Hybrid Digital Transmission Systems
Part I: Joint Optimization of
Analog and Digital Repeaters

By ROBERT W. CHANG and S. L. FREENY
(Manuseript received March 11, 1968)

A hybrid digital transmission syslem consists of analog repeaters placed
between digital repeaters. Joint optimization of the analog and digital
repeaters 18 considered in this paper, using minimum mean-square error
between the transmitted and received symbols as the performance criterion.
A general hybrid system is considered. The joint optimization problem is
solved in closed form for deterministic sampling under two usually satisfied
conditions. From the resulls the minimum mean-square error and the
optimum repeater characteristics can be computed for given system pa-
rameters. Timing error is also considered. From a general result, it is
concluded that in many practical systems it 78 not only economical, but
also optimum, lo use identical analog repeaters, and that hybrid systems
can be used for either digital or voice transmission with no compromise in
theoretical performance.

I. INTRODUCTION

It is customary in long-haul digital transmission systems to regen-
erate the digital signal at each point that gain is introduced into the
system. This is not necessary, however, and in fact there are circum-
stances in which it is advantageous to do otherwise. One such cir-
cumstance occurs when multilevel pulses are being transmitted and
the associated digital repeater* is too complicated and costly to be
placed at every gain point. In this case there is merit in interspersing
a number of analog repeaters between digital repeaters, even though
the digital device must usually be complicated further by the intro-
duction of automatic equalization to compensate for the misalign-
ment which acerues over several analog links in tandem.
m'_gita] repeater is also called a regenerative repeater,! a reconstructive
repeater, or a regenerator.
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Part I of this study addresses itself to the problem of jointly op-
timizing the various filters contained in a combination analog-digital
or “hybrid” multilevel transmission system. The criterion used is
minimizing the mean-square error between transmitted and received
symbols, The system studied is general in that: (7} the repeater spac-
ing may be nonuniform and the transfer functions of the transmission
media may be different, (i7) the noises introduced by the repeaters
may not be white and each may have a different speectral density
(1f) the analog repeaters are not constrained to be identical, and
(v) the repeater output power levels are not constrained to be the
same.

The mathematical model is formed in Section II. Results are sum-
marized in the concluding section. Interesting characteristies and
potentialities of hybrid cable systems are explored in Part II.?

II. MATHEMATICAL MODEL

Figure 1 illustrates a general hybrid digital transmission system.
Information symbols {a;} are transmitted from one digital repeater
to the next through L analog repeaters. The output network of the
sending digital repeater is referred to as the transmitting filter with
transfer function By (f). The input network of the receiving digital
repeater is referred to as the receiving filter with transfer function
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Fig. 1 — A general hybrid digital transmission system.
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Br.1(f). The transfer funection of the ith analog repeater is denoted
Bi(f},7=1,..., L. In this paper the analog repeaters are not con-
strained to be identical; hence, the ratio B;(f) /B;(f) may be a function
of frequency. The noise at the input of the ith analog repeater has a
spectral density N;(f),2 =1, ..., L. The noise at the digital repeater
input has a spectral density N, (f). Notice that N1(f), ..., Np1(f)
may be all different and each may be a funection of frequency.

As shown in Fig. 1, the transfer functions of the transmission
media between the repeaters are denoted by Aq(f), 4:(f), . . ., and
Ar(f). These transfer functions may be all different; hence, the
repeater spacings may be nonuniform, and the transmission media
may be different.

The average output signal power of the transmitting filter is con-
strained to be Py. The average output signal power of the tth analog
repeater is constrained to be P,z =1,..., L.

The information symbols {a;} are multilevel digits or real num-
bers. It is assumed that {ay} 1s stationary in the wide sense. The
autocorrelation funetion is denoted by

mk=EIﬂ,ga¢+;¢l, l, k= — @, +rr, 0,

Pulse amplitude modulation is considered. Let 1/T be the baud
rate. The transmitting filter output is then

