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The capacity of a beam waveguide can be increased by itransmitting a
multitude of Gaussian beams in such a way that they are clearly resolved at
the receiving end. Various systems with maximum capacity but different
crosstalk sensitivity are discussed. Linking the available channels end to
end in an optical cavity produces a delay line or storage device. An optimized
system ts described which has surprisingly large storage capacity. For the
analysts of both lens guides and optical cavities, a phase space representation
of Gaussian beams is used which avoids cumbersome mathematics.

I. INTRODUCTION

A Fabry-Perot interferometer with eurved mirrors can be used as
an optical delay line by inserting a laser beam through a small center
hole in one mirror.* The beam performs many off-axis round trips
before leaving the interferometer through the entrance hole.? Reference
1 suggests that the injection and retrieval of the beam could be im-
proved by mismatching beam and cavity. A systematic study is earried
out here to find the longest folded path that starts and ends in the cen-
ter hole, thus optimizing the system for maximum storage capacity.

Very similar to this problem is the analysis of a periodie lens guide
in which many beams are to be transmitted in such a way that they
are clearly resolvable at the receiver end. One such system is a
transmission link that forms an image array of modulators in the
receiver plane. The possible density of channels is given by the number
of resolvable spots in this plane.?

The investigation of all possible Gaussian beams transmitted si-
multaneously in a guide will show that this is only one among many
possible systems. All these systems exhibit the maximum theoretical
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capacity as given by the classical limit,* but may be affected differ-
ently by guide imperfections.

The first part of this study will outline a simple geometrical method
of describing gaussian beams avoiding the cumbersome mathematics
connected with gaussian beam optics.® Based on this method, it will
be easy to find the optimum storage cavity and to investigate various
multiple beam transmission systems.

II. PHASE PLANE AND PHASE SPACE

In continuous or periodic guiding media, the “phase space” repre-
sentation of paraxial rays is very convenient. Consider, for example,
the two-dimensional continuous lens-like medium in Fig. 1la in which
the index of refraction is a function of the transverse coordinate only:

n(x) = no(l — %i—:) (1)

Call A the “focusing parameter.” The paraxial ray solutions are sine
waves with the period

P = 2zA @)

as shown in Fig. 1b.% Figure le shows a ‘‘phase plane” in which every
ray of Fig. 1b is represented by a point. The coordinates of the points

N=ng (I
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Fig. 1— Rays in a _homogeneous guiding medium. (a) The square-law index
profile. (b) Rays oscillating with various phases. (¢) The corresponding points
in the phase plane.
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correspond to the position x and the slope 2’ of the ray multiplied by
A. As the rays proceed in the square-law medium, the points orbit
around the origin of the phase plane while their position with respect
to one another stays the same.

Steier” has shown that for every gaussian light beam one can find
a packet of rays equivalent to this beam in the sense that the packet
envelope gives the beam width and the average ray slope is perpen-
dicular to the beam phase front. The ray packet may be represented
by an array of points in the phase plane. Consider, for example, a
fundamental gaussian beam propagating in the square-law medium of
Fig. 1. The 1/e-half width of such a beam is

w = (ﬁ)1 3)

T

where A is the optical wavelength. The equivalent ray packet is
basically the one shown in Fig. 1b with ray amplitudes w. The cor-
responding points in the phase plane occupy a circle with radius w
similar to the presentation in Fig. lec.

Following these arguments, any gaussian beam—varying in posi-
tion, slope, or width along the guide—may be represented by its array
of points in the phase plane. The points form a “phase spot” in the
phase plane whose shape and position determine the beam parameters.
Once the phase spot is known at one point along the guide, it can be
found for any other point by simply rotating the phase plane. The
correspondence rules between the phase spot and the beam parameters
follow from Steier’s ray racket equivalence and are explained in the
following examples.

