THE BELL SYSTEM
TECHNICAL JOURNAL

Volume 47 April 1968 Number 4

Copyright © 1968, American Telephone and Telegraph Company

Some Theorems and Procedures for
Loop-Free Routing in Directed
Communication Networks

By R. MAGNANI

(Manuseript received November 15, 1967)

This paper examines two general methods for specifying directed routing
patterns in communication networks. Hierarchical routing, as currently
used in the toll network, is such a directed routing pattern. However, 1t
18 only one member of a large set of possible routing sirategies that can be
realized by storing, in each office, a list of outgoing trunk groups and an
order-of-choice for these groups for each received call address. The general
class of routing strategies is defined by this method of realization, subject
to the constraint that routing patterns be loop-free. The paper discusses
procedures for generating loop-free patterns, for delecting whether or not
a given paitern is loop-free, and for specifying “good” patlerns from the
large number which are realizable.

I. INTRODUCTION

The fundamental problem which besets people concerned with the
design of communication networks is how to provide a network which
is, at once:

(1) Of sufficient routing capability to allow any two users to be
connected with a high probability of success.

(1) Economical in its use of transmission facilities and switching
centers.

465

466 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

() Capable of surviving extensive natural or man- made damage.

(1v) Adaptable to changing traffic patterns and overload situations.

(v) Capable of being engineered and implemented in small sections,
over a period of years, by many different people.

This is a problem of such complexity that, with the present state of
the theory, it must be attacked piecemeal.

This paper deals with a small but important section of the problem.
It considers some of the topological properties of communication net-
works and examines a class of alternate routing strategies from a gen-
eral point of view. Our purpose is to state rules which will allow the
orderly production of routing patterns, for arbitrary networks, by a
computer. We approach the problem in three stages:

(1) Several simple rules are stated for producing “loop-free” rout-
ing patterns.

(i) The rules are “generalized” to allow the proof of some theorems
about the extent of their application.

(1i) A more limited but practical statement of the rules is presented
followed by several heuristic procedures, based on these rules, which
can be used to specify “good” routing patterns from the large number
which can be generated.

II. BACKGROUND

What is fundamental to the routing process as it is practiced today
in the telephone network? Certainly one of the answers is that each
office stores a list of outgoing trunks and an order of choice for those
trunks for each possible call address that can be received. We can
think of the aggregate of these lists as constituting a “routing map”
which has been distributed among many offices. The “map” which is
currently stored in the telephone network realizes the hierarchical
routing plan.

But suppose we wish to examine strategies which do not require a
“hierarchy” of offices? Is there a way to realize a general class of
routing maps which will allow offices to be of equal rank and which
can be implemented in the same fashion as the current hierarchical
plan? The answer is that such a class of routing maps does exist and
that, indeed, the present hierarchical map is simply one member of
the set. To see this, consider the simple network of four offices shown
in Fig. 1. This may be an entire network or some subset of a much
larger network with the connecting trunk groups omitted. For the

LOOP-FREE ROUTING 467

present, we will assume the trunk groups shown are all two-way (that
18, contain trunks that can be seized from either end) and that rout-
ing between the offices is subject to the following constraints:

() No routing control information is passed between offices.

(#¥) Offices do not check for shuttle.®

The resulting network is a fair approximation to a subset of the
present day commercial network.t Routing between offices is accom-
plished as follows :

(7) Each office is assigned a unique address such as NNX or NPA-NNX.

(77) Upon receiving a call request, an office checks to see if it is the
destination office. If it is, the call is counted as a success (although
in practice the called subscriber’s line must still be checked). If not,
the office consults a routing table and, on the basis of the received
NNX, selects an outgoing trunk group.

@ (2)

© O

Fig. 1— A four-office network.

(i) If a trunk in the group is available, it is seized and the called
address is passed over it to the next office. At this point we return to
step (i1).

(iv) If no trunks are available, the office again consults its routing
table, to find an alternate trunk group, and returns to step #i. The
process continues until all alternate trunk groups have been tried.

(v) If no trunks are available in any of the alternate trunk groups,
the call is blocked, and the caller is so notified.

