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We consider the problem of the transmission of analog data from a
Gaussian source over a memoryless channel with capacity C nats per
second. The source emils R independent zero mean Gaussian variaies
per second with variance o°. These digits are block-coded RN al a time
into N second channel inputs. The performance criterion is the mean
square error. Let €(N) be the smallest attainable mean square error
with parameter N(R, C, " fived). Shannon has shown that €(N) =
o exp (—2C/R) £ & and €(N) — ¢ as N — «. Hence the ideal error
e 1s attainable in the limit as the coding delay N — «. We are concerned
with the rate at which ¢ (N) — €&, and our principal result is that €(N) —
& < O[(log N/N)Y.

I. INTRODUCTION

We are interested in the following problem. Suppose we have an
analog data source which emits a sequence of statistically independent
Gaussian variates at a rate of R per second. We wish to transmit this
data through a noisy channel of capacity C nats per second. Our prob-
lem is the determination of the minimum possible mean-squared-error.

Specifically we shall study the communication system of Figure 1.
The output of the analog source is a sequence X,, X,, X3 --- of
statistically independent Gaussian variates with zero mean and variance
o which appear at the coder input at rate of R per second. After N
seconds, n = NR source variates have accumulated at the coder input.
Let X denote this random n-vector. The channel is a discrete memoryless
channel* which we assume accepts one input per second, and the coder
contains a mapping of X to an allowable channel input N-vector S.
Since it requires N seconds to transmit S, the system can process the
data continuously without a “backup’ at the coder input.

* Actually our results are valid for a broader class of channels, See the remark
after Theorem 2 in Section IT.
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The decoder examines the channel output N-vector R and emits a
Euclidean n-vector X’ which is hopefully “close” to X. The error
criterion which we adopt is (the “mean-squared-error’’)

e=lepx-x 0

where “|| ||"” is the Euclidean norm and E denotes expectation.

We shall assume that the parameters ¢°, R, and C are held fixed
for this entire paper, and denote by ¢ (N), the smallest value of ¢
attainable with parameter N (and therefore n = RN). Shannon' has
shown that

(i) &(N) = o exp (—2C/R) £ ¢, (2a)

(7)) €(N) — e as N — =, (2b)
’

ankgg X CODER S CHANNEL R DECODER —s—-

Fig. 1 — Communication System.

so that ¢ = & is attainable in the limit as the delay N — «. We are
concerned here with the rate at which ¢(N) approaches the ideal e,
and our principal result is

. . 2 [logN 1_] e
E(N)éeo[l-i_R\/E N +O(\/ﬁ) , as N , (3)

where 8 > 0, a parameter related to the channel, is defined in equation
(13).

This result is related to a result of D. Sakrison” which was done
independently.* In fact we have used one of his ideas (Lemma 1 in
our paper) to simplify our original proof.

II. STATEMENT AND DISCUSSION OF RESULTS

Following Shannon’s technique,' we separate the coder into two parts
as shown in Figure 2. The first part, called the source encoder or quantizer,
contains a fixed set § of M Euclidean n-vectors, and associates with
each possible input n-vector X a member of 8 (say X). Let us denote

* This paper and Sakrison’s paper were presented at the International Sym-
posium on Information Theory, San Remo, Italy, September 1967.
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Iig. 2 — Decomposition of the Coder.

the resulting (mean-square) ‘“‘quantization error” by
2 1 vl T 2
e,,=1—11‘,|LX—XH. (4)

The second part of the encoder, called the channel encoder, associates
with each X (one of the M members of 8) a channel input N-vector
(say S). The decoder, at the receiving end of the channel, associates
with each received N-vector R one of the members of § (say X’). Let
P, = Pr {X’ = X| be the probability of a transmission error, and
denote the (mean-squared) transmission error by

, 1 .. s = -
PR NE S 219 )
Clearly
& =< lP, max ||u — v [ (6)
n u,ve$

Further, the overall error € satisfies

2
€ =

I H X - X H_) = (fu + €T)2- (7)

= |-

Thus we want to make both ¢ and e; as small as possible.

Consider the parameter 1/, the number of members of the approximat-
ing set . In the interest of minimizing ¢; we want to make M large.
However, in the interest of minimizing P, and therefore e; , we want
to make 1/ small. The proper compromise yields our result, equation (3).

The following theorems indicate just how to choose M. The first is
proved in Section III, and the second was proved by C. E. Shannon
(Ref. 3, p. 16).