Figure 2 shows a gaussian beam of width w entering the guide with
a slope a. The beam phase front is tilted by « and consequently the
average slope of all rays in the ray packet must be «. This condition
is satisfied by a circular phase spot displaced horizontally by aA. As
the beam proceeds in the guide, the phase spot orbits around the
origin of the phase plane. Projection of the phase spot on the vertical
axis yields the beam width and position. The horizontal displace-
ment determines the slope. Notice that Fig. 2 and the following figures
are two-dimensional beam representations. The phase spots should
not be confused with a cross-sectional view of the beam.,

Figure 3 shows a beam that enters the guide with a phase front curved
with a radius R. Consequently, the average slopes of the equivalent
rays vary linearly across the ray packet. In the phase plane horizontal
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Fig. 2 — The phase spot for a beam entering at an angle a.

slices of the phase spot are displaced horizontally by zA/R according
to their position z which distorts the circular phase spot to an ellipse.
Notice that the area of the phase spot is not changed by this process.
From equation (2) one finds that this area is mw® = A\. It is the same
for any gaussian beam of a given wavelength in a given guiding medium.
A beam, for example, that enters with a plane phase front and a half
width % s w has an elliptic phase spot with the principal axes u
and

v = AN/mu. 4)

If the guiding medium is not homogeneous along the z axis but
a periodic sequence of lenses, the phase plane method is still valuable
though, with the same convenience, the beam can only be described
in the planes of the lenses and not in the sections between. This,
however, is in general sufficient because, no matter what the features
of the gaussian beam, it will always be largest at the lenses and
therefore it will be this width that determines the aperture of the
whole system.

For a periodic sequence of lenses with focal length f, spaced at a
distance d, the convergence parameter is®

A = d/sin ® (5)

—
/ A,m'

PHASE PLANE

PHASE PLANE

Fig. 3— The phase spot for a beam entering with a curved phase front.
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with

cos ® = 1 — d/2f (6)

and the equivalent ray period is 2= d/®.

For thin biconvex lenses, it is the symmetry planes of the lenses
where the Gaussian beam can be defined most conveniently. Beam
width and phase front curvature in this plane determine the equiv-
alent phase spot. Counterclockwise rotation of the phase spot by
an angle ® corresponds to passage from one lens to the next.

The phase plane method may also be extended to nonperiodic
structures. It is restricted, however, to the paraxial approximation,
to square-law guiding profiles (including uniform dielectrics), and
to coherent beams with Gaussian intensity profile and spherical phase
fronts.

Notice that the phase plane considers only deflection and displace-
ment in r direction and that a similar definition exists for the y
coordinate. The two phase planes combined yield the four-dimensional
phase space, and the phase spot becomes a four-dimensional structure.

III. SPATIALLY INDEPENDENT CHANNELS

The capacity of a beam waveguide can be increased by transmitting
several gaussian beams separated spatially. The tolerable crosstalk
determines the separation of the individual beams. For convenience,
let us deseribe around every beam a fictitious tube, k times wider than
the 1/e width, where k is chosen so that the crosstalk requirement is
met when these tubes just touch. In practice, the main source of cross-
talk will be beam distortion and scattering rather than the spread of
the ideal beam. The factor k, therefore, will vary from guide to guide
according to the tolerances of the guiding components.

Figure 4 shows a two-dimensional square-law medium of width 2a,
and the corresponding phase plane. In order for the beams to clear
the guide walls, the phase spots must stay within the circle » = a,
while orbiting in the phase plane. Considering that the phase spots
require an area k* A\ to fulfill the crosstalk conditions, it is easy to
find the phase spots that make the best use of the available guide
(see Fig. 4). The phase spots determine the beam parameters.

As the beams oscillate in the guide, they overlap in certain areas.
There are, however, cross sections spaced by distances =A at which
all beams are separated. One of these cross sections may be chosen as
the receiver plane.
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PHASE PLANF AT A

Tig. 4— A possible distribution of phase spots in the useful phase area.

If the guiding medium is not homogeneous along the 2z axis, but
consists of a periodic sequence of lenses of width 2a,, the useful phase
area may be different from that in Fig. 4. In this case, discrete aper-
tures have to be considered at the positions of the lenses. (The inter-
mediate guide diameter in a lens guide in general is immaterial, be-
cause between the lenses the beams have a smaller cross section and
separation than at the lenses). Figure 5 shows the useful phase area
and the spot pattern for confocally arranged lenses.

