
| | ——
Am Am
2

Fig. 4 — Undriven-wave amplitude versus distance for lowest order square-
wave coupling.
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A = 2 feet

Il

2 1000 feet,

2.46740 X 107" ft7".

c

Fig. 6 shows a plot of the loss 20 log | E, | (labelled | Aa/c | = 0) versus
AB,\,,/2 and Table IT shows the comparison of the exact versus approxi-
mate calculations, the latter obtained from equation (9) and associated
expressions. It may be kept in mind that Ag and Ag, are inversely pro-
portional to frequency in many cases of interest, so that Fig. 6 is a loss
versus frequency plot associated with a particular periodic coupling
component. The radical in the expression for AB, was ignored in the
comparison of Table IT and this might account for the consistent positive
difference (approximate—exact) for Ag\,,/2 greater than . Aside from
the pole at AB\A,./2 = 7, the two caleculations agree to better than 1
percent in dB even when the loss is a few tenths of a dB.

Figs. 6 and 7 and Tables ITI, TV, and V show similar comparisons
for Aa = — |c|, Aa = =5 | ¢|, and Aa = —50 | ¢ |. Excellent agree-
ment is obtained in all cases.

Table VI shows a comparison of the phase angle on E, , computed by
the two approaches. For the points shown and for the other points
(not shown) corresponding to the amplitude values of Tables II and V
the agreement is excellent. Fig. 8 shows a plot of the phase, where odd
symmetry about Ag, = 0 is understood.

A check has also been made on the accuracy of equation (9) in the
region near AB\,, = 6, corresponding to p = 3 in equations (15) through
(17). The same parameters were used as in the calculations for Figs.
6 and 7. The results are plotted in Figs. 9 and 10 which represent both
the approximate calculation from equation (9) and the exact calcula-
tion. The differences are on the same order as given in Table II, and
are too small to show in the figures. Figures 9 and 10 may be compared
directly with Figs. 6 and 7 to see the ‘‘third harmonic’” loss (labelled
E} in Figs. 9 and 10) in relation to the ‘“fundamental” loss, Figs. 6
and 7.

4.2 Inlerpretation and Further Simplification

Consider first the shape of the loss versus AB, (equivalent to loss
versus frequency) curves. In the limit

> 1 (23)

I
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Fig. 5— Undriven-wave amplitude versus distance for “third harmonic” in
square-wave coupling.

TaBLE II — Exact AND APPROXIMATE CALCULATIONS

oF E, For | Aa/c| =0
Aﬂ(t‘) 20 log | I | Approximate
2 Approximate Exact ~exact

x — 0.0157079 — 0.1662db — 0.1680db + 0.0018db
= — 0.01413716 — 0.1389 — 0.1403 + 0.0014
r — 0.01256637 — 0.0094 — 0.0096 + 0.0002
r — 0.01099557 — 0.0951 — 0.0960 + 0.0009
= — 0.009424777 — 0.4270 — 0.4300 + 0.0030
= — 0.0078539816 — 0.4973 — 0.4999 + 0.0026
= — 0.006283185 — 0.1156 — 0.1161 + 0.0005
= — 0.0047123889 — 0.1260 — 0.1267 + 0.0007
r — 0.00314159264 — 1.6530 — 1.6582 + 0.0052
r — 0.0015707963 — 6.4362 — 6.4540 + 0.0178
T — 122.73 — 58.54

= + 0.0015707963 — 6.4362 — 6.4184 — 0.0178
= -+ 0.00314159264 — 1.6530 — 1.6481 — 0.0049
= + 0.0047123889 — 0.1260 — 0.1255 — 0.0005
= + 0.006283185 — 0.1156 — 0.1154 — 0.0002
* + 0.0078539816 — 0.4973 — 0.4949 — 0.0024
7w + 0.00942477 — 0.4270 — 0.4243 — 0.0027
r + 0.01099557 — 0.0951 — 0.0944 — 0.0007
= + 0.01256637 — 0.0094 — 0.00964 -+ 0.0002
= + 0.01413716 — 0.1389 — 0.1378 — 0.0011
= + 0.0157079 — 0.1662 — 0.1646 — 0.0016
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Fig. 6 —Driven-wave loss versus Af. near ASAm = 2x (fundamental) for
| Aafe| = 0,1,5.

earlier perturbation theory* has shown that the fractional frequency
interval between half-height points on the loss curve is

ﬂ _ AB*% _ %
7= a8 2|28 (24)
or
A,y =2 | da . (25)