For a particular network and destination office, this process may be
conveniently summarized on the graph which represents the network;
for routing to a particular office, we assign each trunk group in the
network a direction and an order of choice out of the office in which
it originates. For example, if office 4 were the destination office in the

* Shuttle refers to routing a call out over the same trunk group on which the
call arrived.)
T With one-way trunk groups omitted.

468 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

network of Fig. 1, we might summarize routing to this office by the
use of Fig. 2.

Here we are to understand that calls must route in the directions
shown and that trunk groups are to be selected in the given order
(beginning with 1). The routes between office 1 and office 4 can easily
be seen to be: 1-2-4, 1-3-4, and 1-3-2-4, where the numbers rep-
resent office numbers and the routes are listed in the order they will
occur. Similarly, offices 2 and 3 can be seen to have routes 3-4, 3-2-4,
and 2-4.

Fig. 2 represents routing from all offices to office 4 and will be said
to be a directed routing pattern to office 4 on the network of Fig. 1.
When such a routing strategy is followed, the way in which a call
routes from a particular office is independent of the past history of the
call; this is characteristic of routing in the present DDD network. To

DESTINATION
OFFICE

Tig. 2 — A direeted routing pattern to office 4.

completely specify routing in the network of Fig. 1, four directed
routing patterns are necessary, one with each office as destination.
The direction and order of choice assigned to the trunk groups will
vary from pattern to pattern depending on the destination office. To
see that the hierarchical pattern in use today is of this type, we need
simply draw the pattern. (See Fig. 3.)

III. ROUTING PATTERNS

Let us examine some simple rules for construeting such patterns
and adopt the standard graph theory terminology: “branch” or “link”
for trunk group, and “node” for office.

Because we assume offices do not check for shuttle or looping, we
will require the patterns we generate to be loop-free.* A “loop” for
our purposes is defined as: a set of branches and nodes (not contain-
ing the destination node) constitutes a loop if we can select any node

* Tt has been suggested by J. H. Weber that a small probability of looping
may be acceptable if looping can be detected (see Ref. 1).

LOOP-FREE ROUTING 469

in the set and, by following the directions of the branches, traverse
each branch once to form a path which returns to the selected node
(that is, loops must be “directed”). It is not clear in the case of a
large network just how one goes about obtaining a loop-free directed
routing pattern, particularly if the network is nonplanar. To dem-
onstrate that a systematic procedure is required, we invite you to try
to draw a loop-free pattern on the network of Fig. 4a.

A closely related problem is illustrated by Fig. 4b in which we are
given a routing pattern and asked to determine whether or not it
contains a loop. In this case, the single loop that the network does con-
tain may or may not be obvious to you; however, if the network were
much larger, say 40 nodes, a systematic procedure again would be
required.

Fig. 3 — Hierarchical directed routing pattern.

Consider the following two rules for generating directed routing
patterns in an arbitrary network.

Rule 1—Select any node in the network (usually the destination
node) and label all its branches incoming.

Rule 2—Now select a node which has at least one outgoing branch
and label all its remaining free branches incoming.* Repeat this
rule until all branches in the network have been assigned a direction.

Fig. 5 illustrates the process for a simple 6-node network. The num-
bers in the node circles represent the order in which rules 1 and 2 are
applied, beginning with the heavily cireled node that is the destination
node for this pattern. Notice that the process is finished in four steps,
leaving the two blank nodes with only outgoing branches. We will eall
nodes of this type (the blank nodes) originating nodes, although it is
assumed that calls routing to the destination node can originate at any

* Free branches are those which have not been given a direction.

470 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

node. Nodes with both incoming and outgoing branches will be termed
tandem nodes (for example, 2, 3, 4). The remaining node, node 1, will
be called a terminating node and, in this case, it is the destination
node for the pattern. Indeed, if the rules remain as stated, there can
be only one terminating node in any pattern, the destination node.
Unless stations are being considered which are multiple-homed, this

Fig. 4— A sample pattern.

is not a limitation.* However, to deal with a multiple-homed situa-
tion and to allow the proofs of some general theorems, we will remove
this restriction by restating rule 1:

Rule 1’ Select any free node in the network and label all its branches
incoming.t This rule may be repeated an arbitrary number of times,
each application creating a terminating node.

