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This study examines the effects of loading or covering a phased array
with dieleciric materials. It studies in detail the effect of dielectric geomeiry,
dielectric constant, and sheath thickness on the wide angle array performance
of an array of rectangular waveguides in the H and quasi-E plane modes
of scan. We obtain numerical solutions of the integral equations describing
an array covered with thick dielectric material. The results show that we
can obtain a match over a wide scan angle for the array by appropriate
use of dielectric geomelries, and we discuss the advantages and disadvantages
of several geometries.

I. INTRODUCTION

The advent of swift aireraft, missile warfare, and the need for
modern radar to accomplish multifunction detection has given im-
petus for a considerable amount of research into phased-array anten-
nas. Such arrays consist of a large group of small radiators in a grid,
frequently a rectangular grid, and, most important, correlated in phase
and amplitude. The radiated beam can be steered by an electronically-
variable linear taper of the phase correlation among elements. (See
Fig. 1).

Considerable knowledge of the behavior and problems of such ar-
rays has been obtained in recent years by experimental and theoretical
study of phased linear and parallel plate arrays. For example, it is
well known that the coupling coefficients between any single excited
element in the array and any terminated inactive element is uniquely
determined by the inverse Fourier series transform of the reflection
coefficient as a function of scan angle determined when all elements
are excited.® Hence, by studying the array behavior for all possible
linear tapers of phase, we can determine the behavior of the array,
for any phase or amplitude distribution among the elements,
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Fig. 1—Infinite array geometry. Top: H-plane scanning in X-Z plane,
Bottom: Quasi-E plane scanning in Y-Z plane.

Of fundamental importance in designing such arrays is a knowledge,
and control, of the mutual coupling (the coupling coefficients) be-
tween elements in an array. For arrays which scan over wide angles,
this coupling very seriously affects the array, so substantial effort has
been made to understand mutual coupling. Because the arrays of in-
terest are very large and consist of very many elements, theoretical
studies have generally assumed the arrays to be infinite in extent.
The usefullness of this approximation for elements located near the
center of a large array has been verified, and in fact, the approxima-
tion is frequently valid to within several elements from the edge.*

Because the arrays are generally very large, the coupling between
greatly separated elements, the asymptotic coupling, is also of interest
and has been theoretically studied.>® In general, planar phased ar-
rays with terminated elements behave like lossy surfaces and have
an asymptotic 1/r2 decay of coupling between elements separated by
the distance r along the array surface.
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Among other fundamental and interesting early developments is
that the transmission coefficient of a phased array with all elements
excited, as a function of scan angle, is directly related and proportional
to the radiation pattern of a single-excited element in the array as a
function of far-field observation angle.* As we mentioned, the two
physical situations (all the elements excited with a linear phase taper
and only one element excited) are uniquely related. Hence, an ana-
Iytical formulation for only one or the other situation is necessary.
Although most work has concentrated on the linear phase taper case,
with the consequent application of periodicity conditions and Floquet’s
theorem,»* ¢ some work has proceeded by directly attacking the
case with only a single element excited.”

One of the most advantageous approaches to phased array problems
has been through the use of high-speed computers and numerical solu-
tions of the appropriate integral equations.® We use this approach
in this study, which attempts to discover some problems and solu-
tions associated with covering phased arrays with radomes. The
principal problem is, of course, to maintain a good impedance match
to the array over a wide scan angle when the phased array radome is
included in the design. Now many antennas have radomes covering
their moving mechanical parts and their interior electrical components.
A planar phased array can be so protected by covering the array with
a dielectric sheath or by loading it with a dielectric material. Hence
our study concentrates on this type of cover.

Whereas ordinary radomes usually are designed to have the least
cffect on the antennas they cover, phased array covers often can be
made to very substantially improve the wide angle scan performance
of the array. In fact, Magill and Wheeler recently have shown that a
dielectric sheath cover can greatly improve the wide angle match of
the array.® However, their analysis was a transmission line analysis
in the sense that it did not take into account the interaction of the
evanescent modes, generated at the array interface, with the dielectric
sheath.

More recently, Lee® has made an analysis restricted to an array of
thin-walled parallel plates, wherein the interaction of a limited num-
ber of evanescent modes with the dielectric sheath is taken into ac-
count. His results bear out the possibility of improving the array
match with a dielectric sheath.