Table VII shows a comparison between that limiting value and the
true value for the numerical cases above, including | Aa/c | from one
to 50. Even at | Ae/c | = 1 there is only a 30 per cent error.
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Consider the limiting case Ae = 0. Then
E =[1— E)T (26)

and nulls in the loss curve oceur when equation (19) representing
E, is zero. This gives

AB, lronmatt = = \,’("’2 ) _ 1 (@7)

7 N\2cz

When we also have the perturbation condition, ¢z < 1, equation (27)

°F ! I [
e
|

44.L . | |_

) |

Aal_
|Ag|-s |
| - -
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Fig. 7— Driven-wave loss versus Af. near AfAm = 27 (fundamental) for
| Aafe| = 1,5,50.
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becomes
2w

AB, aur =2 > (28)

which agrees with previously known perturbation theory.? For this

TABLE III—Exact AND APPROXIMATE CALCULATIONS

orF E, FoR | Aa/c| = 1
AB (E) 20 log | E1 | Approximate
2 Approximate Exact —exact
x — 0.0157079 — 0.2898 — 0.2910db + 0.0012db
= — 0.01413716 — 0.3438 — 0.3450 + 0.0012
7 — 0.01256637 — 0.4152 — 0.4164 + 0.0012
x — 0.01099557 — 0.5452 — 0.5440 4+ 0.0012
x — 0.000424777 — 0.7300 — 0.7319 + 0.0019
x — 0,0078539816 — 0.9601 — 0.9620 <+ 0.0019
7« — 0.006283185 — 1.3106 — 1.3126 + 0.0020
= — 0.0047123889 — 2.0216 — 2.0243 + 0.0027
= — 0.00314159264 — 3.3781 — 3.3823 + 0.0042
x — 0.0015707963 — 5.3475 — 5.3523 + 0.0048
T — 6.5701 — 6.5705 -+ 0.0004
7 + 0.0015707963 — 5.3475 — 5.3434 -+ 0.0041
= + 0.00314159264 — 3.3781 — 3.3746 — 0.0035
= + 0.0047123889 — 2.0216 — 2.0194 — 0.0022
= + 0.006283185 — 1.3106 — 1.3092 — 0.0014
= + 0.0078539816 — 0.9601 — 0.9588 — 0.0013
x + 0.00042477 — 0.7300 — 0.7289 — 0.0011
x + 0.01099557 — 0.5425 — 0.5416 — 0.0009
T + 0.01256637 — 0.4152 — 0.4146 — 0.0006
r + 0.01413716 — 0.3438 — 0.3430 — 0.0008
r + 0.0157079 — 0.2898 — 0.2892 — 0.0006
TaBLE IV— Exact AND APPROXIMATE CALCULATIONS
oF B, For | Aa/c| =5
AS(R—M) 20 logu | B1 | Approximate
2 Approximate Exact —exact
~ — 0.0314159262 — 0.2446db — 0.2452db + 0.0006db
x — 0.01884955 — 0.5337 — 0.5344 + 0.0007
P — 1.6195 — 1.6197 + 0.0002
= + 0.01884955 — 0.5337 — 0.5344 -+ 0.0007
= + 0.0314159 — 0.2446 — 0.2445 + 0.0001
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TABLE V—ExaAcT AND APPROXIMATE CALCULATIONS
oF E, ror | Aa/c| = 50

AB(E) 20 logu | 1 | Approximate
2 Approximate Exact —exact

= — 0.314159 — 0.0234db — 0.0238db + 0.0004db

 — 0.1884955 — 0.0523 — 0.0525 — 0.0002

T — 0.1724 — 0.1727 + 0.0003

= + 0.1884955 — 0.0523 — 0.0525 -+ 0.0002

T 4+ 0.219911 — 0.0418 — 0.0421 + 0.0003
case, from (26)

E,=1-%}|E 7

(29)

2 2
Jsin [\/(E_'(L*) +1 gcz:ﬂ
[ —1 4r/c Gl
1 —
e
47 /e
form (just as in the case of sinusoidal coupling?)
(sin au)2
u
which in our terminology has half-peak loss (with AS, the variable) at

1.811"
2

and the loss has the

Aﬁ*% [Aa-ﬂ = (30)

For the numerical case of this paper, z = 1000 feet and

AByy |aa-0 = 0.00565.

