Matrix Multiplication and Fast
Fourier Transforms

By W. MORVEN GENTLEMAN
(Manuscript received January 29, 1968)

Factoring a matriz and multiplying successively by the factors can
sometimes be used to speed up matriz multiplications. This is, in fac,
the trick which creates the fantastic gains of the fast Fourier transform.

The same trick which creates the fantastic gains of the fast Fourier
transform may be used with other matrices.
As an example, suppose the matrix

1 -1 4 3 -14 12|
-5 2 =20 -7 6 —28
2 —-20 1 6 —28 3
—20 1 —10 —28 3 —14
4 =5 2 12 -7 6
L—10 4 =5 -4 12 -7 |
is to be multiplied by a large number of different vectors, so that it
is worthwhile to try to be as efficient as possible. At first glance, it
would appear that (neglecting the possibility that multiplications
by one might not actually be performed) multiplying this matrix
with a single column vector would require 6° = 36 multiplications

and 6(6-1) = 30 additions. The crafty person, however, might notice
that this matrix may be written as the product of two matrices:

124 - - 1 - -3
-1 -2 —4 -5 —7

2 4 1 1 3
—4 -1 —-2|5 7

41 2 -1 —3

L+ -+ =2 —4 —1]- . 5 . - 7]

1099

1100 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1068

The zero elements in the decomposed form have been written as
periods to emphasize that these elements need not really enter into
the computation when either of these matrices multiply a vector.
In view of this, multiplying sequentially by the two factors would
require only 6(2) + 6(3) = 30 multiplications and 6(1) + 6(2) = 18
additions.

If we are really concerned about efficiency, more can be done by
taking into account other special elements. For example, observing
that 1 or —1 require only an addition or subtraction would save 3
multiplications in the original form, and 9 multiplications in the
decomposed form. Other savings could be made if some of the ele-
ments of a column were negatives of other elements in the same
column.

In the three years since the fast Fourier transform was first pub-
lished,* there have been numerous accounts of what it is and why it
works. The more mathematical of these tend to explain it in terms
of the fact that the quotient group of a cyclic subgroup of order
MN relative to its eyclic subgroup of order M is itself a cyclic group
of order N. Those accounts written by computer people usually con-
sider the binary representation of the time and frequency indices,
and observe how each bit enters into the summed products. And
accounts written by engineers invariably explain the algorithm in
terms of merging the spectra of suitable decimations of the original
series to form the spectrum of the original series itself.

These approaches are, of course, all quite valid, but they miss the
essence of the fast Fourier transform which is, in fact, contained
in the example above. If we wish to multiply a matrix M by a column
veetor z, it may be possible to find a factorization M = AB such
that forming first y = Bx then z = Ay requires less multiplications
and additions than would forming 2z = Mzx directly. The factors
A and B might themselves be able to be factored further profitably.

The fast Fourier transform is a special case of this, where the matrix
of interest is the finite discrete Fourier transform matrix whose ele-
ments are exp 2xi(tf/N) for { and ¢ from 0 to N — 1. Tt is really quite
irrelevant that the factors turn out to be (except for a permutation and
phase shifts) block diagonal matrices where each block is of the same
form as the original matrix—this fact is only used in showing that the
factoring can be continued.*

Indeed, the example above has exactly the same structure as a

*In fact, for the fastest programs it is not even quite true. See Bergland.?

The factors there are not equivalent to each other as the “twiddle factors” have
been redistributed to increase the number of coefficients having simple forms.

FAST MATRIX MULTIPLICATION 1101

6 = 3 X 2 point fast Fourier transform, except that the nonzero
elements in the factors are different. And it achieves exactly the
same savings that the fast Fourier transform does in this case. Even
the comments about taking advantage of explicit plus or minus ones
or negatives of other elements in the column reflect features cur-
rently in the better fast Fourier transform programs.

Having seen that the possibility that matrix factoring will speed
things up is not unique to the finite Fourier transform, we might
ask when we can expect to take advantage of it. It is immediately
evident that it does not improve things all the time. We cannot, for
example, reduce the number of operations required to multiply by a
diagonal matrix. Can we then identify those matrices for which it
is useful? Unfortunately not, except by exhibiting a factorization
with the required property.