By using a somewhat different and more powerful analytical ap-
proach, wherein the integral equations describing the array with a
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dielectric covering are solved by an accurate numerical technique
(basically Galerkin’s method®), we may obtain a solution with few
restrictions. The interaction of virtually all the modes at the array
interface with one or more dielectric sheaths is accounted for with
very little more difficulty than that entailed in the solution for the
uncovered array. We made an extensive study of the rectangular ar-
ray shown in Fig. 1 by this method for two modes of scan, the quasi-E
and H planes of scan.® We use the term “quasi-E” because the ad-
jacent columns of elements in the bottom part of Fig. 1 are out of
phase by 180°.* We assume that the waveguides in each case are
excited in the dominant mode and we compute the parameter of par-
ticular interest, the reflection coefficient R of this mode, from the
aperture field determined by the integral equations.

We divided the complete study into two parts. The first, considered
in this paper, analyzes the effects of loading the waveguide with di-
electric or covering the array with a very thick sheath where only one
grating lobe, at most, is present in the sheath. Generally speaking, a
thick sheath is used with only lower dielectric constant materials be-
cause with higher dielectric constants in a thick sheath a great and
very frequency-sensitive mismatch arises. Furthermore, the presence
of two grating lobes in the sheath gives rise to surface wave phe-
nomenon. This is the subjeet of the second part of our study, which
we have relegated to another part.'* In that paper we plan to deal
with thinner sheaths, multiple sheaths, and some anomolous surface
wave effects that we have observed in arrays with dielectric covers.

II. METHOD OF ANALYSIS

Fig. 2 shows the three dielectric geometries that we analyzed. In
each case we assume a moderate fixed waveguide wall thickness® to
exist in the plane of scan only. The top figure illustrates the “loaded”
array with a symmetrical iris in the aperture (quasi-E scan only, Fig. 1).
Fig. 2 also shows two other thick sheath covers. By “thick” we mean
that there is very little interaction between the evanescent modes
generated at the aperture plane (2 = 0) and the second dielectric
boundary removed from the array interface (z = =d,). We may test
the validity of this assumption by estimating the relative amplitudes
of the evanescent to propagating modes at z = ==d, when the second
boundary is not present. We made such a validity check with most

* The waveguides are excited in this‘ manner to reduce to a more easily
numerically tractable one-dimensional integral equation the two-dimensional
integral equations which result in the usual E-plane scan.
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Tig. 2— Dielectric sheath geometry. Top: Dielectric loading. Middle: Sheath
inside guides. Bottom: Sheath outside guides.

of the thick sheath results. Notice that with this assumption the input
impedance or reflection coefficient is a periodic function of the distance
d,.

Actually the integral equations that are solved require only a slight
modification to go from a “thick’’ approximation to a “total” account-
ing of the interaction of higher order modes with the dielectric interface
removed from the aperture by d, . The actual equations solved for the
dielectric loaded case take the forms:*®

h/2 o o0
2Yoe,.(y) = f o [; Yiene.y') + 22 Yida() ¢3(y’):|E.,(y’) dy’
) - (1)
for the unknown tangential electric field in the aperture in the quasi-E
plane scan ease, and

b/2
2Z.@) = [ [E Zoon@en(@’) + E Zpn() :p*(:c')]H (@) dx’
—-b/2 (2)
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for the unknown magnetic field over an entire cell (b X d, see Fig. 1).
The ¢,(z) and e,,(y) are appropriate interior orthonormal waveguide

modes:
e B2 e o) e
a sin \a even 2
3)
. a b
o, =0 In (—2~<lxl<§)
and
€, COS (nw _ even) . c
e“"__\];sin(c y) for (n odd) m |y|_£_2 @)

e,, =0 in (g <lyl|< g), ¢, = Neumann’s constant

The yu(x) or ym(y) are appropriate exterior orthonormal modes
pertinent to the periodic structure and are obtained from an applica-
tion of the Floquet theorem:

uls) = \/% oxp j(zm —bkb sin a)x ”
) . k= o (5)
Yny) = \g exp j(———f“m — dkdsm B)y

By the laws of transmission of a plane wave through a plane dielectric
boundary (Snell’s law), the quantity (kb sin ) or (kd sin 6) is unchanged
by the presence of the dielectric. Hence the interior and exterior modes
are independent of the dielectric constant. By using the A = c¢ limits
in (1) we also allow for the presence of a thin metallic iris directly at
the aperture plane (see Fig. 1).