TaBLE VI —PHAsE ANGLE oF E, For | Aa/e| = 0

A (}j) Angle for Ey Approximate

2 Approximate Exact —exact
= + 0.0015707963 — 67.753° — 67.726° — 0.027°
x + 0.00314159264 — 47.111 — 47.096 — 0.015°
x + 0.00471238891 — 30.086 — 30.092 + 0.006°
= + 0.0157079 — 9.085 — 9.104 -+ 0.019°
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Fig. 8-—Phase of driven wave versus Af«Am/2 near AfAm = 2r for | Aa/c| =
0,15,

In Table VII, the calculated value 0.0064 at | Aa/c | = 1 is reasonable,
since D. T. Young’s* work based on the perturbation theory indicates
that the true loss peak is the convolution of the shape for | Aa/c| > 1
with the shape for | Ae/c| = 0.

Consider now the peak loss at Ag, = 0. When | Aa/c | > 1, and
e*** & 1, it can be shown that equation (9) simplifies to

E|=¢" (31)
Ao > 1
eAtu <<1

AB, = 0
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where

c

e (32)

Ty = —=3¢

In Table VIII we compare the loss computed from (32) with the
actual loss, and see that even for | Aa/c | = 1 the error is only ~30
percent. A consideration of the terms of equation (9) indicates that these
errors would be approximately constant with increasing z.

A further simplification of the calculation of loss components now
seems justified. For | Aa/c | = 1 it would appear that (31) and (32) can
be used to calculate the peak loss due to a single square-wave coupling

2
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Fig. 9—Driven-wave loss versus AB. near ASAm = 6x (third harmonie) for
| Aefec | = 0,1,5.
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component. And the shape versus A8, can be calculated from the work
of D. T. Young, leading to an over-all attenuation defined by

By | = ¢ (33)

where
4

ry = —3¢C
T

1

ﬂ)g
1+ ( Aa*

C

s (34)

in which we require z and Aa/e¢ such that ¢*** < 1, | Aa/c | = 1.

TABLE VII — LmrriNg AND TRUE VALUES

(€8] ) 3) .
Ratio of
Aa Col, (3)
l —_ | Limiting value of AB,1/2 | Caleulated AB,1/2
¢ from equation (25) from Figs. 6 and 7 Col. (2)
1 0.00493 0.0064 1.3
5 0.0246 0.0265 1.077
50 0.246 0.250 1.016
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TasLE VIII — Loss CoMPARISON

A, =0

Aa
—_ Loss (dB) from Actual loss (dB)
c equation (32) equation (9)

1 — 8.68 — 6.57

5 —1.74 — 1.62
50 — 0.1737 — 0.1727
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APPENDIX A

Coupling Functions

We use the following equations to represent two coupled waves of

amplitude E; and Es:

d
EZ’EL(Z) = —v,E; + ¢ (2)E,

d
d_zEz(z) = (@) E, — v.E,

where y, = an + jB» = complex propagation constant. Let

ikez

e (2) = je,e
Energy conservation leads to:

—ikes

eialz) = Jege
Also let
E, ="V,
E,=e77V,.
Then (35) and (36) become:
av, _ .
dz JCo

av, = je,Vie

dz

I

Vzelm—-vﬁr‘hlr

—lyi—7va+ikelsz
.

(35)

(36)

(37)

(38)

(39)
(40)

(41)

(42)
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We now see that the solution for %, = 0 holds for k, nonzero provided
that we make the change

AB:BI_IB?—FA;:

and put AB in place of A8 = 8; — 82 in the solution for &k, = 0.
Complete transfer of power between waves can oceur when AB =
0 or

k.= (8. — By). (43)
APPENDIX B

Square-Wave Coupling

We start with equations (1) through (4) representing uniformly
coupled waves with k. = 0 (see Fig. 1). Equations (9) through (14) with
¢, = ¢ and AB, = AB give the amplitude of the output waves at z for
the conditions £, = 1.0 and E, = 0 at z = 0. We apply these equations
to the coupling distribution of Fig. 2 and find that the output amplitude

for the undriven wave at z = \,./2 is:
A,B)”
(c—km\/l + (2(; i“

y J4tising ) :
E, .o = exp l:_“.?(ﬁl + B2) i] T ' (44)
4 f 2
Vit (QAf)

In the above, the simplification Aa = 0 has been assumed.