This ease surmises that, proceeding from lens to lens, the rotation
of the phase pattern is exactly 90°. Even if the tolerances for the focal
lengths and lens spacings are very strict, these rotations will even-
tually, after many lenses, get out of step with respect to the lens posi-
tions and aperturing will occur when the phase pattern is rotated at
any angle in the phase plane. This situation is shown in Fig. 6. If
this happens, the useful phase plane is restricted to a circular area.
It seems, therefore, that Fig. 4 represents a more general case for
practical applications,

PHASE PLANE AT A <

Fig. 5 — The useful phase area for a confocal imaging system.
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PHASE PLANE AT A

Fig. 6 — The phase pattern is out of step with the confocal lens position.

The number of phase spots that can be fitted into the circular area
ra® of Fig. 4 is approximately

Ta. a’ @
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assuming that the area occupied by one spot may be approximated by
the dotted rectangle in Fig. 4. For large numbers of beams (n = 10),
this approximation is satisfactory.

There is no reason why the beams have to be arranged the way they
are in Fig. 4. There is no restriction on shape and location of the phase
spots in the useful phase plane. Of course, arranged as in Fig. 4, the
beams are clearly separated at distinet cross sections, which makes
launching and receiving a simple and straightforward matter.

E. A. J. Mareatili of Bell Telephone Laboratories suggested the
arrangement shown in Fig. 7 and demonstrated how such beams may
be launched: a common lens is used for every overlapping group of
beams feeding every member of the group at a different angle. At a
distance »A/2 from this lens, or at multiples of this distance, the
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PHASE PLANE AT A

Fig. 7— A distribution of the phase spots that minimizes distortion.
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beams arrange themselves in groups again and could be separated by
means similar to the transmitter scheme.

Whereas the beams in Fig. 4 vary considerably in width as they
propagate along the guide, the beams in Fig. 7 constantly keep the
minimum width w as given by (3). From the nature of the distortions
on optical surfaces, it might be expected that large beams will be dis-
torted more than small ones. In this case, the arrangement in Fig. 7
might be less susceptive to mutual interference of beams and con-
sequently permit a smaller k factor and a larger capacity. For equal
k there is no difference in capacity of both schemes, at least not within
the accuracy of (7) which was derived for large n. Other arrangements
as well as combinations of the schemes in Figs. 4 and 7 may be prac-
tical for certain cases.

By applying the phase space technique to three-dimensional sys-
tems, some of the lucidity is lost, but one can still gain some interest-
ing results. If the beam waveguide has a cylindrical cross section of
radius A4, a circular area with the radius

a, = (A* — ad} (8)

in the y-phase plane is available simultaneously with the area wa;. The
total useful phase space is consequently

S = f " dwad). ©)

By inserting (8) into (9), one has
S = 1A% (10)

Allowing rectangular areas for the phase spots in both the z- and
y-phase plane, as in the two-dimensional example, the total capacity
is found to be approximately

— %11_2A4 _ 1"_1 A‘ . (11)
(4k* AN/m)* 32 K'AT N

N:

If the total number of beams is large (n = 100), the rectangular approxi-
mation for the area occupied by the phase spots is satisfactory and (11)
holds independent of the way in which the beams are arranged in the
guide. Figure 8 shows a nomogram based on (11) for an optical wave-
length of 1 micron. Given the radius, lens spacing, and filling factor k of
a lens guide, one can easily find the possible capacity. Consider, for
example, lenses spaced confocally by 100 m. If their useful optical area
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has a radius of 10 em, and the filling factor is k = 3, approximately
300 beams could be transmitted in parallel.

Comparing (11) with M. von Laue’s formula for the spatial degrees
of freeedom of an optical system,* one finds that N approaches the
classical limit for & about 1, that is, the beams would have to overlap
at their 1/e amplitudes in order for the capacity of the guide to be
fully used, There are many reasons why this limit cannot be reached
in practice. Particularly important are the imperfections in the guide
itself.

IV. BEAMS IN CAVITIES

The rules of gaussian heam geometry can also be used for optical
cavities. Considering the cavity as a folded beam waveguide, possible
beam paths can be traced using the phase plane. This way the useful
capacity ean be found for delay or storage applications.

