The Binary Regenerative Channel*
By RICHARD H. McCULLOUGH

The nature of the errors in a regenerative digital transmission sysiem
18 such that a memoryless channel is a poor model for predicting the error
phenomena. In this paper we present a model which provides a reasonable
approximation to observed error phenomena. The memory of the channel s
represented by a Markov model. This model is stmilar to the model de-
veloped by E. N. Gilbert, but several important modifications greatly
simplify the estimation of parameters, and make the model correspond
more closely to the physical phenomena tnvolved.

Bounds for the channel capacity of the binary regeneralive channel are
obtained. Error separation, block error, and burst stalistics are derived.

Error model parameters are derived from available experimental data
on the T1 digital transmission line and the switched telephone network.
The Markov model is shown to provide a good representation of the observed
error phenomena.

I. INTRODUCTION

The Gilbert burst-noise channel introduced the idea of error states.?
The error states represent different error processes, each of which
generates independent errors. Gilbert’s model yields a “renewal er-
ror process,” that is, an error process for which the gaps between
successive errors are independent random variables with the same
probability distribution. Elliott? introduced a generalization which
vields what we shall call a “Markov error process,” that is, an error
process for which the gaps between errors are dependent random
variables with probability distributions which depend only on the
last gap between errors. More recently, Elliott used a renewal error
process, with component error processes which do not generate in-
dependent errors.®* In order to match experimental data for block

* This paper is based on material taken from a dissertation submitted to the
Polytechnie Institute of Brooklyn in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in 1967.
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error distributions, he found it necessary to introduce three empiri-
cally derived error separation distributions.

Berger and Mandelbrot proposed a renewal error process in which
the error separation follows a Pareto distribution.* Sussman has used
the Pareto distribution to model the switched telephone network.®

Gilbert’s model and Elliott’s model both assume that the transition
probahilities for the error states are independent of the occurrence of
errors. In this paper we drop that assumption to define a general
Markov error process, We then consider a particular Markov error
process in which transitions between error states are allowed only
when an error occurs. We associate this error process with the
“binary regenerative channel.” Error separation, block error, and
burst statistics are derived for this latter process. Error model param-
eters are calculated from available data for the T1 digital transmis-
sion line, and for the switched telephone network. We discuss briefly
the possible usefulness of the Pareto distribution for approximating
a many-state Markov error process, or for approximating a non-
stationary error process.

This author extends this model to apply to a ternary channel.®

II. ERROR MODEL

An error model must be able to reproduce the burst error phe-
nomena which are known to occur in digital channels. Real channels
seldom appear to be memoryless, and it is common for a large frac-
tion of the errors to be burst errors. To reproduce the burst phe-
nomena, we have chosen to use a Markov model similar to Gilbert’s.?
Our model differs from his in two important aspects. First, we have
attempted to make the model correspond more closely to the physical
phenomena involved by introducing several error-producing states,
each with different error rates. Second, transitions between states are
allowed only immediately following an error. This assumption greatly
simplifies estimation of the parameters of the model, since the num-
ber of digits between adjacent errors is determined by a single error
state.

The similarities and differences between these models are most
easily understood by examining the transitions between error states.
We shall restrict our present discussion to fwo-state error processes.
We define:

Z, = error state for the nth error digit
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Z, = nth error digit = 1 for error and 0 for no error

pi;i = Prob {2, = j| 2,-, =14, Z,., = 0}

gi; =Prob {2, =§|2,.,=1,2Z,, =1}

P, = Prob {Z, = 1| Z, = i} = average error probability (for the
binary symmetric channel) of state <.

I

The state diagram of the general Markov model is shown in Fig. 1.
A renewal error process is obtained if ¢;; 1s independent of 7 (so that
the next error state is independent of the state which produces the
error), or if Py or Py is zero (so that only one state produces errors).

The Gilbert burst-error process' assumes that p;; = gq;; and P, = 0
The assumption that P, = 0 makes this process a renewal error process.
Elliott’s generalization® assumes p;; = g¢;; but P, # 0. This process is
a renewal error process only if q;; = ¢z, (and g2 = g22). Our model, the
“binary regenerative channel,” assumes that p;; = &;;, the Kronecker
delta. This process is a renewal error process only if ¢, = ¢. (and
Q12 = sz)-

Our assumption that state transitions can occur only after errors
(py; = 8;) seems reasonable for two reasons. First we hold the opera-
tional viewpoint that all our information comes from the occurrence
of errors, and we might as well assume that nothing changes between
errors, This also provides a practical technique for estimating transi-
tion probabilities from error separation data. Furthermore, this model
seems to be quite “stable” in that extremely small transition proba-
bilities are not encountered in practice, so that statistical estimates
are relatively easy to obtain.