©0

> as(t — kT)

k==
where s(¢) is the impulse response of the transmitting filter,

As is well known, in linear PAM systems the receiving filter output,
X (¢) in Fig. 1, is sampled sequentially at T'-second intervals, and
the kth time sample by is used as an estimate of a;. For analytical
purposes, a constant time delay in the system may he neglected, and
it may be assumed that by, 1s taken at

t=EkT 4+ 5,

where 8y is the timing jitter.®

The system from the output of B(f) to the input of Br,(f) may
be considered as a channel. For a given channel, Berger, Tufts, and
Smith* * have considered methods for designing the transmitting and
receiving filters for minimizing the mean-square error E[ (b, — az)?].
By these methods the digital repeaters can be specified if the analog
repeaters were given, and their output powers were not constrained.
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In this paper, the analog repeaters are to be designed, and their
output powers are constrained. We consider joint optimization of the

analog and digital repeaters. For given L, N;(f),1=1,...,L + 1,
Ai(f),i=0,...,L {m}, and T, we wish to design Bx(£), k = 0,
1,..., L + 1, jointly to minimize the mean-square error

& = E[(bk —_ ﬂuk)z] (1)

subject to the constraints of fixed repeater output signal power P;,
1=20,---,L.

The letter E in (1) denotes the ensemble average taken over {a,},
d;, and the noise. The Fourier transform of the probability density
funetion of 8 is denoted by P(f). The notation ‘“*”’ denotes a complex
conjugate and *|-|”’ denotes a magnitude.

By a well known method,* the mean-square error in (1) can be
expressed as

e = mo+ [ | 11 axmr) | &

S - De- 9]

L+1

- zM(f)[go A:?‘(f)B‘!‘(fJ]P(f) df

L+1

Il A(NB:()

L+1

+ 5 [ no K/ ®

where

M) = mo + 2 2, my cos 2rfkT
k=1

is the spectral density of the stationary, random message sequence
{ax}.

By introducing the dummy variable A_,(f) = 1 for all f, we can
write the repeater average output signal powers all in the same form as

0 A0 IIBO| df  1=0,1,- O

1 -]

p =i f M
T —c0 i==]

III. NECESSARY AND SUFFICIENT CONDITIONS

Necessary and sufficient conditions for B,(f),» = 0,1, --- , L + 1,
to minimize the mean-square error & can be derived by using the
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standard techniques of the calculus of variations. These conditions
are rather lengthy. In order to conserve space and to facilitate the fol-
lowing manipulations, we write these conditions in the same form.
To do so we use the dummy variables

A_,(f)y =1 forall f
Apa() =1 forall f
Apsr = 0.

Then it can be shown that the necessary and sufficient condition for
B.(f), n = 0,1, -+, L 4+ 1, to minimize the mean-square error &
subject to the power constraints in (3) is

wo| 11 ar0 ] 1 210 ]}

@ al-sl-0]

— | T a2 ][ T3 820 [Py

i#n

L+1 L+1

HA(f)

+ Z {Nl(f)

,.(f)}

11 4.0- HB )| B(f)}—O forall f (4)

i=—1

L+1

+ Z{m M(f)

;#n

where A, I = 0, . .., L, are Lagrange multipliers. The definition

2
=1

i=k
i=k
is used in (4).

In the following sections, we consider the problem of determining
the optimum B,(f),n = 0,1, ..., L + 1, from equations (2) to (4).

We can eliminate a trivial case first. In some correlation schemes
(such as duobinary) M(f) may be zero at some frequencies. It can
be shown that By.,(f) must be zero at the frequencies where M (f) = 0.
Furthermore, B,(f), n =0, 1, - - -, L, can be arbitrarily chosen at these
frequencies without affecting the mean-square error &. In practice, they
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may be chosen so that their amplitude and phases are continuous at

these frequencies.

In the following sections M (f) # 0 is assumed. Furthermore, as is
always the case in practice, N;(f), A;(f), P:, and T are assumed to be
nonzero, finite quantities.

IV. GENERAL RESULTS

By multiplying equation (4) by B*(f) one obtains

> {N,o') }

=0

L+1

HB(f

L+1

E AN

2

L+1

+ S Lo T

n=20,1,--- ,L+1 (5)

i=—1

where

) = | 1T 400 || TE 310 |

o -3 TG - 20~ D]}

is not a function of n. It can be shown that we may use equation (5)
instead of (4) without changing the solutions.