At this point it is useful to observe that, taking advantage only
of zeros and ones, there always exist factorizations which do at least
as well as the original matrix. This is trivially true if one of the
factors is some permutation matrix, but more interestingly so if we
consider factors generated by row (or column) elimination as used
in the Gaussian elimination method of solving simultaneous linear
equations. In matrix terms this process is based on the observation
that

l:mu Mz - mlj
Mgy Mg =+ My
- [1 j”: My myz T Myn j|
7 1My — My, May — Mgy s+ Moy — PMya

The parameter » is then chosen to make one of the elements in the
second row vanish. Since this means that the right factor takes one
less multiplication and one less addition than the original matrix did,
and since the left factor clearly only requires one multiplication and
one addition, the total number of operations for the two factors is
exactly the same as for the original matrix.

In other words, row (or column) elimination preserves the number
of operations required to form the product of the matrix with an
arbitrary vector. This assertion assumes, of course, that in the elim-
ination we do not destroy more special elements (such as zeros or
ones) than we create. In fact, if we can create more of these special
elements than we had before, we have won: we have achieved a
factorization requiring less operations than did the original matrix.

1

1102 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1968

Notice that in the above example we used a nonsquare matrix. In
fact, nothing in the whole discussion suggested M be square, and
considering nonsquare matrices is no more difficult than considering
square ones. An immediate application of this is to the case where
a set of only a few Fourier coefficients are required from a large
number of very long sequences. Up until now, usually the best that
could be done was to compute the complete fast Fourier transforms
and discard the unneeded coefficients.

But it is apparent that by carefully factoring the matrix consisting
of those rows of the finite Fourier transform matrix which are of
interest, a more efficient algorithm can be produced, tailored to the
problem. A reasonable factorization to start from might be fast
Fourier factorization of the complete matrix. This is illustrated below
for the case where three coefficients are wanted from an eight point
transform. The four factor matrices are the reordering and the three
passes of the Cooley factorization. Only those rows of each matrix
which are marked by arrows need actually be computed. (W = exp
[(2x%) /8], explicit negatives and ones are represented as such).

1 L 1 1 1 1 1 1]
1w oW W -1 —-W =W =W
1 W -1 —-W 1 W -1 —W
1 W —w? W -1 —-w? w: —-Ww
1 -1 1 -1 1 -1 1 -1
1 —-W W =W -1 wo—-w W
1 —w -1 w1 =W -1 w?
11 —-w* —-w* -w -1 w? w* W |
-1 1 1-1[1 1
— 1 W — 1 w*
— 1 w* -1 -1
1 w? 1 —w?
1 -1 - 1 1
1 . 4 — 1 w?
1 —-w — 1 -1
i 1 -w*] L 1 —W*

L A

—

FAST MATRIX MULTIPLICATION

1 —1]

L

-

1

1103

We could also have regarded 417 as special elements.

Our suggestion then is that if one has a matrix which he wants
to multiply efficiently into a great number of arbitrary vectors, it
might be worthwhile to try to find a factorization of the matrix such
that multiplying sequentially by the factors is cheaper than multiply-
ing by the original matrix. Indeed, it is worthwhile to try to find an
extremely good, perhaps even the best, such factorization.

Since we cannot identify @ priori matrices for which this can be
done, let alone give an algorithm for finding the best or even just
a good factorization, the best we can recommend is to generate trial
factorizations and compare them. A useful tool for this is row (or
column) elimination: because of the invariance property mentioned
earlier, such a factorization cannot lose much, and might gain. As
an exercise to the reader, we suggest deriving the factorization of
the matrix given at the beginning of this paper, or the eight point
fast Fourier transform above. Notice that in the ease of the fast
Fourier transform it is useful to express the matrix in real arithmetic
before reducing it, because then it is more obvious how to go further
in the reduction, since in the computer it is usually the number of
real operations that counts.

REFEREN CES

1. Cooley, J. W., and Tukey, J. W., “An Algorithm for the Machine Calculation
of Complex Fourier Series,” Mathematics of Computation, 19, No. 90
(April 1965), pp. 297-301.

2. Bergland, G. D., “A Fast Fourier Transform Algorithm Using Base Eight
Iterations,” Math. of Computation, 22, No. 102 (April 1968), pp. 275-279.