Using the output waves at z = A,/2 as input conditions to the
following coupling region (Fig. 2), the amplitude of the undriven
wave at z = A, is found to be:

2(32)
v = (1) e
[(62) +1]

-sin® [%"" \fl + (%)2} exp [—j @‘g—&) ?\,,.]- (45)

The ratio of the undriven wave amplitude at z = A,, to the undriven
wave amplitude at z = A,,/2 is [from (44) and (45) ]

E,
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B 2(%)

E, |km/2 =1 AB o

i+ ()

o C_)\_,,. AB 2i| l:_-(ﬁ1+|62) :l

sin [ ) \X1 + (%) exp I A (46)
By imposing the condition

A ABY _ T

we notice that the magnitude of (46) approaches two for A3 >> 2¢, that
is, for very small coupling. Fig. 4 sketches the undriven wave amplitude
as a function of z during the first two coupling intervals. We will now
express the approximate or average coupling between the waves by
using the linear approximation E,(z) = 2cz/w. We notice that uniform
coupling without phase reversal would have resulted in the relation
E.(2) = cz. We therefore arrive at the transformation

¢ (constant coupling) becomes
2¢/w (for periodically reversed coupling).
(48)

The associated transformation of the condition for maxmium energy
transfer, from (47), is

2 2
A.B |m|uimum converaion }\j’\/]. - (EE) . (49)

™

We might notice here that the departure of the actual amplitude in
Tig. 4 from the straight-line approximation, shown by e in Fig. 4, has a
maximum value which can be shown to be 0.21(¢),,)/7. Thus the devia-
tion between our straight-line approximation and the actual amplitude
becomes smaller for diminished values of coupling per unit A,, .

We now specify ¢, and AS, in equations (9) through (14) to represent
the waves with periodically reversed coupling using the average coupling
approach. Since the in-phase build-up of power in the undriven wave is
a maximum for AB specified by equation (49), we define a new dif-
ferential phase parameter to give a departure from this condition:

2 ) 2
A8, = A8 — ;’”\/ - (2e). (50)
.
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By comparison with equation (7), which represents an exact solution
for complex coupling, this definition of AB, seems reasonable. Numerical
checks reported in the text verify this presumption. The value of ¢, is
given by (48).

It has already been noted, near equation (46) that two successive
\./2 coupling intervals give twice the undriven line amplitude com-
pared with the first \,/2 interval, which is just what occurs for small
constant coupling (no reversal) and A = 0. We also find that A8, and
¢, correctly give the wave amplitudes for periodically reversed coupling
at z equal to integral multiples of A,,/2, even when Ag is not large com-
pared with 2¢. For example, letting E, at 2 = \,/2 be 0.707 requires
(AB/2¢) = 1 (see equation 44); we maintain equation (47) and (48) as
before. Then, from (45), | K. | becomes unity at z = X\, which is also
predicted by Ag, and ¢, in (9) through (14) and which is analogous to
the behavior of two conventional 3 dB directional couplers in cascade.

The above discussion represents the changes in wave propagation
introduced by coupling for A8 in the vicinity of the value given by
equation (49).

The perturbation solution® for sinusoidal periodic coupling is known
to yield coupling absorption peaks when

ABN,, = 2mp (51)
p=1,35---.

Similarly, there are other regions of strong interaction for the square-
wave coupling of Fig. 2. For example, consider Fig. 5, which represents
the situation when

)

Jch _ 9T
5 = 3 (52)
There is another region of AS defined by
o \/ (c?\ )2
A maximum conversion = 3'—_ -_— '__m 53
Bl N (5 (53)

where there is a local maximum of conversion. As diagramed in Fig, 5,
the average conversion coefficient is 2¢/3w. Thus the appropriate values
of A, and c, for equations (9) through (14) are
L 2
* 3

2'1|' e )2
AB, = A8 — 3-— — |z,
5, = 28— 33T \[1 (3?r

(54)
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More generally there are absorption peaks at

9 2
AB, = AB — p;\_w\/l - (%) (55)
92
c, = Tfr (56)

where p = 1,3, 5,. ..
APPENDIX C

Sine Wave Coupling
We start with equations (1) and (2) with the coupling defined

€2y = €2 = jcSin (%\E) (67)

Using perturbation theory?, and letting Ae = 0,

E, = cf sin (?)e"—”’ ds (58)

which yields

R {2_,,- — e”'”’[gw cos (gﬂz) + jAB sin (?ﬁ)]}
[(2#)2 A 52} Ao N AN An

A
(59)
Evaluating at Ag = 2=/\,, and z = nA,,/2 yields
. A
E, ‘ABzEr/J\.,. = =] % —2_“ (60)

withn =1,2,3. ...
It can be verified that A8 = 2x/A,, yields the maximum value of
Es at z = ni,/2.

Thus the equivalent uniform coupling value for sinusoidal coupling is

e, = ¢/2 (61)

which appears in Table L.
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