Letting n = m and m + 1 by turns in equation (5), one ohtains two
equations. Subtracting the latter from the former gives

M () | 1 Al
f==—]1 =0
L+1 2 L+1

=Nm+1(f) _IIIA(ﬁ H B; m=0)1r"'1L- (6)
Since the rlght-hand side of equation (6) cannot be zero for all f, one
has Ay > 0, m = 0, ..., L From equation (6)

Mar | 440 P | Buosf) [P _ Nyuol)

M Niwif) | Auni() [P | Basa() [*
h=0,1,---,L — 1. (7N

Equation (7) is equivalent to
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e _ [ he N-H(ﬁ]* 1
B.(f) I = [1_1 i _
BOT =158 ) TAsm 1140 |
j=112:"':L- (8)
It can be shown that, regardless of the values of m in equation (6),
substituting equation (8) into equation (6) gives

L | 4 || | s

()
1w Y0 o ©
From equations (8) and (9) one gets
T aoeo | =0 apnmor. a0
Let us define 6(f) to be the phase of [TT525 A:(NB:())], that is,
T a0 = | 1T 4080 | (n

Substituting equations (8), (10), and (11) into equation (5) and
setting n = 0, one obtains after a few steps

MM () [*
[TN[(D] i A:l(f) 1 LBD(]’)

[s £ 2l - -2 -ro

= MNHx(f):r 1 —i0(h
+ E[ () ) A

We have shown that the optimum digital and analog repeaters
must satisfy the L + 2 equations in (8), (9), and (12). Some dis-
cussion is in order.

Let us refer to the frequencies at which By(f) # 0 as the transmission
band. There is no signal transmitted outside this band. Clearly, the
analog repeaters may have arbitrary amplitude characteristics outside
the transmission band. Furthermore, the analog repeaters may have
arbitrary phase characteristics at all frequencies.* Therefore, it is only

2 i8N

0. (12

*Tt is seen from equation (2) that the mean-square error depends on the
over-all phase characteristic of the system, but not on how the over-all phase is
distributed among the repeaters. Thus, the analog repeaters may have arbitrary
phases. The over-all phase ean be adjusted at the digital repeaters.
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necessary to specify their amplitude characteristics in the transmission
band. Equation (8) shows that, in the transmission band, the jth
analog repeater (j = 1, - -+, L) should have an amplitude characteristic
proportional to the function

[Nzx"ib(fﬂi[l LA |]%'

This simple specification holds regardless of the distribution of timing
jitter and the spectral density M (f) of the message sequence. Since
the above function is in general well behaved, and since the phases
can be arbitrary, the optimum analog repeaters can be closely realized.

For brevity, we say that several functions are similar when they
differ only by multiplicative constants. In practice, the repeater noise
spectral densities may be similar, and the transmission media may
have similar transfer funetions. In such cases, equation (8) shows
that the amplitude characteristics of the analog repeaters are also
similar. A rather important physical meaning of this is:

The use of similar analog repeaters is not only an economical
choice, but also an optimum one, for systems where the repeater
noise spectral densities are similar and the transfer functions of
the transmission media are similar.

It remains to determine the digital repeaters, the gain constants
of the analog repeaters (the L + 1 LaGrange multipliers), and the
transmission band. They must satisfy the L + 2 equations in (8),
(9), and (12), and the L + 1 power constraints in (3). Furthermore,
as will be shown, they must also satisfy some validity conditions
because the repeater amplitude characteristics must be nonnegative.
Since the solution depends on the distribution of timing jitter and
since it is difficult to cover all cases in one paper, we shall consider
only the important case of deterministic sampling (that is, the case
in which timing jitter can be neglected) in the remainder of this

paper.