Theorem 1: (Source Encoding). Let X be a random n-vector (n = 1,2, --+)
whose components are zero mean Gaussian variates with variance o.
Let Ry > 0 be given and let {a,|% be a sequence which tends to zero. Then
there exists a set 8 of M n-veclors, where

M = exp [n(R, — a.)], (%)
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and a mapping f of X inio 8, such that as n — =»

1, 2
LEix - @l

< ae(l + 2a, + 1—"&‘-) + 0@ + O(M)- (©)

n n

Furthermore, S is such that for all u e 8,
Lip =6 (10)
" =

A special case of some interest in itself is that for which a, = 0.
In this case Theorem 1 asserts the existence of a quantization of X
with M = exp (nR,) points and mean-squared quantization error no
more than o* exp (—2R,)(1 + log n/n) + O(log log n/n) as n — =.
If the channel is noiseless with capacity C nats second, it can transmit
¢°Y messages with no error in the N seconds that it takes for the n-
vector X to be emitted from the source. Thus if B, = C/R, M = exp
(Ron) = e°", and the members of 8 can be reconstructed perfectly by
the receiver. The overall error is therefore

¢ = ¢) <’ exp (—2C/R)(1 + ]—"-ﬁéﬂ) + 0(135:1—0‘;—”)- (11)

Let us turn now to the discrete memoryless channel defined by an

input set (1,2, - -+ , K), an output set (1, 2, - -+, J), and a set of transi-

tion probabilities P(j | k), 1 £ j = J, 1 £ k = K. Corresponding to

each input probability distribution p,, 1 £ k = K, there is a joint

distribution p(k, 7) = P(j | k)ps on the product of the input and output
sets. Define the random variable (called “information’)

Uk, j) = logJ—;leLl, 1sk=K, 1sj=J. (12
| 2 peni |9

The channel capacity C = max,, EU, where the maximization is
performed with respect to all possible input probability distributions.
Let (p%)F., be a maximizing input distribution, and let U*(k, j) be
the corresponding information, then define

B = (2var U¥)™' = QEU* — 2C*)7". (13)

Theorem 2: (Shannon): Let {by}%., be a sequence which tends to zero
from above. Then there exists an N-dimensional code (for the channel
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described above) with M members

M = exp [N(C — by)], (14)
and (for any a priori distribution on the code words) error probability

P, = k exp (—BNby), (15)
where k is independent of N, and 8 is defined by (13).

Actually we can broaden the class of channels for which our main
result (3) holds to include that class of channels for which Theorem 2
holds for some constant 8. This broadened class includes the Gaussian
channel with signal-to-noise ratio p for which 8 = [(1 4 p)*/p(2 + p)]
(see equation 74 of Ref. 4).

Theorems 1 and 2 lead us directly to the proper choice of M and
our main result. Since the channel encoder must encode each of the
members of § into channel inputs, we equate the M’s of Theorems 1
and 2 obtaining (from n = NR)

R, =C/R and by = Ra, . (16)
If we then choose
_ log N
by = BN (17)

where g is defined in (13) we have from Theorem 1 a quantization error

& < of exp (—20/3)(1 + R’L\/E \/l——‘%—ﬁ—) + O(IOIEVN ) . (18)

and from (6), (10), and Theorem 2, a transmission error

& < 40P, £ 4%k % (19)

Thus by combining (7), (18), and (19) we have an over-all mean-squared
error

2 2 2 log N 1
o —~2 . S =
€ <o exp( C/R)(l + \/3\/ N ) + O(\/ ) (20)
This is our result (3).

III. PROOF OF THEOREM 1

We must establish the existence of a mapping f of Euclidean n-space
into a set § of M n-vectors such that E || X — f(X) ||*/n satisfies the
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upper bound (9). Let », = E || X||. It can be shown that with very
high probability, as n — «, X will be near the surface of the sphere
of radius r, with center at the origin. It turns out to be convenient
to establish the existence of a mapping ¢ from the surface S,, of this
sphere to a set 8.

Accotdingly we shall construct the mapping f as follows. Let X, =
X(E || X ||/l X|) = X(r./|| X ||) be the projection of X onto the surface
S,.. Let g be a mapping of S,, to some set 8 of n-vectors (9 has not
yet been found, of course), then f = g(X,). The following lemma of
D. J. Sakrisan?®, is proved in the Appendix.

Lemma 1: For any mapping g, and f = g(X,),
E||X —{X) | = Var || X|| + E[| X, — oK) || (1)

Since, as we shall see, Var || X|| is relatively small, the principal
contribution to E || X — {(X) |[*is E || X, — ¢(X,) ||

Our next task is to find the mapping g, and to this end we will establish
a lemma concerning the covering of S,, by spherical caps. First some
definitions.