Fig. 1 — State diagram of general Markov model.



1716 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

Second, this is exactly the model we would choose for an error process
consisting of random errors plus signal-correlated errors, where a certain
fraction of the random errors produce a wake of closely spaced errors.
In the case of bursts which are not correlated with random errors, our
physical intuition suggests something like p,, = 1, pi» = 0 and py =~
¢zn < 1 would be more appropriate. Operationally, however, it really
does not matter if the first error in a burst is “incorrectly” identified
as a random error.

Although the mathematical descriptions of the Gilbert model, the
Elliott model, and our new model are different, we suspeet that the er-
ror separation, block error, and burst statistics obtained from the
three models will be quite similar. (We show that the form of the
error separation statisties is identical for the Gilbert model and our
new model.) We contend, however, that the new model is more use-
ful because the parameters of the model are easily determined from
experimental data and are easier to interpret in terms of physical
noise processes.

In the above discussion we have considered the two error states to
correspond to different physical error processes in a single channel. How-
ever, this single channel is clearly equivalent to a two channel trans-
mission system where the “error” state indicates which channel is
being used. We use this latter interpretation in the next section. Notice
that the two channels are simply binary symmetric channels with
different error rates. In practice we have P, <« P, = 1/2; therefore,
we refer to state (channel) 1 as the burst error stale (channel) and state
(channel) 2 as the random error stale (channel).

III. CHANNEL CAPACITY

Closed form expressions for the capacity of the Markov channel have
not yet been found* so that we are limited to determining the capacity
for specific numerical values of the parameters. On the other hand, we
can find reasonably simple and tight bounds on the capacity which
are quite useful. Therefore we consider only bounds on the channel
capacity.

Let the sequences of input, output, and error digits be denoted by
X., Y., and Z,, respectively, with ¥, = (X; + Z,) mod 2 and 7 =
1,2, - -- . Sinee the noise sequence is independent of the input sequence,

* Note that the method used by Gilbert? is valid only for a renewal error
process, and did not yield a closed form solution.
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the channel capacity is given by
¢ = max [H(X) — H(X|Y)]

p(X)

= max [H(X) — H(Z)] = 1 — H(Z)
p(X)
where H denotes the entropy of the sequence and p(X) is the prob-
ability of the sequence X. Following Ash? we define the entropy of
the noise sequence by

H(Z) = lim HZ, | Zo_y , -+ , Z5).

We shall find bounds on the channel capacity by bounding the en-
tropy of the noise, using the steady state probabilities of the Markov
noise sequence.

Consider the state diagram in Fig. 1. There are really only four
states which we shall designate by S; = 11, 10,21,0r 20,2 =1,2,...,
where the first digit indicates which of the two binary symmetric
channels is being used (3; = 1 or 2) and the second digit gives the
value of the error digit (Z; = 1 or 0). Thus the state diagram may be
redrawn as shown in Fig. 2 (using p; = §;;). The steady state proba-
bilities ry; are the solutions of the equations

|7g’11P1 gu(l — P qiP2 qi2(1 — Py)
P 1—-P 0 0
[ririrairao] = [""l1""\1.;7’217”20]I ' ' .
‘ q21P, Q’zl(l — P))  @uP- Q22(1 — Py
L0 0 P, 1 - P,
It can be shown that
rn = R.P,
re = Ry(1 — P))
ra, = RLP,
Ty = Rz(l - Pz)
where
Q. 2
R, =P, = T
P, Q Gz T G2
Q, 012
R, = P, =
) P, ¢ Q12 + o
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Q4 Py g22P2

qu(-Py)

Tig. 2 — State diagram of binary regenerative channel.

1
S, 9

P, TP,
We notice that R, and R, are the steady state probabilities of =;, Q4
and @ are the steady state probabilities of 3; given that Z,, = 1, and
P, is the steady state probability that Z; = 1 (that is, P, is the av-
erage error rate).

We are now ready to compute upper and lower bounds on H(Z).
An upper bound is

P, = R.P, + R.P, .