V. DETERMINISTIC SAMPLING

From now on we consider deterministic sampling, that is, timing
error & = 0, or

P{) =1, forall 7. (13)
Substituting (13) into (12) and noting that Ay, M (f), T, N+(f), and
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|[40(f)| are nonzero, finite quantities (we consider M(f) = 0 in
Section III), one can see that joint optimization requires either
lBu(f) i =0 (14)
or
s £ (14l - mr-2)

ANHmf)] L e _
+ E[ ™) ) T4m]° L

The first term in (15) is a periodic function in f with period 1/T, that
is, it has the same value at the frequencies f and f — k/T, where k is
any integer. Hence, a necessary condition for (15) to be satisfied at
both f and f — k/T is that

L MN[“U)T 1 -7
= ™) | TAD]°

k
L RINH)(]: - ?) 1 )
= z iUk (16)

5 =2 [l )

Since M (f) is a periodic funetion in f with period 1/T, (16) is equiv-
alent to the set of conditions

Bt
|

a cos 8(f) = B cos B(f — %) 17)
and

asin () = Bsin 6()‘ - %) , (18)
where

_ NN
« - 3 a)
| Al
L 7\.!N-.lﬂ f —m
g= 3 ( T)] (20)

< T

Noting that o and B are positive, one can show that (17) and (18)
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hold only if
a=24 (21)

-9

v = any even integer, including zero.

Thus, (15) ean be satisfied at both f and f — k/T only if (21) and
(22) are satisfied.
From (11), (10), and (22), one obtains

£ Il pl-7)]

and

6(f) + v, (22)

I

where

k
V P % ’ A, f_ m AWE
= ]:Mﬂi{(f):’ gm0 k;,, w( g) ; iBa(f — %) (23)
[N l(f - T):l
Substituting (23) into (15), one can show that
e = 1. (24)
Substituting (24) and (23) into (15) gives
N
w0 J A-U f — 3 2
My > ——i( ;‘:) l } Br - %) }
[N {- T)]
_ TMU)]% - [wm(n]% 1
T[ vl I P e vl B o7 N B

The optimum jitter-free system must satisfy either (14) or (25a).
For convenience, we assume that for each f, (25a) is satisfied at f — m/T
for m e ®, , where @, is a set of integers to be determined. The subseript
f indicates that &, may vary with f. Clearly (14) must be satisfied at
f — m/T for m ¢ &, , that is,

Bﬂ(f - r_?;) ' = 0: m¢mi . (268‘)
If ®; is an empty set, | Bo(f — m/T) | must be zero for all m (including
m = 0).
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Let us define a frequency set g as

g = {f D= IT =f= 9’17’ and @, is not an empty set}
Clearly, (25a) is satisfied in the frequency set
={fif=9g—m/T, ged and me®,},
and (14) must be satisfied for f ¢ &, that is,
|Bo() | = 0 for fy¢s. (26b)

Notice that & is the transmission band. Clearly, the transmission band
ean be determined from 4 and &, .

Substituting (13) into (5), letting n = L + 1, and integrating the
resulting equation, one obtains

[~ | 11 azomeon |

FEMAG-2sl-7)] - }a

L+l | £+1

+ 3 [ v | 1T A f)B(f)}df—o. 27)
Combining (2), (13), and (27), one gets
& =my — j:m M(I)[ﬁ A"E(f)B"i(f)] df. (28)

Substituting (11), (10), and (24) into (28) yields

e = mo— [ awo[3LT a1 1B Far. oo

Using (26b) and the definitions of § and ¢, and noting that M (f) is a
periodic function in f with period 1/T, one can cast (29a) in the form

Ca M
v [ [)]

" E i
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Since (25a) is satisfied at f — m/T for m ¢ ®,, one has from (25a)

-2

Ay -t

m +
M(f - %) k_z_:,g [N (f ~ m_ik)]a
: T

] 2

S S (25b)

By changing the index m + k to 7, using the periodicity of M (f), and
then using (26a), one can rewrite (25b) as

_t N\ |2 !
z {?\;Nm(]t - %):l} 1
| 44i-7)

Now we may substitute (25¢) into (29b) to obtain

y me(ﬂ,— . (250)

g = my — f TM() df

(- 5)]

+ | [TM(H) ZLZD\:]%- df, e®, . (30)
Lot B3

Equation (30) is the expression of & for the case of deterministic sam-
pling.