* A station which can be reached from more than one office is said to be
multiple-homed. A dual-homed station, for example, can be reached from either
of two offices—in this case, we would want both offices (if not connected) to be
terminating nodes in the routing pattern.

t A free node is one with no direeted branches. Each application of this rule,
of course, creates a “trap” for traffic.

LOOP-FREE ROUTING 471

Rule 2’ Same as 2.

This revised set of rules will be referred to as backward production.

Clearly an analogous process exists in the forward direction and
will be called forward production.

Rule 1” Select any free node in the network and label all its branches
outgoing. This rule may be repeated arbitrarily, each application
creating an originating node.

Rule 2” Now select a node which has at least one incoming branch
and label all its remaining free branches outgoing. Repeat rule 2 until
all branches in the network have been assigned a direction.

We show later that backward production is the more useful process
for generating telephone network routing patterns.

BACKWARD PRODUCT ION

RULE 1:
¥ BECOMES
RULE 2:

BECOMES

DESTINATIO
NOD

GIVEN
NETWORK :

RULE 1
APPLIED

RULE 2
APPLIED

RULE 2
APPLIED

FINAL

PATTERN
RULE 2 £

APPLIED

Fig. 5— Example of use of backward production.

472 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968
1V. GENERAL THEOREMS

4.1 Proof of Lemma and Theorems
We now prove the following lemma and theorems:

Lemma 1: Any loop-free pattern must contain at least one originat-
ing node and at least one terminating node.*

Proof: This can be proven by exhausting the possibilities. Clearly it
is not possible to have a network consisting only of originating nodes
or only of terminating nodes. The remaining possibilities are:

(i) Only Tandem Nodes—If a is a tandem node, it must have an
outgoing branch to some other node, B. Similarly, 8 must have an out-
going branch to some node other than A (or we would have a loop),
say ¢. This argument proceeds until all nodes in the network have
been considered. The last node to be considered must connect to some
previous node since it, too, is a tandem node. Such a connection would
create a loop.

(i) Originating Nodes and Tandem Nodes—If a is a tandem node,
its outgoing branches must connect to another tandem node, since no
branches can terminate on an originating node. Therefore, the argu-
ment presented in ¢ can be used here.

(#51) Terminating Nodes and Tandem Nodes—If A is a tandem
node, its incoming branches must originate at another tandem node,
say B, since no branches originate at terminating nodes. Since B is
also a tandem node, it must have incoming branches from some node
other than A (or we would have a loop), say c. Again, this argument
proceeds until all nodes in the network have been considered. The last
node considered must have an incoming branch from some previously
considered tandem node, thus creating a loop.

The remaining two possibilities (terminating the originating nodes
only, and all three node types), each contain at least one terminating
and one originating node.

Theorem 1: Routing patterns generated by backward production are

loop-free.

Proof: Rule 1’ tells us we may create terminating nodes arbitrarily

(we must create at least one) in sequential fashion. Since candidates

for terminating nodes must have all branches free and these branches
* As this paper was being prepared, the author learned of work by S. L.

Hakimi in which Lemma 1 and Theorems 1 and 2 are proved in a more formal
fashion. (See Ref. 2.)

LOOP-FREE ROUTING 473

are all made incoming, it is not possible to loop through a terminating
node, nor can there be branches between terminating nodes. Let a
and B be terminating nodes and let ¢ be the first nonterminating
node, with a branch to A (and possibly to B), to which we apply rule
2’. Since it is not possible to loop through nodes A and B, we may
disregard the branches to these nodes as far as loops are concerned.
Then the only branches which can be members of a loop are the re-
maining (all-free) branches on c. But rule 2’ tells us to make all these
branches incoming. Therefore, the only way to loop through node ¢
is to loop through node a (or B). Since it is not possible to loop through
A or B, it is not possible to loop through c. Clearly the same argument
applies at each stage of the process; the only way to loop through the
present node is to loop through some previously considered node,
which is not possible. The process ends when all branches have been
given a direction. At this point, the originating nodes will be seen to
have been created by applying rule 2’ to all the nodes to which they
connect. Since it is not possible to loop through originating nodes, the
pattern must, indeed, be loop-free.

By a completely analogous proof, it may be shown that the routing
patterns generated by forward production are also loop-free.