Let w, z with and without subscripts denote points on S,,, the
surface of a sphere in n-space of radius 7, . Let a(w, z) be the angle*
between w and z. For 0 < 6 £ m, let C(w, 8) = [z : a(w, z) = 6] be
the spherical cap of half angle 6 centered at w. Assign the usual “area”
measure to S,, . If A © 8,, is measurable, let u(A) be its measure.
In particular, let

C.(6) = wletw, o) = B DT [ it ede  (22)

nt1) D
F(z)

be the area (measure) of a eap of half angle 8f, so that

n/2 n—1

Cofm) = — (23)
P(n 4 2)
2
is the area of S,, . We now state
Lemma 2:1 Let X, be a random vector which is uniformly distributed
* The angle a(Ww, z) is defined by cos « = (w, z)/[| W || || z ||, where (W, z) is

the inner product and 0 < & < 7.

It is shown in Ref. 5 that Aa(r), the surface area of an n-sphere of radius r
is given by An(r) = ar™* YT [(n + 2)/2]. Equation (22) follows from the fact
that Ca(8) = fo° (redp) Ana (1o sin ).

T Lemma 2 is related to a result on the covering of the n-sphere in Ref. 6.
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on 8,,. Let M (a positive integer) and 6 (0 = 60 = ) be arbitrary. Then

(for any dimension n) there exists a set of M points {w, , -+, Wy} C S,,
such that
Qw, , -, Wy)

s py {x,,¢ U e, e)} < exp [—MCL(0)/Cim)].  (24)

Proof: Let us define the function

1 if aw;,2)0>0, 1=j=M

F(W. y Wa y =00 Wy, Z) = ,(25)

10 otherwise.

Then for a fixed set w,, --- , W, ,

Qw, , -+ ,Wy) = Pr {x,,¢ U ew, , a)}

= EF(W1 y oty Wy ,X,,)

1
= o [ R D du). (26)
C. ()
Now consider a random experiment in which the M points w, ,- -, wy,
are random veetors chosen independently with uniform distribution
on §,, . @ is now a random variable given by

1

Q(W' yWo oo W) = F—ETT)

[row. - W, 2 dua), 1)

where upper case W’s represent random vectors. We now compute
EQ(W,, ---, W,), the average of @ over all choices of W, , -+, W, .
We will show that £Q =< exp [—MC,(8)/C,.(r)]. Since at least one set
{w,, -+, Wy must satisfy Q(w,, ---, wy) = EQ, the lemma will
follow.

We can write

, 1
BQ = B s [ FOWL Lo Wi, 2) duta)
]. { n 4 D
= Gy | DEFW. W ), (28)

the interchange of expectation and integration being justified by the
fact that ' = 0. As indicated in (28), EF (W, , - -+, W, z) is computed
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with z held fixed. Now

EF(W,, -+, Wy, 2) = Pt (F = 1} = P () [a(W,, 2) > 0]
_(y _ Cm))" _
_ (1 c,.(-,r)) < exp [~ MC.(6)/C.(m)],
(29)
so that

EQ < oxp [~ MC0)/C.) [ P48 = exp [~ MC(0/Cm)]  (30)

which concludes the proof.

We now give the construction of g. Let M = M, = exp [n(R, — a.)]
as in Theorem 1, and let 8 = 6, = arc sin exp (—R, + §,), where
8, > 0 will be specified below. Let {w,, wa, -+, Wi} be a set which
satisfies (24) for these 6§ and M. Let x ¢ S,, and say x e Jj%, C(w;, 0).
Let j, be the smallest index j such that x e €(w; , 6). Then

g(x) = (cos O)Wi, 31)

(see Figure 3), and || g(x) — x || < r, sin 6. If x ¢ U;Z, €(w;, 6), then
let g(x) = w, . In this case || x — ¢g(x) || = 2r, . Hence

E| X, —gX,) ||" < r5sin® 0 + 4riQ(wy, Wa, ---, Wa).  (32)
Since the set {w;]} satisfies (24),
E||X, — ¢(X,) ||* = r%sin® 8, + 475 exp [~ MC,(0)/Ca(m)].  (33)

Fig. 3— Construction of g(x). The solid line is the cap €(w;, ).
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Combining (33), and Lemma 1, and the fact (proved in the Appendix)
that

7, < av/n and %Vﬂl‘ [| X || = 0.92¢°/n, (34)
we obtain
1 2
SENX =X |

< ¢*sin® 0, + 40” exp [—M,C.(6,)/C.(m)] + 0.92¢° /n, (35)

where M, = exp [n(R, — a,)] and 6, = arc sin exp (— R, + 8,), where
8, > 0 is to be specified. Qur final step is selection of §, so that (9) is
satisfied. For 6, bounded away from =/2, Shannon (equation 27 of
Ref. 4) has shown that as n — =,