VI. DETERMINATION OF THE TRANSMISSION BAND

Let us consider the determination of the frequency set ¢ and the
integer sets &, . The ratios
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[Nia(h)t L
g LTk

have appeared in the previous equations, such as in (30). It is obvious
from Fig. 1 that [Ny(f)]%/|A¢(f)| may be interpreted as the noise-
to-signal ratio of the first analog link, [Na(f)]1%/|A:(f)| as the
noise-to-signal ratio of the second analog link, and so on. A similar
noise-to-signal ratio has*® appeared in optimizing the transmitting
and receiving filters for a given channel (see Section II). Since such
noise-to-signal ratios are usually not periodic functions in f, it is
customary to assume that for any f and k we have either

[N i) [N ol - TIE)T

> )
AT T 8]

N _ [N ol - %)T
NEE ]

This assumption is valid for most practical cases.

In the following we assume that (31) or (32) holds simultaneously
forl =0,1,...,L. Physically, this means that the pass and attenua-
tion bands (valleys and peaks of the noise-to-signal ratios) of the
analog links coincide. Important applications where this assumption
is valid are considered in Part II of this study.® It should be em-
phasized that this assumption is usually valid because carrier modula-
tion ean and should be used at the analog repeaters to shift the fre-
quencies so that the pass and attenuation bands of the analog links
coincide and the transmission media are best used.

From the above assumption, it is easily seen that

)

ZD\]{, N!+l(]r] £ i[\];l:

| A | = ’A ;f)

(31)

or

(32)

(33)

for any f and k # 0, regardless of the values of the \,’s. Comparing
(33) with (19) to (21), we see that (21) is not satisfied. Therefore,



1676 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

from Section V, (15) and (25a) cannot be satisfied at both f and f —
k/T for any f and & # 0. Consequently, the set of integers ®, defined
after (25a) cannot contain more than one element, and (26a) becomes

rB.,(f L ;,_i) ' =0, for med@,, k# 0. (34)

Substituting (34) into (25b) gives

M) o 1By

_ w(f_)]*_ ’“[A,N,“m]* 1
T[ N P2 agp] e%

From this the transmitting filter is determined as

1B [ = 37 f) | ¥l

{[TM(]’ - fv Xl(%)]|} fes  (35)

For the solution of the optimization problem to be valid, the solu-
tions of |B;(f)| must satisfy the conditions

|Bi(f)|=z0, 1=0,1,---,L+1
These conditions can be used to determine the appropriate signs of
()Y 1 =0, .-+, L. Consider first the possibility that (A)! < 0. It
can be seen from (8) that (A\,)! < Oand |B.()|* 20,1 =1, ---, L,
together require
a\Y<o, 1=1,--, L
But, from (35), the conditions
(Al)a<01 l=011.|"':Lr
would imply that
| Bo(f) |* = 0,

which is not a valid solution. Therefore, (A,)! cannot be negative and
must be positive. It can be shown from (35), (8), and (9) that (\,)* > 0
and | By(f) |° 2 0,1 =0, ---, L + 1, together require that*

* D(f) defined in (36) is an abbreviation used later.
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D(j) = [TM (]}

L
- >\

=0

=0, fed; me ®; (36)

and that (A)% > 0,1 = 1,. .., L. From these and the fact that
(o) * must be positive, it is concluded that the solution is valid only
when (36) is satisfied and

O)t>o0 1=0 -, L (37)

The necessary conditions in (36) and (37) are used later in determining
g and @&, .

By substituting (26b), (35), and (8) into (3), together with some
algebraic manipulation, it ean be shown that the power constraints
in (3) can be expressed as:

,\iP,=B,—:ZU)\:',a“, l=0,1,--+,L (38)
where 7
fLI'M(j |:N|+1(f )jl df, (39)
la-m)1

_ [N“ ][Nh“ _ )Tdf me®, . (40
o R

Clearly, if 9 and ®, are known, 8;, ax , and (\)?! can be computed,
the validity conditions in (36) and (37) can be checked, and the filter
characteristics can be computed from (35), (8), and (9). Thus, the
optimization problem is reduced to that of determining the ¢ and ®,
which minimize the mean-square error & in (30), subject to the power
constraints in (38) to (40) and the validity conditions in (36) and (37).