Figure 9a shows a 2-dimensional square-law medium. The two
plane surfaces M, and M, are highly reflecting mirrors and form an
optical cavity. A beam, launched off-axis through the center hole of
mirror M;, would perform several round trips between the mirrors
before hitting the entrance hole and leaving the cavity. Figure 9a un-
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Fig. 8 — Nomogram evaluating the guide ecapacity for A = 1 micron.
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Fig. 9— The beam path in a storage cavity consisting of a focusing medium
between the mirrors M; and M. (a) The beam path unrolled along the axis.
(b) The phase spots at the mirror M.

rolls the beam path along the guide axis. Figure 9b shows the phase
spots for the cross sections 1 to 5 which correspond to reflections of
the mirror M;. In agreement with the previous considerations, the
spots correspond to tubes k times wider than the 1/e-width of the
beam. It is assumed that interference between different round trips
and distortion is tolerable if the phase spots do not intersect one an-
other, the boundary of the useful phase area, and the area occupied
by the center hole (area between the broken lines in Fig. 9b).

Obviously, the total number of round trips can be increased by
decreasing the angle 6 shown in Fig. 9b. 6 is smallest when the phase
spots just touch the broken lines. Also there should be an optimum
shape of the phase spots for which 6 is a minimum. Though the area
k* A of a phase spot is fixed, the main axes » and v can be chosen.
Particularly if the cavity radius a, is large and a large number of
round trips is to be stored in the cavity, the best ellipses will be long
and thin, and the center hole diameter 2kv will be small.

It is now a simple matter of geometry to calculate the exact param-
eters. From the requirement that spot 1 touch the broken line, one

finds

. _ 2kw(a, — ku)
sm 6 = @ — 2a.ku + k* (12)

As indicated above, v will be much smaller than a, and u for optimum
systems with large capacity. By neglecting v* in the denominator and
replacing v by (4) in the numerator, one has

2ANEk a, — ku (13)
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The derivative d sin 8/du vanishes for the optimum value

Uppe = [l — ﬁ] (14)

L]

and it turns out that
Ak 1
ot T ra, 1 — 1/@)F

is indeed small for large a.. Under these conditions 4 will also be small,
and by replacing sin 6 by # one finds

Bmin = _A>\_£‘;_ [1 - é;]-- (16)

Ta,

(15)

The maximum number of round trips is

2r al [ 1 :Iz
"= oL AR T @ (17)
For n = 10, this formula gives satisfactory results.
The proper length of the cavity in Figure 8a is

DA = 3(r — Opin)A (18)

with @i from (16). If, instead of a homogeneously focusing medium,
concave mirrors are used, (5) and (6) determine the mirror spacing d
and the focal length f. In connection with (17} and (18) one has

d=Acos%EA (19)
and
d : Bmin,..__,lr__
l—g—cosd:—st =5 (20)

Notice that for large n the mirrors are almost confocally spaced.
Knowing the solution in the @ plane, one would like to solve the
three-dimensional problem by just doing the same in the y plane.
Figure 10 shows equivalent phase planes for the z- and y-axes of the
end mirror. Projection into the mirror plane yields the actual beam
cross sections. Though it will be shown later that this arrangement is
not quite optimum, Fig. 10 is very useful to calculate the cavity radius
A necessary to accommodate this or, later on, an improved beam path.
The maximum displacement a,/(2)% = a,/(2)% occurs simultane-
ously in the x and y directions. The total displacement of the beam
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Fig. 10 — Construction of the beam cross sections at the mirror surface to
determine the radius A of a cylindrical eavity.

axis is therefore a, = a,. The maximum displacement coincides with
the largest beam cross section whose radius is uope as given in (14).
Consequently, a radius

A=@+mm=@b—éd 1)

is necessary for a eylindrical cavity.