H(Z) = lim H(Z, | Z.-.)

n—oo

= PHQP: + QPy) + (1 — P,)h[l L a-qp - Qsz)]

where h(P) = —P log P — (1—P) log (1—P). A simpler (and looser)
upper bound is

lim H(Z, | Z,-,) < lim H(Z,) = h(P,).

n—o0 n—oo

Since S, is determined by a first order Markov process, a lower
bound is

HZ) 2z lim HZ, | Zo-y -+ Zy ; Sai)

n—so0
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lim H(Z, | S,_.)

n—soo

= R.\Ph(g.. P, + q..P:) + R,(1 — P)h(Py)
+ R2P2h(Q21P1 + q-.»sz) + Rz(]- - Pz)h(Pz)-

Using the fact that h(P) is a convex function we obtain a simpler
(and looser) lower bound

lim H(Z, ] S.-1) = RiPi[gu(P,) + q’lzh(Pz)] + R,(1 — Pl)h(P1)

n—og

+ R.Pi[q::h(P)) + 922h(P2)] + R.(1 — Pz)h(Pz)
R.h(P,) + R.h(P,)
lim H(Z, | £.).

n—+oo

I

From the loose bounds we see that the capacity of the binary regen-
erative channel is greater than the capacity C = 1—hk(P,) of a binary
symmetric channel with the same average error rate, and is less than
the capacity C = R;[1—h(P1)] + R2[1—h(P:)] which could be
achieved if we always knew which component channel was being used.

A convenient way to describe the channel capacity is to give the
probability P, of the binary symmetric channel with eapacity C, that
is, H(Z) = h(P;). From the bounds given above it follows that

b7 [R.A(Py) + R:A(Py)] < h7'(lim H(Z, | S.-))] < P,

n—e0

< W lim H(Z, | Z,-)) £ P, .

n—+

For the practical case where P, < P, = 1/2 and @, &~ @, ~ 1/2 the
above inequalities are approximately

PzSPzSPCS(l—prJP,SP.
or
QP =P, < (1 —QP)P,.

The loose bounds given above can be generalized to apply to any
finite number of memoryless, nonsymmetric channels in the form

B(R1Pl+ e +Rum) écé RIB(P1)+ T +RmB(Pm)

where R; is the steady state probability of using channel 7 and B(P,)
is the capacity of channel <.
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Digital transmission systems may use many digital links, with
regeneration of the transmitted signal at the end of each link. For a
system of N identical links where NP, < P, , we can approximate the
over-all system by a single digital regenerative link with the same g;;
and P, but with P, replaced by P; = NP,. This substitution yields

P! ~ NP, R{ =~ NR, R! ~ R,
which agrees with one’s intuitive notion of how the over-all system
should behave. That is, the number of random errors and burst errors

both increase by a factor of N, and the length of the bursts remains
the same.

IV. ERROR STATISTICS

We shall now derive error separation, block error, and burst statis-
tics for the two-state Markov error process. We assume two com-
ponent error processes which generate independent errors with dif-
ferent average error rates, P;, 1 = 1, 2. Transitions between error
states are allowed only after errors, with the probabilities given by

g:;; = Prob {state i — state j|last digit was an error}.

For the error separation statistics we shall make use of several re-
sults for independent errors. We begin by deriving the basic equations
for an independent error process. Let P be the probability that any
digit is in error. The error sequence then contains a 1 with probability
P and O with probability 1-P. Given an error, the probability that
the next error occurs on the kth digit is

p(k) = Prob {0*"'1]1} = Prob {0*7'1} = P(1 — P)*
The average error separation is

F= S kp(d) =P 3 k(1 — P = <.

k=1 k=1 P
The probability that the number of good digits between errors is
greater than or equal to n (that is, the error separation is n+1 digits

or greater) is given by the cumulative distribution

Q(n) = Prob {k >n} =1 — }gp(k)

1l

1—PY A —P} = — P
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For P < 1 the following approximation is quite useful
(1 = Py = ¢ 0" g,

The probability of getting m errors in n digits is

3 nl m n—m
I (m, ?1‘) = ??T,'Tn‘r—i 71;)_‘ P (1 — P) .

The probability that a block of n digits contains an error is

P(=1,m) =1 —P(0,n) =1 — (1 — P)" ~nP for P < 1, n<<1%-

Let @Q;, j = 1, 2, be the unconditional probability of being in state
7 at the first digit following an error. Making use of the results for
the independent error process, we have

'P(k) = Q.P,(1 — Pl)k_l + Q2P2I(1 - Pﬂ)k_l

P @, @ 1
Ul A
Qn) = Q1 — P)" + @,(1 — Py)"

where P, is the average error rate.

The expression for P(m, n) for the Markov error process is a very
complicated function of the parameters of the process. However, the
form of the dependence upon n is easily found through an appropriate
set of recurrence relations. The recurrence relations are also useful
for computing numerical values on a digital computer.