6.1. Mean-Square Error versus &,

Before a design procedure can be proposed, it is necessary to under-
stand the relationships among &, 9, and ®, . Such are the subjects of
this section and the next, and Section 6.3 gives a simple design procedure
based on the results.
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From (30) and (39), the mean-square error can be written as

L
&= my— [ TM(af + 3 Np . (41)
4 =0
From the definition of M(f) in (2), it is easily shown that
1/27
[ df = m, . (42)
-1/27
From (41) and (42), we may decompose & into
& =8 4+ & (43)
where
1/2T
g = f TM()) df — f TM() df (44)
-1/2T El
and
L
& = 2 g - (45)

Since T and M (f) are given, &, depends on 4, but not on the integer
in ®, . Therefore, for any 4, the integer in ®, must be chosen to minimize
&, subject to the power constraints in (38) and (40) and the validity
conditions in (36) and (37).

If we define
A Bo
E
a=|ML =], (46)
¥, L
P, + Qpo Q0 e QLo
Q — a‘u: P, + (257 SR a'.r.: , (47)
(793 oL P, + aLLJ
then the power constraints in (38) take the compact form
QA =3 (48)

and (45) becomes
& = A'B = A'QA. (49)
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-1

It can be shown that Q is positive definite; hence, Q™' exists and

we may combine (48) and (49) to obtain
& = A = 3'Q7'6. (50)
For each f, one may choose m to minimize the ratios
[N olf = m/TV/| Aulf — m/T) |

When this is done, 8, and a;; decrease—see (39) and (40)—and the
elements of § and Q decrease—see (46) and (47). However, it is difficult
to see from (50) whether &, would decrease or increase (the elements
of g and Q decrease, but the elements of Q™" may increase).

We resolve this difficulty by first considering the increment in &,
resulting from arbitrary changes in the ratios

[elr-5)]

, l=0,---,L.
m
=)
For brevity, we use the abbreviations
[Ni+i(f - %):|
Cl(]r)= ’ l=03"')L; me®, . (51)
4 -1)

Let T',(f) denote the increment in C,(f), I = 0, - -+, L. The resulting
incgements in_ A, &, A, B, and Q are denoted, respectively, by 4,,
d, A, B, and Q.

Notice that the increments T';,(f), l = 0, - -+ , L, are not necessarily
small.

Replacing Q, A, 8, and &, by (Q + Q), (A + A), (8 + §), and
&, + d, respectively, one has from (48) and (49)

Q+Qa+A4)=8+38 (52)
& +d=(A+ A+ 0 (53)

From (52) and (48)
QA =3 — QA — QA. (54)

From (53) and (49)
d= A8+ A3+ A'B. (55)
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Multiplying (48) by A’, transposing A’QA in the resulting equation,
noting that Q is symmetrie, and using (54), one obtains

A3 = A8 — A'QA — A’QA. (56)
Substituting (56) into (55) gives
d= A%+ B+ A — AQA + A). (57)

By the definitions of 8; and «y; in (39) and (40), and by the defini-
tions of the increments, one can show after some manipulation that

A'QA + A) = Z N+ 4] f [; A%cn(f)]n(f) df

+ ; A f {E [N+ Ade) + P..(f)]}ﬂ(f) df  (58)

B(A + &) = X M + A [ U@L of (59)
- > f [TM$IT.) df. (60)

We are looking for a condition to determine the sign of d. We must
decompose or combine the terms in such a way that the condition, if
it exists, can be detected. This is done by substituting (58) to (60)
into (57) and casting the resulting equation in the following form:

d= 3+l f {[TM Ol Z‘, NC, (f} ru(f) df

h=0

+ é M fs {[TMU)P - E N+ AdIC() + F:(f)]}f‘f.(f) df. (61)

From (61) we can prove a theorem about the selection of ®, for any
given 4.

It has been shown after (35) that the solution of the optimization
problem is valid only when (36) and (37) are satisfied. From the defini-
tion of C,(f) in (51), (36) can be written as

D(f) = [TM(H7} Z Mo for fed. (36)

For any given 4, let us define:
{@,}s = the set of all the choices of &,
which, together with the given 4,
satisfy (36) and (37). (62)
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We have assumed that (31) or (32) holds for all I; therefore, there is a
choice of ®;in {®,}, which simultaneously minimizes C,(f),l =0, - -+, L.
For later use, let us define:

®;.s = the &, in {®,}; which minimizes C,(f), [ =0, ---, L. (63)

If we change ®, from @, to G,.s, which is also in {®}s, C,(f) will
be increased, say, from C,(f) to C.(f) + T.(f), where