Now we have two procedures for generating loop-free patterns. The
question is: What sort of patterns do they generate? We prove:

Theorem 2: All loop-free routing patterns can be generated by back-
ward production.

Proof: This is proven by induction on Lemma 1. Let Ny be any arbi-
trary loop-free routing pattern. Then, by Lemma 1, it must contain
at least one terminating node. For generality, assume it contains two,
A and B. We will make these nodes evident, leaving a reduced net-
work, N;. See Fig. 6.

In a blank network (that is, a copy of N, without branch assign-

S =
Q‘ G\

NETWORK Ng BLANK NETWORK

Fig. 6 — Construction of a duplicate of N, from a blank network—first stage.

474 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

ments), the terminating nodes o and B may be generated by the ap-
plication of rule 1’.

If we were to remove these nodes and their branches from No, we
would have left the network Ny, which must also be loop free. (If N,
is not loop-free, then neither is Ny.) Since N, did not contain terminat-
ing nodes (all terminating nodes in No were made evident), we must
create terminating nodes in the process of discarding nodes A and B
and their branches. That is, in the set of nodes to which A and B con-
nect, there must be at least one node which becomes a terminating
node if its branches to A and B are removed. In addition, if there is
more than one such node, the nodes cannot be connected to each other.
(Any such connection would make one of the nodes a nonterminating
node.) We will call these terminating nodes, generated by discarding
previous nodes and branches, pseudoterminating. Let us assume there
are two such nodes, ¢ and p, in the network N; and place them in evi-
dence. See Fig. 7. In the blank network, the outgoing branches from
¢ and p (and all other nodes) to A and B, were generated when we
applied rule 1’ to nodes A and B. If we were now to apply rule 2’ to
nodes ¢ and p, in any order, we would generate the nodes ¢ and o in
the blank network exactly as they appear in the network No.

If we now remove nodes ¢ and p and their branches from N;, we
are left with network N, which must also be loop-free. N; had con-
tained only tandem and originating nodes (all pseudoterminating
nodes in N; were made evident). With the removal of branches to ¢
and p, we must therefore create at least one pseudoterminating node
in N,. Let there be two such nodes, E and F, and make them evident.
See Fig. 8. In the blank network, the application of rule 1’ to nodes
A and B, and of rule 2’ to nodes ¢ and b, assigned all the outgoing
branches from nodes £ and ¥ (and all other nodes) to nodes 4, B, ¢, and
p. Now the application of rule 2’ to nodes £ and F in the blank net-
work will properly assign all the incoming branches to nodes £ and F,
and these nodes will appear as they do in Ny.

O
Ol

NETWORK Ny BLANK NETWORK

Fig. 7 — Second stage.

LOOP-FREE ROUTING 475

N

NETWORK N2 BLANK NETWORK

Fig. 8 — Third stage.

This argument may be applied to smaller and smaller networks,
each time generating the proper nodes and branch assignments in the
blank network. Since the network N, is assumed to be finite, the proc-
ess terminates in K steps with some network, Ny, which contains all
the originating nodes in N, now isolated (all branches will have been
discarded). At this point in our assignments in the blank network,
we will find that all branches have been assigned and that we have
generated network Ny by applying rules 1’ and 2'.

Again, an analogous proof will show that all loop-free patterns may
be generated by forward production.

It is possible to decide whether or not a given network and rout-
ing pattern contains a loop by a procedure which is a variant of that
given in theorem 2. (This procedure relies on lemma 1 for its justifica-
tion.)

Identify all originating and terminating nodes and remove them and
all their branches from the graph. Now repeat this step until either:

(2) Only branchless nodes remain, or

(i7) No originating or terminating nodes can be found. If the net-
work can be reduced to branchless nodes, it is loop free. If not, at the
point where no further reduction is possible, the remaining network
contains at least one loop.

4.2 Conclusions from the Theorems

We can now draw the following conclusions:

(1) The class of routing patterns defined by rules 1’ and 2, or by
rules 1” and 2”, is equal to the elass of all loop-free routing patterns.

(iz) Therefore, any pattern that can be generated by forward pro-
duction ean also be generated by backward production.

(717) If a pattern is loop free, there is at least one sequence of nodes,
to which we can apply backward production, that will generate the

476 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

pattern. (A similar statement holds for forward production.) The
sequence that will generate the pattern is discoverable by applying
the procedure given in theorem 2.