Cn(en) 1 SiIl“ en
C.(m) /2 €08 6,sin 4, \/_,"_TL sin” 6, (36)

so that (using the definitions of M, and 6,) for n sufficiently large

Cu(6,)  exp [n(8, — an)],
M. ) 2 Vo (37)

We now define §, by

| -
5, = an+llogn+ og 10gn+log V21 38)
2 n n n

Then, from (37), for n sufficiently large
exp [—M,C,(6,)/Cy(m)] £ 1/n. (39)
Finally, we have
exp (28,) = 1 + 24, + 0(8,)
=1+ 28, + O + O[(lig—@)z]- (40)

Combining (35), (39), and (40) we obtain
1 2
Lpix— i
< oo (1 4 20, + 1) 4 o(EREM) Loy )

which is (9).
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Inequality (10) follows from (31) and (34) by simply
&) || = [ g&X) || = rocos 6 <70 < Vo' (42)

APPENDIX

In this appendix we establish some facts about the random vector
X = (X,, X,, -+, X,) whose coordinates are independent zero-mean
Gaussian variates with variance o°.

Proposition:

@ E|X| = ()t

(#7) var || X || £ 0.92¢°
Proof: (i) follows from the Schwarz inequality: [E(1-|| X [))]* =
E|| X|*E1® = E || X||* = ne”. To establish (i7), consider the n-fold

joint probability density for the vector (R, ®,, -+, ®,_,), the polar
coordinate representation of X¥,
g("“) L1y P2, ‘Pn—l) = exp (?12/262)1‘7‘_1}]’(‘!91 y T ‘Pnfi)r (43)

where h(e, , + , @u1) = (2m6”) " cos " @, cos" T @y -+ COS @uos .
The marginal distribution for the random variable B = || X || is

. 2 et 2 2

jo) = ————— " exp (—r/20),

(20_2)11/2 11(?_;_

so that an integration yields

E||X|| = ER) = V27 T(n j 1)”@'

Since K

X ||* = no®, we have

2o
Py
=
w‘_}_
—_
~—
»
—_—

var || X || = ncrzll — (44)

Using the Stirling formula,

—u u—d g 1 1 = 1 )
u =3 D) woou—3y
e u T /2 (l + ou ~ 360 2) ST e v 'v2r (1 + 2u)

* Jee, for example, M. G. Kendall and A. Stuart, The Advanced Theory of
Statistics, vol. 1, London: Griffin, 1963, Section 11.2.
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to underestimate T'(n + 1/2) and overestimate I'(n/2) we obtain

Var [| X | _-1( 1)( 7T 1 )
i s 1= 1+ )\ - o~ s ) @)
Further
e’l(l +}1) =exp[—1+nlog (1 + 1/n)]
= exp [—1 + n(l/n — 1/2n%)]
1
=exp(=1/2n) 2 1 — 5,
and
1 1 _ 1 (7 17) 0.21
ne + 1) T 90m + 1) = (36 T90) =5
Hence,
Var || X || i smhr oy < 05 042
— S 1 (1= 0571 - 04207) S 75 4 75
_05 (1 + 0.84) L 05189 _ 92 46)
n n n n

This is (¢4).
We now give a

Proof of Lemma 1:
ENIX—iX) |P=E|X-X +X, —¢X) |
=E|X=-X [ +E[X —¢X) |
+2EX - X, , X, — ¢X,)), (47

where (u, v) is the inner product of the n-vectors u and v. Now
|1X — X, [P =1{|| X|| — E|| X|[}*, so that

E||X =X, |° = var || X ||. (48)

2

Further, the inner product
(X - X,,X, — gX,))
=X X) - & X)) - X, X)+ X, 9X))
= [|X[[ro — i = I X[ || 9X,) [| cos @, + 7o || g(X,) [[ cos e,
(49)
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where «, is the angle between X and ¢(X,), and a, is the angle between
X, and ¢g(X,). Since X and X, are colinear, @; = a;, = «(X,) a function
of X, . Now from (43) we see that the random variable R = || X ||
and the vector (&, , --- &,.,) are statistically independent. Since X, ,
depends only on &, --- ®,_, and not on R, we conclude that || X || is
independent of ¢(X,) and «(X,). Thus from (49)

EX - X, ,X, — gX,))
=nE || X || =1 — E || X || E[[| ¢(X,) || cos a(X,)]
+ rE[[] 9(X;) || cos «(X,)] = 0. (50)
Equations (47), (48) and (50) imply Lemma. 1.
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