T, () =0, l=0,---,L

We have shown that if C,(f) is increased to C,(f) + T.(f),I =0, --- , L,
&, is changed to &, + d, where d is given in (61). Since ®,.4 is in {®,},
(36) and (37) are satisfied. Since ®,,4 is also in {®,},, (36) and (37)
are again satisfied, but in the form

[TM ) — E N+ AJC(f) + Tif)] 2 0, for fed

and
M4 A >0, l=0,---,L

because C,(f) is increased to [C;(f) + T.:(f)] and (\)* is changed to
[\ + Al Substituting (36), (37), and the two inequalities above
into (61) shows that

d > 0.

Therefore, & and & increase when &, , is chosen instead of @Rys (&
is fixed for a given g). This proves:

Theorem 1: For any given 9, the mean-square error & is minimized by
selecting ®y.q tn {®s}s .

Clearly, @&, is the optimum &, for the given ¢ because it minimizes
the mean-square &, subject to the power constraints in (38) to (40)
and the validity conditions in (36) and (37).

6.2 Mean-Square Error versus 4

We now consider the variation in the mean-square error when a set
of frequencies is deleted from a given 4. Let us define a frequency set
g as

J= {f : —% =f= r_)-li,aud ®; is an emptyset}-

Clearly, 9 M gis an empty set and ¢ |J g is the frequency set —1/2T =
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f = 1/2T. Equation (43) can be written as
g = f TM() df + A’B. (64)
F

Let Q be a set of frequencies in 4. By deleting @ from g we mean that
®, is changed to an empty set for f & 2, but remains unchanged for
f £ Q. When © is deleted from ¢ (that is, when ¢ is changed to 9 — @),
9, Q, A, B, (\)} and & are changed to (g + 2), (Q — Q), (A — A),
8 — 8), [((\) — A, and (& + e), respectively. Equation (64) is
changed to the form

E+e= fMTM(f) df + (A — A (8 — B). (65)

Since @ C 4 and 4 N g is an empty set, @ [ g is an empty set. From this
we may subtract (64) from (65) and obtain

- fﬂ TM() df — A’F — A'B + A'B. (66)
It is seen from (48) that
A3 = A'QA. (67)
When 4 is changed to 9 — Q, (48) is changed to
Q- Q@ —A)=5-5 (68)

Subtracting (48) from (68) and combining the resulting equation with
(67) vields

A3 =AB — A’QA + A'QA. (69)
Substituting (69) into (66) gives
e~ [T df~ AT - (A - D)F+ A0 - K. (70
The ith element of the vector B is
[rapre. o a.

The th element of the vector A is A;_, . The element in the 7th row
and the jth column of Q is

[n Cooi(NC;,(f) df.
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Using these element values, it can be shown from (70) that

L

o= [ {[TM(ﬁ]* - >0 - A,)cz(f)}{[TM(m* P> xzcm} df.

=0

(71)
We have shown in Theorem 1 that C;(f) should be minimized. Thus,
®, should be selected to avoid those frequencies where C,(f) = =

(for instance, where discrete tone interferences exist). Furthermore,
the validity conditions in (36) and (37) cannot be satisfied at such
frequencies. Therefore, we may assume, without loss of generality,
that C,(f) # « for the given ®,. The variation in (\, )}, A, then
approaches zero when the variation in 4, Q, approaches zero. There-
fore, if @ is replaced by an infinitesimal frequency set ©, A, becomes
negligible and (71) becomes

e= [ {[TM(f)]* - 2 x%cl(f)F df. (72)
We have defined in (36) the abbreviation
D(j) = [TM()) E NC.(). (73)
It is seen from (71) that if
D({f) =0, forall feQ, (74)

then e is zero and & is unchanged when € is deleted from J.

If D(f) # 0 for some f ¢ Q, there is, in 2, an infinitesimal frequency
set © in which D(f) # 0. If 0 is deleted from 4, e is given by (72). The
integrand of (72) is [D(f)]* and is positive; therefore, when 0 is deleted
from g, e > 0, and & increases. Repeating the deleting process we see
that & can only increase when any frequency set @ is deleted from g
and D(f) # 0 for some f & Q.