(iv) If N, represents the number of terminating or pseudoterminat-
ing nodes made evident in the 7" step, the number of ways to generate
the pattern Ny, by backward production, is:

K
No. of Ways = JT (W,)

i=1
In general, the number of ways to produce a pattern using forward
production is unequal to the number of ways using backward produe-
tion.

V. SYMMETRIC NETWORKS

5.1 Additional Conclusions

The theorems and conclusions of Section 1v apply equally well to
symmetric networks (that is, fully interconnected). In addition, it
can be shown that, for symmetric networks, the following is true:

(i) There is exactly one originating node and exactly one terminat-
ing node in any pattern.

(1) There is only one way to produce a given pattern using back-
ward production. (Similarly for forward production.)

(i) If we choose a terminating node and apply backward (or for-
ward) production, we can generate (N-1) distinct loop-free routing
patterns to the terminal node. These patterns will all be isomorphic
(that is, the same with a relabeling of the nodes). Indeed, there is
really only one “abstract” loop-free pattern in a symmetric network,
no matter which node is the destination node or what order of choice
is applied, since all patterns can be shown to be isomorphic.

5.2 Routing in Symmetric Networks

We would now like to examine routing in symmetric networks both
as useful in itself and for a bound on routing in incomplete networks.
We begin by deriving an expression for the number of K-link routes in
a symmetric routing pattern from a given node to the destination node.

Assume we are given an N node symmetric network with the first
node as the destination. Also assume forward production is applied to
the network, using rule 1 on node N and rule 2 on the nodes N — 1,
N — 2, - -- 3, and 2, in that order. (Equivalently, we could use backward

LOOP-FREE ROUTING 477

production, applying rule 1 to node 1 and rule 2 to nodes 2, 3, 4, ---
N — 2, and N — 1, in that order.) Then we may show the following:

Theorem 3: In a symmetric network of N nodes, the number of K-link
routes between the Q'" node (2 = Q = N) and the destination node (node 1)

is exactly given by the binomial coefficient C(g : ?)

Proof: Consider node N. It will have one branch to the destination
node, giving a single one-link path. We may write this as C (N 0— 2)-
Now, any 2-link path must pass through an intermediate node, of which
there are N — 2. If we can show that each of the C(N 1_ 2
of an inftermediate node generates exactly one 2-link path, the number
of 2-link paths from node N to the terminal node will be C(N 1— 2)-
Let A be one of the possible intermediate nodes. Since we are using
forward production to generate the routing pattern, each successive
node considered must have no branches directed toward previously
considered nodes and must have exactly one branch directed to each of
the nodes not yet considered. Since node A is considered sometime after
node N, there must exist a branch from N to A. But A4 is considered
before the destination node (which is last in the process); therefore,
there must exist a branch from A to the destination node. Thus, there is
exactly one 2-link route from node N, through node A, to node 1. This

N i_ 2) choices for A. Therefore,

) selections

argument is valid for any of the C(

N -2 .
there are exactly C(1) 2-link routes from node N to node 1.

This argument may be generalized for K-link routes. Each K-link
route requires KX — 1 intermediate nodes between node N and node
1, There are C (g : ?) ways to choose a distinet set of K — 1 inter-
mediate nodes. If we let A,, A,, A;, --- Ax_, be a particular choice
of the K — 1 nodes, then there must exist exactly one ordering of these
nodes which represents the sequence in which rule 2" was applied.
If the ordering is A, , 4;, A5, --+ Ax_,, node 4, will have a branch
to A, , which will have a branch to 4;, and so on. Since 4, is always

considered after node N, and node Ag_, is always considered before
node 1, there will be exactly one K-link path for this choice of K — 1

478 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

nodes. Since the choice was arbitrary, there are C(II\{T _ ?) K-link
routes from node N to node 1.