Let A;(m, n) be the probability that m errors have occurred (that
is, m oceurrences of state 11 or 21) in n digits and that channel < is
used for the n+1st digit (that is, ,,, = 7). Then

P(m,n) = A,(m, n) + A,(m, n).

Considering all possible events which may occur at the nth digit we
obtain the following pair of recurrence relations.

A(myn) =Amn—1)-1—P)+ Ailm —1,n — 1)-Piqy,
+ A;(m — 1, n — 1)- P,g,,

Ay(myn) = Ay(myn — 1)-(1 — Py) + As(m — 1, n — 1) Pyga,
+ A, (m — 1, n — 1)-Pigyp .

Solving the equations for successive values of m we find that the
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general solution has the form®

P(m,n) = G,(n)(1 — P)"" + Gi(n)(1 — Py)"™"

where G,,(n) is a polynomial of degree m in the variable n, and the
asterisk denotes a cyclic permutation of the parameter subscripts,
that is, 1 = 2 and 2 — 1. Assuming that the Markov process is in the
steady state at digit “zero,” the first two polynomials are

Gyn) = R,

1 —P,
Gl(n) = 2(13’2 — P1

It is possible to determine the functional dependence of P (m, n) upon
n because we assumed that the error state changes only after an er-
ror occurs. This effectively decouples the set of recurrence relations
so that A;(m, n) and As(m, n) can be determined separately. For
larger m the explicit expressions for the coefficients of G, (n) become
so complicated that they are of little use. Thus one can only hope to
gain some insight into the behavior of P(m, n) as a function of m by
numerical evaluation for a typical case.
The average number of digit errors in a block of n digits is

)R1P1q12 + [R\P,qu]n.

m = piP({,n) = nP, .
i=0
Given that the block contains one or more errors, the average number
of digit errors is

- m n

*TPELM QU — (1 —P)I/P, + @l — 1 — P)/P,

In practice we usually have P, < P, =~ 1/2 and R, < R, = 1. There-
fore, we have

P(m, n) =~ Gx(n)e"""™"* for n — m>1/P,.
Specifically, we find that

P(0,n) ~ e
P(z1,n)~1—e""

B~ __nfi’_
Q1— ¢

The burst error behavior of the channel is indicated by the num-

for »>>1/P, .
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ber of successive occurrences of state 1, the burst error state. Let

p(b) = Prob {leave state 1 after b errorsjnow in state 1}

qgl-l(l - qU) b= 17 27 T .

Notice that b occurrences of state 1 implies b + 1 “closely spaced”
eITOTs.

In the next section we calculate error model parameters from avail-
able data on transmission of binary information over the T1 digital
transmission line, and over the switched telephone network. A three-
state model is required to provide a reasonable match in some cases.
Therefore, we digress briefly to generalize our results to apply to a
three-state model. (Actually, we give the results in a form which is
suitable for any finite number of states.)

We assume three component error processes which generate inde-
pendent errors with different average error rates, Pi, 1 = 1, 2, 3.
Transitions between error states are allowed only after errors, with
the probabilities given by

¢:; = Prob {state i — state j[last digit was an error}.

Let Q;, 7 = 1, 2, 3, be the unconditional probability of being in state
7 at the first digit following an error. The @; are the solutions of the
following set of equations:

Q= Qg + Qugar + Qaga
Q: = Qiqh2 + Qaz2 + Qugae
Qs = Qigis + Qugas + Qugss -
Corresponding to the previous results we now have
p(k) = QP\(1 — P)"" + QuPy(1 — Py)* ™" 4 QP45(1 — Py)*™"
=R,
QM) = (1 — P)" + Q1 — Pa)" + Q4(1 — Py)"
where P, is the average error rate. The recurrence relations become
Aitm,n) = (1 — P)A,(myn — 1) + Pygndi(m — 1, n — 1)
4+ Pygnds(m — 1, n — 1) 4+ Pagsds(m — 1, n — 1)
(1 — PyA,(m,n — 1) + Pagaedo(m — 1,n — 1)

Az(m: ‘R)
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4+ Pygseds(m — 1, n — 1) + qu12A1(m —1,n—=1)
Aa(m, n) = (1 —_ Pa)Aa('JTE, n — 1) + qu:;gAa(m - 1, n — 1)
+ Pigiadi(m — 1, n — 1) + Pogaeda(m — 1, n — 1)

where A;(m, n) is the probability that m errors have occurred and the
error process is in state 7 after n digits. The solution of the recurrence
relations gives