The capacity can be increased drastically by deliberately introdue-
ing astigmatism as deseribed in Ref. 1. Suppose the beam behaves
in the z plane as shown in Fig. 9 but, simultaneously, oscillates in the
y plane in such a way that it returns to the center of the y plane al-
ready after 4 round trips. It can only leave the cavity when it is dis-
placed neither in the z- nor the y-direction, and that happens for the
first time after 20 round trips. Generally speaking, one achieves

N = 2n(n — 1) (22)

transits by this method. Technically, this can be done by warping one
or the other of the mirrors slightly. Writing (20) for both z and y
plane and subtracting one from the other yields, by using (22),
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d_d_m__ 7 _ 2r (23)

For large n the approximation N =~ 2n?® ecan be made and by using

(17) and (21) one has
oAt 1

NETE R T O @9
This is about a factor of 6 less than the number given in (11), that is,
the deseribed method does not fill the total available capacity. Notice
that, in Fig. 9b, there is room for exactly one more set of spots be-
tween the used spots. This space would be filled by a beam that fol-
lowed the same path as the described one, but in opposite direction.
The additional capacity could be exploited by reflecting the existing
beam back on itself. It can be shown that, in the three-dimensional
scheme, there is space for an additional totally independent path in
the cavity. Both paths could be linked by an outside mirror. By reflect-
ing the two linked beams back into itself, the number of round trips
could be quadrupled.

Without considering these sophistications, let us investigate what
(24) means in terms of storage capacity. For large N (19) can be
used to calculate the total length of the beam path which, with the
numerical factors evaluated, is

l=Nd = =5=z3 (25)

Surprisingly enough, this path is longest for a small cavity length d.
Of course, the number of bounces (and consequently the losses) in-
crease in a short cavity. The best mirrors available introduce a reflec-
tion loss of 0.05 percent or 43.5 dB attenuation after 20,000 bounces.®
This corresponds to 10us delay in a 15 cm cavity with mirrors 4 em
in diameter. If part of the loss is compensated by an amplifying ma-
terial in the cavity, the number of round trips is eventually limited by
scattering in the system.®

Perpetual recireulation of PCM information could be achieved by
using an arrangement that amplifies 2x-pulses?® or a fast saturating
absorber in combination with a suitable laser amplifier.l* In both
cases only pulses of a certain length and intensity are amplified, while
any other signal is attenuated. It would be sufficient to provide the
amplication at a few particular parts of the folded path where it is
spatially separated from other round trips. If enough amplifieation
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of this kind is provided to make up for all losses, pulses of the proper
kind could circulate in the cavity perpetually without noise building
up.

If the mirrors are moved so close to one another that they touch at
the circumferences, the paraxial approximation, basis for the previous
calculations, loses its validity. By extrapolating (25) into this range,
however, one finds some interesting, though speculative, results. The
center of the confocal mirrors are now spaced by d = 24/(3)%. For
a bandwidth b small compared to the light frequency v, the capacity is

bl 0.433b A°

e =—=

A BT oo\

(26)

with [ from (25).
It is easy to caleulate the volume V of this nut-shaped cavity. It is

_ 10
To@E)i”

The number of the degrees of freedom of a cavity whose dimensions
are large compared to A is independent of its shape and has the value®*

14 A% (27)

8bV
A

In other words, the maximum number of bits which ¥ can hold in the
form of electromagnetic energy is ey. By using (26), (27), and (28),
one finds the (extrapolated) efficiency of the beamfolding method to be

(28)

Ceih =

e __1_

cw  (3.3k)*
For k& = 3, this efficiency is only 10~%, but even then a capacity of 16
k bit seems achievable with 1 GHz bandwidth in a cavity with the
radius 4 = 1 em.

(29)

V. CONCLUSIONS

Various methods can be used to transmit a multitude of beams
through a lens guide in such a way that all beams are clearly resolv-
able at the receiving end. The number of beams which can be trans-
mitted is proportional to the square of the guide cross section and
may be of the order of 300 for a guide of 10 em radius with lenses

* See, for example, Ref. 4.
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spaced confocally by 100 m. In this case, the centers of adjacent
beams would be spaced by 6 beamwidths at particular cross sections
in the guide.

Linking the available channels end to end in a cavity produces a
delay line or storage device. At 1 micron wavelength a 10 psec delay
can be achieved in an optimized cavity, 15 em long and 4 em in diam-
eter. The storage capacity is inversely proportional to the cavity
length. Hence, the ultimate configuration would consist of two con-
focal mirrors with their circumferences touching. Extrapolating the
paraxial theory to this situation yields a capacity of 16kbit for a
bandwidth of 1 GHz if the nut-shaped ecavity has a radius of only
1 cm.
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