Now consider node N — 1. All branches from node N were made
outgoing and therefore are of no use to later nodes for the purpose of
routing. If we remove node N and its branches from the graph, we
are left with an N — 1 node symmetric network. In this reduced graph,
we may consider node N — 1 as the originating node and node 1 as
the destination node. The sequence in which rule 2" was applied in this
graph is the same sequence used in the larger graph. Hence, the argu-
ment presented above applies to this network with N — 1 nodes
replacing N nodes. The number of K-link routes is therefore
CI:(NI; i) 1— 2:|- We may proceed to remove node N — 1 and its
branches from the graph, and so on, generating successively smaller
symmetric networks and applying the same arguments at each stage.
In general, from node @, the number of K-link routes to the destination
isC(g:?), (2<Q=<Nand1 = K £ Q — 1). As a corollary, it
can be shown that the fofal number of K-link routes from all nodes

in the graph to the destination node is given by C(N I; 1)- That is:

oV)= 2elk =)
where

C(g : f) is zero for K = Q.
It is possible to summarize routing in symmetric networks by using

Table I. As an example of the information obtainable from the table,

consider a 6-node symmetric network to which we have applied back-

ward production in the order: (rule 1) 1, (rule 2) 2, 3, 4, 5, 6. (See

Fig. 9.)

This network will have:

From node 6: one 1-link, four 2-link, six 3-link, four 4-link, and one
5-link route to node 1 (the destination).

From node 5: one 1-link, three 2-link, three 3-link, and one 4-link
route to node 1.

And so on, reading node I routes from line I. Reading from N=6,

479

LOOP-FREE ROUTING

S9PON A JO {IoM)aN
® U1 sopnoy
qury-3y o
Iaquin N [830], S9INOY JO JAqUINN [B}0,
N NUIT | YW | ury | W | YW | Yury | yurp | Y[| yup | yurg
or | 6 |8 | ¢ 9 ¢ ¥ € z 1
188 I 0T | ¢% | 021 | 016 | &% | 01 | o0&l | @ | o1 I ar
0t T 6 | 98 8 91 | 91 | ¥ | 92 | 6 I 1
6 I 8 8% 9¢ | oL | 9c | s@ | s I ot
8 I L 1w | g€ | e 1 | L 1 6
L 1 9 er 0z | ¢t | 9 I 8
9 1 c ot or | ¢ I L
g 1 i 9 | ¥ 1 9
¥ I O I ¢
g 1 z 1 ¥
g I I 3
1 z
N HUVT | U | WD | Wl | yurp | Yurp | oup | Yur] | uep | juep | Spurg I
m | ot | 6 8 L 9 ¢ ¥ g | @ 1

$99N0} JO Iaquin]

(9poN [BuTWIAL) [BPON
0} [@PON WIOI] §3INOY
HurT-y Jo JequnN

SHUYOMIHT N OTHIAWWAG NI HONILAOY J0 AUVANAS—T] dT19V],

480 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

there will be a total of five 1-link routes from all nodes to node 1,
a total of ten 2-link routes, and so on.

These numbers represent the maximum numbers of K-link routes
in an arbitrary (not necessarily symmetric) 6-node network. This
follows from the fact that we may generate the arbitrary network by
removing branches (and therefore routes) from the corresponding
symmetric network.

VI. HEURISTIC PROCEDURES FOR ARBITRARY NETWORKS

How does one go about choosing a “good” routing pattern to a
given terminal node in an arbitrary network? We can begin by mak-
ing the following observation.

Tig. 9 — Six-node symmetric network.

Since a practical pattern defines routes to one node, the destination,
it is reasonable to require “good” routing patterns to have only one
terminating node type, the destination node. This means we may
apply backward production as defined by rules 1 and 2; therefore,
we cannot expect to generate all loop-free routing patterns (which
require rule 1’ in place of rule 1). This is not a limitation unless we
are dealing with multiple-homed stations. We will ignore this latter
case, although the procedures we discuss can be generalized to deal
with multiple homing.

Now, what is meant by a “good” routing pattern? One with the
lowest average blocking from all nodes to the destination node? A
pattern which minimizes blocking from a selected node to the destina-
tion? One with the smallest average route length? A pattern with the
maximum total number of routes?*

To the author’s knowledge no algorithm exists which will guarantee

* There is, of course, the larger problem of designing a network which ‘realizes
all of these and is, at the same time, rugged, economical, and so on, as deseribed

in the introduction. This is a complex problem; its very statement is difficult and
has been the subject of intensive study, (See Refs. 3, 4 and 5.)