P(m,n) = A,(m,n) + A.(m,n) + Az(m,n)
= G.m)(A —P)"™" + Gi)(1 —=P)" " + Gr*m)(1 — Py)"™"

where G,,(n) is a polynomial of degree m in the variable n. The coeffi-
cients of G,(n) are complicated functions of the model parameters.
G*(n) is G,(n) with the parameter subseripts cyclically permuted,
that is, 1 — 2, 2 — 3, 3 — 1. G**(n) is G*%(n) with the same cyclic
permutation. We again have G,(n) = R, so that

PO,n) =R,(1 —P)" + RE(I — P)" 4 Ry(1 — Py)"

P(z1,n)
=1— P0,n
N 1—(1—P) L— (1 =Py 1—(1— Pa)":l.
- Pr[Ql P] + Q2 P2 + Qﬂ P:]
The probability of being in state ¢ at any digit is
] Q
R. = — Q'.k‘- — = P" - P _(l':,
CQuE 4 Qs + Quks Q| @ @ " P
+ 5 +
P, P, a

V. EXPERIMENTAL PARAMETERS

5.1 T1 Digilal Transmission Line

For the T1 digital transmission line® (see Refs. 8 and 9), the error
data was obtained by measurements'® on three different lines, each
looped to obtain an equivalent system length of about 24 miles. In
total, there were five runs of approximately one hour duration, that
is, about 5 X 10° digits each. The transmitted pattern was 10000000
repeated. Each run produced about 100 errors. The data were proc-

* Manufactured for Bell System use only, by Western Electric Co., manufac-
turing and supply unit of the Bell System,
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essed in real time with an IBM 7094 computer equipped with a
direct data device. The results (a sequence of numbers a,, as, . . .
where a; is the number of good digits between the jth and [j + 1]st
errors) were recorded on a magnetic tape.

To determine the parameters of the Markov error process model,
we processed the experimental results as follows.

(t) Add 1 to each a to get k, the error separation.
(i7) Classify each k as state
1 = “burst error state” 1 = k < 10
2 = ‘“intermediate error state” 10 < & < 10°
3 = “random error state” 10° < k.
(#43) For each state 4, find the average error separation, &; = 1/P;.
(7v) From the sequence of states find the relative frequency of
occurrence of state 4, §; , and the relative frequency of occurrence of a
transition from state ¢ to state j, ¢,; .

Steps i and v were carried out for each run individually, and
with all runs together (considered as one big sample). Table I lists
the parameters (rounded to two significant digits) which were ob-
tained by the above procedure. Notice that the conditions g1 = go1 =

TasLE I— Margkov MopeL rFor T1

Run qij Q: P; P,
.35 .00 .65 | .23 .46

1 43 .07 .50 | .19 | 3.2 X 1073 1.5 X 108
.12 .31 .57 | .68 | .86 X 10°#
.35 .26 .39 | .36 .46

2 67 .08 .25 [ .19 | 40 X 1073 | 1.4 X 1078
.24 (17 .59 | .45 | .61 X 1078
.29 .33 .38 | .35 .37

3 62 .19 (19| .23 | 49 X 1073 | 1.0 X 1078
24 17 59 | 42 | 44 X 1078
.83 .22 .25 | .38 .03

4 500 U150 .35 | .20 3.6 X 1078 | 24 X 1078
190 .20 .61 | .42 | 1.0 X 10°8

.47 .13 .40 | .19
31 .88 | .17 | 8.
08 .14 78 64| 1

2
X
X
42 .21 .37 | .31 .43
All runs together .51 .16 .33 | .20 | 3.7 X 1073 | 1.6 X 1078
160 .20 .64 | .49 | 7T X 1078

=]
@
—_

.26
1078 | 1.6 X 1078
1
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ga and qs = Qo2 = @32 and g1z = ¢a3 = @3 are not satisfied. Hence,
the T1 error process does not appear to be a renewal error process.
(This does not mean that we should discard the renewal error process.
In essence, it is a first approximation to a real error process, the
Markov error process is a second approximation, and higher order
Markov processes are higher order approximations. The first approxi-
mation may be satisfactory in some applications.) Using the param-
eters of Table I, the validity of the model was checked in three ways.

First, the theoretical cumulative distribution of the error separation,

Q(n) = @1 — P)" + Q1 — P,)" + Q:(1 — Py)"
was plotted for each run. The theoretical and experimental curves
matched within approximately =40.05, for all five runs. Typieal curves
are shown in Fig. 3a (semilog plot) and 3b (log-log plot). Notice that
we could have derived rough values for the @, and P; by inspection
of the experimental @(n) curve.