The above proves the theorem:

Theorem 2: For any given 9 and ®, which may or may not satisfy the
validity conditions in (36) and (37), and for any Q@ C 9, deleting Q from
g will not change the mean-square error & if D(f) = 0 for all { e Q, and
will tnerease & if D(f) # 0 for some f e Q.

6.3 A Design Procedure

The ambiguity in (50) is resolved in Section 6.1. It is proven in
Theorem 1 that, for any given 4, the ®, which minimizes C\(f), | =
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0, -+, L, is the optimum choice among all the solutions of ®, which
satisfy the validity conditions and power constraints. Theorem 2 shows
that deleting a frequency set £ from a given g will increase or not change
the mean-square error (never decrease). It is clear from these results
that, in searching for the optimum ¢ and ®&,, one should begin with
the largest possible ¢ and with the ®, which minimizes C,(f), I = 0,
-+« , L. From the definition of g in (27), the largest possible 4 is seen
to be

Gume = {f —gn S f s %} @5)

Thus, we can propose the following simple design procedure:

Choose § = 9, . For each f in g, , choose the ®; which minimizes
Ci(f),1 =0, -+, L. Compute 8, , ap , and (\,)* from (39), (40), and
(48), respectively. If the resulting values of (\,)} satisfy the validity
conditions in (36) and (37), the above choice of 9 and ®, is optimum.
The power constraints are satisfied by computing (A,)} from (48).
The mean-square error & is minimized.

Increasing C;(f) or deleting some frequencies from 9,,,, will increase &.
See Theorems 1 and 2.

The optimum filter amplitude characteristics are given by (35),
(8), and (9). The over-all phase of the system, 6(f), is given by (24)
(the system may have an additional time delay). As discussed previously,
6(f) may be distributed arbitrarily among the repeaters. The minimum
mean-square error is given by

L
&= Z 7\?3: .
i=o0

Thus closed form results are obtained if the choices of 9 and ®, in
the above design procedure satisfies the validity conditions in (36)
and (37). As illustrated by the applications in Part II, such validity
conditions are usually satisfied under normal operating conditions.”

VII. CONCLUSION

The joint optimization problem is solved in closed form for deter-
ministie sampling under two conditions:

() The pass and attenuation bands of the transmission media must
coineide: (31) or (32) holds for all I. This is usually the case, because
similar transmission media are usually used. Moreover, carrier modu-
lation can and should be used at the repeaters to shift the frequencies
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so that the pass and attenuation bands coincide and the transmission
media are best used.

(1) The validity conditions in (36) and (37) must be satisfied (see
Section 6.3). As illustrated in applications in Part II, such conditions
are usually satisfied.?

The closed-form expressions for the optimum repeater character-
istics and the minimum mean-square error can be computed using the
procedure in Section 6.3.

Two theorems are proven in Section VI for resolving the ambiguity
in the selection of the transmission band. These theorems hold regard-
less of the second condition above.

Timing error is also considered. It is shown that in the transmission
band, the jth analog repeater (j = 1,..., L) should have an ampli-
tude characteristic proportional to the given function (see Fig. 1).

[Nm(ﬂ]*[ 1 ]*
N JL AhAm [

This simple specification holds regardless of the timing jitter distri-
bution, the message sequence spectral density, and the two conditions
above. These conclusions are deduced from this result:

(f) Since the above given function is in general well-behaved, and
since the analog repeaters may have arbitrary phases, the optimum
analog repeaters can be closely realized.

(#) It is not only economical, but also optimum, to use identical
analog repeaters (which may have different gain factors) in many
systems where the repeater noise spectral densities differ only by
multiplicative constants (but are not necessarily flat with frequency),
and the amplitude characteristics of the transmission media differ
only by gain constants.

(77) If the repeater noise spectral densities differ only by multipli-
cative constants (and are not necessarily white), each analog repeater
will be required to provide amplitude equalization for its adjacent
transmission media (with arbitrary phase equalization). This specifi-
cation for digital transmission is the same as the requirement for
analog repeaters in a voice system.! Thus, by installing a digital as
well as an analog repeater at the (L+1)th repeater location, a hybrid
system can be used for either digital or voice transmission without
changing the I analog repeaters hetween.
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