LOOP-FREE ROUTING 481

any of these criteria. However, it is possible to approach the last two
criteria by using a heuristic procedure which will generate patterns
with large numbers of short routes, and which also has the virtue of
assigning orders of choice to the branches.

6.1 Generating Patterns with Many Short Routes

Consider the following method for applying rules 1 and 2 to an
arbitrary network:

(1) Select the destination node as the first node and apply rule 1,
labeling all the branches incoming. Label the originating ends of each
of these branches the first choice out of the respective nodes.

(1) Now, in the set of nodes to which the destination node con-
nects (these will be called “predecessors” of the destination node),
select any node and apply rule 2, labeling its free branches incoming.
Label the originating ends of these branches first choice out of the
respective nodes, if possible; or, if a first choice already exists (from
step 1) label the branch second choice.

(i) Continue step i, choosing nodes only from the predecessors of
the destination node; each time, label the branches n plus first choice
out of the node at the originating end, where n choices already exist.
Continue until all the predecessors of the destination node have had
rule 2 applied to them.

(1v) Consider the set of nodes which has outgoing branches to any
node (or nodes) which are predecessors of the destination node.t
These may be thought of as second level predecessors of the destina-
tion node. Apply rule 2 to these nodes until they have been exhausted
(or until you are exhausted, whichever comes first), each time label-
ing branches the n plus first choice out of the node in which they
originate.

(v) Identify the third level predecessors of the destination node,
and so on. Continue the process until every branch in the graph has a
direction and order of choice out of the node from which it originates.

Fig. 10 gives an example of the procedure, which is tedious to de-
seribe, but easy to perform.

At this point, we can observe that all the paths from the Kt level
predecessors of the destination node have at least K links. We prove
the following theorem:

T The predecessors of any node (or nodes) can be identified without reference
to branch directions. In this procedure, a predecessor of node A is any node
connected to node a by an (as yet) undirected branch. If we are seeking the

predecessors of a group of nodes, branches between nodes in the group are
ignored.

482 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

PREDECESSORS FIRST LEVEL SECOND LEVEL

RULE 1
TO NODE 1:

RULE 2
TO NODE 2:

RULE 2
TO NODE 3:

RULE 2
TO NODE 4:

Fig. 10 — Deriving order of choice in the backward production process.

Theorem 4: The given procedure creates the mazimum number of
1-link and 2-link routes.

Proof: Clearly, there is no way to create more 1-link paths to the des-
tination node than to label all its branches incoming. Consider the
first level predecessors of the destination node. Among their free
branches, they may have branches to each other, and branches from
second level predecessors.

Each time we label a branch between first level predecessors we
create one 2-link path to the destination. This is true regardless of
the direction given to the branch. Hence, the number of 2-link paths
created this way is fixed, and is exactly the number of branches be-
tween first level predecessors. If we now discard the branches between
first level predecessors and consider the reduced graph, it is clear that
the way to get the maximum number of 2-link paths is to label every
free branch, on every first level predecessor, incoming. But this is
exactly the effect of the given procedure. Branches that do not con-
nect first level predecessors remain free until rule 2 is applied to the
node; then they are all labeled incoming. It follows that the total

LOOP-FREE ROUTING 483

number of 2-link paths created is fixed, and is equal to the number
of free branches on all first level predecessors after the application of
rule 1 to the destination node. The order in which rule 2 is applied to
these nodes has no effect on the number of 2-link routes.

It might seem that this theorem can be extended to show that the
procedure produces the maximum number of K-link routes (K > 2),
subject to the fact that K-1 link, K-2 link, . . ., 2-link, and 1-link
routes have been maximized. Unfortunately, one need go no higher
than 3-link routes to find a counterexample as shown in Fig. 11.

The heuristic procedure can be improved by eliminating the arbi-
trary choosing of nodes in step % and in later steps. That is, having
identified the N level predecessors of the destination node, we apply
rule 2 to these nodes in a particular order.

6.2 Choosing N'* Level Predecessors
We suggest this revised heuristic procedure for choosing among N'tb
level predecessors:

() Arrange the graph to show the various level predecessors in
stages. An example is Fig. 12, where higher and higher level predeces-
sors are encountered as we progress from left to right.

(72) Direct all branches between stages toward the destination node.