1.0

0.8
— THEORY
. ——
o EXPERIMENT
(129 EVENTS)
0.4 = [F —
o] %\

0.2 TN

o-— TEN EVENTS ]%‘

1
(i‘ﬁ)o:m_—c% s (b)

107!
:\go
le— TWG EVENTS o
102 1 5
|+— ONE EVENT | \

1073

(a)

Qm

Q)

104

l 10 102 103 104 109 108 107 108 102
N=ERROR SEPARATION IN DIGITS

Fig. 3 — Error separation statistics for T1 digital transmission line.
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a I RUN 4
—— THEORY
!‘ O EXPERIMENT
™ | (49 EVENTS)
2 T -
(o]
o i |
8" ~ i
a = ,L X
abeTWO IIEVENTS B \U
2.._ONE EVENT
1072 | | i
1 2 3 4 5 2] 7

b=NUMBER OF SUCCESSIVE OCCURRENCES OF BURST STATE

Fig. 4 — Burst statistics for T1 digital transmission line.

Second, to check the burst error behavior of the channel, we compared
the experimental and theoretical probability densities, p(b), of suc-
cessive oceurrences of the burst error state

p(b) = ¢i7* (1 — qu).

The agreement is excellent as illustrated in Fig. 4. (Since our sample
size is only 49, we should not expect the experimental points to follow
the theoretical curve for probabilities of about 1/49 =~ 0.02.) The ex-
perimental and theoretical curves matched within approximately 0.02
in all five runs. Notice that the procedure for calculating g,, simply
provides an exact match at b = 1.

Third, to check the adequacy of the model for predicting block error
statistics, we compared the theoretical and experimental (averaged
over all possible phases) curves for P(m, n). Figures 5 and 6 show
P(m, n) versus n and m, respectively. The agreement is excellent for
m = 4. For m = 5 the experimental curves are somewhat erratic owing
to the small sample (the quantum of probability is approximately
2 X 107" in this case), which happened to contain two unusual error
patterns.

The excellent mateh between the experimental data and the model
indicates that a three-state Markov error process with independent
transitions is a good representation of the T1 error process. Since
this is the case, it is useful to consider a physical interpretation of
the mathematical model. The three different error states correspond
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P(m,n) vs.n
RUN 4
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O EXPERIMENT
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M = | ERROR PER BLOCK_

A:BL\Z’)VC?KS j{ // | // i ) //
2 ‘ |; / m= 7] | ’/
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10": 7 T 7
6 // // m=s //
AFJ?'E%;E}:%TP&’SOFSE?.R?_ 5 — 7 7 »
e .
: / p
/ / m=g m=10 /
107" | /
2z 3 4 & <7 8 9 10 11z i3 14 18

5
N = NUMBER OF DIGITS PER BLOCK

Fig. 5 — Block error statisties (digits per block) for T1 digital transmission line,

to different sources of error, of which only one is controlling at any
given time. Allowing state transitions only at error digits corresponds
with the fact that we cannot identify the controlling error process
except by the error (and error separation) which it produces.

As for the sources of error, we can make several speculations. Fur-
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5
T ‘
I P(m,n) vs. m
RUN 4
[ —— THEORY
— T — ‘ EXPERIMEN1
j (5.51% 109 BLOCKS)
| 0 nN=8
| | e N=15
| ) | ONLY TWO ERROR
.5 | ! ! ‘ PATTERNS FOR M= 5:
= | )y i 1111101001
- 1111100101
E TEN \ . |
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sl Two 10 - |
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Fig. 6 — Block error statistics (errors per block) for T1 digital transmission line.

ther experimental data will be required to determine which of the
suggested possibilities is correct. “Burst errors” may result from signal
correlated errors (generated in successive regenerators) following a
random error, or from burst-like interferences such as impulse noise
(all errors of the burst generated at the same regenerator). ‘“Inter-
mediate errors” may be caused by looping effects (outgoing and
incoming regenerators are packaged together and are thus subject to
the same interference), or by slowly propagating interferences such

TaBLE II—SieNAL DEPENDENCE oF T1 ERRORs

Run Number of errors for each signal digit Total
1 0 ‘ 0 0 0 0 0 0

1 0 31 13 6 8 5 4 7 74

2 1 19 8 12 6 7 6 6 65

3 1 26 13 7 5 9 7 2 70

4 2 63 15 11 10 11 8 10 | 130

5 1 54 7 3 4 4 1 4 78

All runs 5 193 56 39 33 36 26 20 | 417

Percent all

runs 1.2 46.3 |13.4 |94 |7.9|8.6|6.2|7.0]100.0
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as teletype or other de signaling. “Random errors” are assumed to
come from thermal noise.

We have thus far ignored the question of whether the error sequence
is really independent of the transmitted signal sequence. Table II
summarizes the available experimental data concerning this point.
We observe that the average probability of error is roughly 5 to 40
times greater when the signal digit X; = 0, depending on the number
of digits since the last 1. (Notice, however, that Table II does not
really tell us the number of digits since the last 1 because errors
cause the “signal” to be different in successive regemerators.) Over
all, the average probability of error is roughly 10 times greater when
X{ =0.

What does this imply about our model? First, since there are so
few errors when X; = 1, our component channels are nonsymmetric
and the model parameters derived above essentially apply only when
X, = 0. In fact, it is possible that the error rate for X; = 1 is the same
in all three component channels, so that no burst phenomena occurs
if X; = 1 for all 7. Second, the dependence of the error rate on the
number of digits since the last 1 probably results from intersymbol
interference. This suggests that bursts might very well be signal cor-
related errors which are generated in successive regenerators, in which
case the average length of a burst should increase with the number of
regenerators. Unfortunately, the available data are not sufficient to
verify or disprove these conjectures.

How do we correct our model to take into account the data presented
in Table II? As a first approximation we would replace the three com-
ponent binary symmetric channels with memoryless nonsymmetric
binary channels with error probabilities P, , P,, and P; for X; = 0,
and P!, P}, and P} for X; = 1. With the limited data available the
best we can do is to use the previously calculated values for P, , P, , and
P, , and let (using the figures for all runs)

P, = P} =P; = zH(1.6 X 107%) = 1.9 X 107",

The computation of channel capacity and error statistics now becomes
more difficult because we must consider the joint probability densities
of the source and channel. However, we can still use the bounds for
channel capacity given at the end of Section III.

To get any better approximation we must replace the three channels
with three nonsymmetric binary channels with memory. The memory
would contain d, the number of digits since the last 1, and could probably
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be limited to three states:d = 1, d = 2, and d = 3. (As already dis-
cussed this memory would also generate burst phenomena so that we
might possibly require only two channels for this model.) This approach
is intuitively appealing for modeling the effects of intersymbol inter-
ference, but we should use ternary channels with memory because the
T1 digital transmission line actually transmits ternary signals.

The fact that the average error probability is always greater for
X; = 0 (that is, even for d > 3) probably is because of long term
intersymbol interference, which in the case of T1 may persist for
hundreds of digits. This interference is approximately proportional to
the running sum of the digits W; = X; + X. + ... + X;. The Bipolar
Code used in the T1 digital transmission system guarantees that W
can assume only the values 0 or —1 in the absence of errors.* We
assume that the output of each regenerator is recoded into Bipolar
so that the W, satisfy the same constraint in successive links, and
the channel ean be described using a finite memory. Recoding allows
one to localize errors to a particular digital link and reduces the
error rate in successive links. If the output is not recoded, the W;
are theoretically unbounded which requires an infinite memory to
describe the channel.

To summarize our thoughts on the T1 error process, we may say
the following. The Markov model analyzed in the preceding seetions
of this paper provides a good representation of the signal-independent
error phenomena, and reproduces all the gross error statisties. The
extension of the model suggested in this section shows promise of
providing a good representation of the signal-dependent error phe-
nomena, and should reproduce the fine grain error statisties; addi-
tional data are required to determine the parameters and validity of
the suggested extension. Notice that the signal-dependent memory is
realized as a simple Markov process when the source digits are inde-
pendent random variables.

5.2 Switched Telephone Network

We now consider the error model for the switched telephone net-
work. Gilbert! has shown that a two-state Markov model provides a
good approximation to the cumulative error separation distribution
for an individual digital channel, Although Gilbert used a different
model, his theoretical results for error separation are identical in

* McCullough® treats the general class of ternary restricted sum codes for
which the digit sum is bounded (—a = W = b) for every code sequence.
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form to the results of Section IV, that is,
Qn) = (1 — P)" + @.(1 — Py)".