(See Fig. 12.)
(77) Now consider the first level predecessors, nodes 2, 3, and 4.

Fig. 11 — Counterexample, (a) Pattern generated by heuristic procedure;
number of 3-lgnk routes: 2. (b) Pattern with maximum number of 3-link routes;
number of 3-link routes: 4.

484 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

For each of these nodes, we compile two figures, the number of routes
provided from the node to the destination, and the number of nodes
served by this node. Node B is said to be served by node A if there
exists at least one directed path from B to A. Node 2, for example,
serves nodes 5 and 9, while node 7 serves none. We take the difference
of these two numbers (nodes served minus routes provided) and use
the resulting number as a measure of the need for additional routes.
For Fig. 12b these numbers may be tabulated as follows:

No. Nodes No. Routes
Node Served Provided Difference

2 2 1 1
3 3 1 2
4 3 1 2

(iv) Now choose the lowest of the difference numbers and apply
rule 2 to the corresponding node. In this example, node 2 is the choice
and we label all its branches incoming. (Presumably, it needs the
least number of additional routes.)

(v) Node 2 is now removed from consideration and we may restate
the table for nodes 3 and 4, adding the routes picked up by the
branches directed into node 2:

No. Nodes No. Routes
Node Served Provided Difference

3 3 2 1
4 3 2 1

In this case, we have equality and so choose node 3 arbitrarily. Node
4 is, then, the last node in the process and the result is shown in Fig.
12¢.
(vi) We now move one stage to the right and consider second level
predecessors:
No. Nodes No. Routes
Node Served Provided Difference

5 1 1 0
6 2 2 0
7 0 4 —4
8 1 4 -3

This suggests that node 7 is least in need of additional routes and we
may label all its branches incoming. Restating the table two more

LOOP-FREE ROUTING 485

PREDECESSORS : SECOND
FIRST LEVEL THIRD

DESTINATION
NODE

(d)

Fig. 12— Example of heuristic procedure.

times, we obtain node 8 next and, finally, node 6. The result is shown
in Fig. 12d.

No. Nodes No. Routes
Node Served Provided Difference

5 1 1 0
6 2 6 —4
8 1 8 -7
5 1 1 0
6 2 14 —12

To obtain an order of choice for the branches, we simply apply the
heuristic procedure for generating patterns with large numbers of

486 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968

short routes in node order 1, 2, 3, 4, 7, 8, 6, and 5. (See Section 6.1.)
The result, identical to that in Fig. 12d, is shown in Fig. 13.

This method yields routing patterns in which the average path
length is short and the total number of routes large. It is, however, not
infallible, and counterexamples can be generated—networks in which
the process leads to neither a minimum average path length nor a
maximum total number of routes.

Fig. 13 — The complete routing pa.ttern‘ to node 1. Apply backward produc-
tion in the order: 1,2, 3,4, 7, 8,6, 5.

VII, SUMMARY AND CONCLUSIONS

This paper discusses methods for generating loop-free directed
routing patterns and for detecting the presence of loops in arbitrary
patterns. The heuristic procedures suggested seem to yield useful pat-
terns for the size network that can be considered by hand; moreover,
they are clearly programmable, thus allowing us to deal with large
networks.

The procedures and theorems we present are not addressed to the
problem of achieving optimum traffic handling abilities of commu-
nication networks. They are, however, a preliminary step to such ex-
aminations and, hopefully, present an orderly and useful way of
looking at the process of routing as it iz currently practiced. These
theorems and procedures suggest ways of modifying present routing
practices which may be fruitful to explore.

REFEREN CES

1. Weber, J. H., unpublished work.

2. Hakimi, S. L., “On the Degrees of the Vertices of a Directed Graph,” J.
Franklin Inst., 279, No. 4 (April 1965), pp. 290-308.

3. Wernander, M. A, “Systems Engineering for Communications Networks,”
talk at IEEE summer general meeting and nuclear radiation effects con-
ference, Toronto, Ont., Canada, June 16-21, 1963.

4. Bene§, V. E., unpublished work.

5. Bene§, V. E., “Programming and Control Problems Arising from Optimal
Routing in Telephone Networks,” talk at the First International Confer-

ence on Programming and Control, USAF Academy, Colorado, April 15-16,

1965