We notice, however, that if we choose @; and P; so that the error
separation distributions are identical, the ‘‘equivalent” binary regenera-
tive channel will have a higher average error rate. When P < hq Gilbert’s
equation (14) becomes

o ~ (1 - o Jor + (Q - hq)(l — Py

hq
so that
=&~ 1 — hg
. 2 P
~ __ D
QZNQ_hq
or
1—P
h~——Fh%
1_Q2P1
P~P,
P = P
and

1'—Q2 -_P_g% lsz P

1 —QPQ 1 —QP " "~

In our notation, the parameters for his examples (see Gilbert’s Fig.
3) are

P) =

Channel 1146: Q, = 0 P, arbitrary
Q. =1, P, =54 X107

Channel 1296: Q, = 0.816 P, = 0.190
Q. = 0.184 P, = 257 X 107%

For an average of many digital channels, a three-state Markov
model can provide a reasonable numerical fit. @; and P; were deter-
mined for samples of the Alexander-Gryb-Nast,** Townsend-Watts,*
and Kelly*® data on the error performance of the switeched telephone
network. Table III lists the parameters, which were determined by
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TasLE III—Margov MoDEL FOR SWITCHED TELEPHONE NETWORK

Qn) = Qi(l — P)n + Qa(1 — Pa)n + Qs(1 — Pan

Alexander-Gryb-Nast Townsend-Watts Kelly
Q1 0.46 0.58 0.75
Q2 0.22 0.10 0.10
Qs 0.32 0.32 0.15
Py 0.544 0.567 0.56
P, 10— 10-? 103
P, 10— «10™3 5 X 107t

trial and error matching of the Q(n) curves. It should be obvious
that the Q; and P; were quantized rather coarsely. Figure 7 shows
that the maximum difference between the experimental and theore-
tical curves is about +0.05.

Although the numerical fit is reasonably good, it is evident that
the sharp transition of a single independent-error process is not a
good match to the gradual slope of the experimental curves at larger
error separations. However, the experimental curves represent an
average over many different channels. The parameters of the model
will vary from channel to channel, resulting in an over-all error process
which contains many states. Each state will have a small probability
of occurrence (@) and a slightly different average error probability

o8
‘ [ —— THEORY
N —— EXPERIMENT
07y | |
\\\ 5 T .
05NN 1 B _
\‘\‘\\ r | |
0.5% AN ____:&E_N i | ] |
\ \\ | | ‘ i I |
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Fig. 7 — Error separation statistics for switched telephone network.
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(P)). Q(n) for such an error process will exhibit a gradual slope at
larger error separations.

It is obvious that we could use a larger number of states in the
Markov model, and match the experimental Q(n) curves to any
desired degree of accuracy. At this point we should consider whether
it is an individual channel or an average of many channels that we
wish to mateh. Usually it will be the former, in which case a three-
state (or perhaps even a two-state) Markov model will be satisfac-
tory, If it is the latter, it makes sense to seek a single (noninde-
pendent) error process which provides a better match for the gradual
slope observed at larger error separations. A likely candidate is the
Pareto distribution proposed by Berger and Mandelbrot.* They also
give statistical evidence which supports the renewal error process
hypothesis. Sussman® has shown that the Pareto distribution pro-
vides a good fit to the Alexander-Gryb-Nast data. It is interesting
that Sussman hypothesized that the Pareto distribution may be the
limiting form of “the superposition of many unrelated error-causing
events,” which is exactly what our model suggests.

To incorporate the Pareto distribution into our model, we would
represent the cumulative distribution of error separation as

Qn) = Q1 — P)" + Qu(n + 1)7°

where « is a parameter which would be chosen so as to give the best
match to the experimental data. It should be recognized that the
above distribution will not be a good approximation for the Markov
error process for very large values of n. As n = oo the Markov dis-
tribution approaches

Qn) — Qu(1 — Pu)"

where @, and P, describe the channel with the smallest average
random error rate.

In some situations the Pareto distribution may also be a good
representation of an individual channel. We have implicitly assumed
stationary channels. A nonstationary channel whose parameters vary
rapidly with time is essentially equivalent to the average of a large
number of stationary channels, each with different parameters. Such
a model may be appropriate for digital communication systems using
radio links. On the other hand, a slowly varying nonstationary chan-
nel is essentially equivalent to a single stationary channel, since the
parameters will not change appreciably during any message of rea-
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sonable length. This kind of model appears to be appropriate for
digital communication systems using paired cable or coaxial cable.

To summarize, we feel that the Markov model is a good representa-
tion for the error process of an individual digital ehannel. The Markov
model also explains the observed measurements for the average of a
large number of digital channels, and leads naturally to the idea of
using the Pareto distribution to approximate the behavior of a
Markov error process with many states.
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