The incident electric field in (1) is given by e,,(y) exp (—jB8iz) and
the incident magnetic field in (2) by ¢i(z) exp (—jBjz), where the
interior modal propagation constants are given by

gL = \/ ekt — (%’)2 _ (n__"")z (e appropriate to the region)
c

ﬁ:‘.=-\/m

and the exterior propagation constants by

y (6
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2 L] 2
v g2 (7) _ (2xm — kdsin a)
B \/*k (b) ( d
o ‘\/e]ﬂ2 (Qw-m — kb sin 9)2
m - b

Now the coefficients of the interior and exterior dyads in (1) and
(2), the ¥, Y/, Z,, and Z!, take a form that is dependent on the
dielectric sheath geometry. For the dielectric loaded case they become
simply the modal admittances and impedances:*

wro= [ = (/o e[ )/

= wu/Bn, Zh = wp/Bl .

For the dielectric sheath cases, with one or more sheaths, the ¥, ,
Y!, Z,, and Z! become the modal admittances or impedances ap-
propriately referred to the aperture plane (z = 0). These modal admit-
tances or impedances are obtainable by the usual transmission line equa-
tions. For example, suppose a single dielectric sheath inside the guides
is considered (middle of Fig. 2) in the quasi-E plane scan case. Define

@)

J » = PB» inside the dielectric in the guide.

. = (3, in the empty portion of the guide. (9)
Y, = admittance in the dielectric region.
Y, = admittance in the air region.
Then the coefficients Y, become

O, + j¥V,tan fy,.d)
Yo Y"(j‘y,. tan v, d + Y./’ (10)

while the exterior Y/ coefficients remain unchanged (unless an exterior
sheath is simultaneously included). The free term on the left becomes,
if we postulate the same incident field as earlier,

Y, Y, sec yod )
7Y, tan yd + Y, e - (1)

Solving equations (1) and (2) by the Galerkin'® (or Ritz) method
means that (1) and (2) are approximated in an N-dimensional subspace*

of the complete Hilbert space.” One way of testing the accuracy of this
approach is to choose two very dissimilar subspaces for approximation

2Y.e,, — 23”’“’(

* Approximation in an N-dimensional subspace leads to a set of N linear
equations to be solved by well-known matrix inversion methods.
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and then compare the attained results. One subspace choice was that
spanned by a set of N equally-spaced pulses® (that is, we sample the
field at N points along the z or y axis). In this case, R is determined by
averaging the coefficients of the pulses. Other bases used were the first
N modes, e,,(y) and ¢,(z). In the case of ¢,, , R is determined directly
from only the coefficient of the e,,(y) term.

We made a number of additional checks on the solutions. We observed
the convergence of the solutions with increasing N, and we verified the
conservation of energy between incident, transmitted, and reflected
waves. For certain angles of incidence we compared the results with
those obtained previously by Marcuvitz and Lewin.'*'* We also checked
some of the results against values for R obtained experimentally.
(See Ref. 5 for example.) We checked the thin dielectric sheath results
(using the exact formula (10) for example) against thick dielectric
sheath results (using the approximate formula (8) and subsequent ap-
plication of the transmission line equations to the dominant mode).

In the thick sheath numerical results which follow, we restrict the
results to include only the cases wherein at most a single propagating
mode exists in any region where relative e is greater than one.

III. DIELECTRIC LOADING RESULTS

We first consider the dielectric-loaded array (top of Fig. 2). In
reality this may be viewed as an infinitely thick sheath with only one
dielectric boundary interacting with the array interface (z = 0). The
phase of R, the reflection coefficient, and the amplitude of R are
plotted as a function of scan angle (kb sin # for the H-plane, and kd
sin @ for the quasi-E plane), with e as a parameter. A moderate, but
fixed, guide wall thickness in the plane of scan is assumed in all the
data.

3.1 H-Plane Results

Fig. 3 gives some typical results for the H-plane scan direction
with the waveguides loaded with ¢ = 0.9 to e = 3.0. The change in B
with e between curves is smooth. Between ¢ = 0.9 and ¢ = 1.1, how-
ever, the change in | B | is great. This may be attributed to the fact
that cutoff of the dominant waveguide mode occurs at ¢ = 0.872.

We notice that for e ~ 1.3, the angular response is nearly flat, both
in amplitude and phase. In fact, for all wavelengths examined there
appears to be at least one value of ¢ for which a nearly flat angular
response for R is obtained. It should be noted that even if the magni-
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Fig, 3 — Dielectric loading inside waveguides for H-plane scanning. ¢ = 0937b
= 0.5354), b = 0.5714\.

tude of R were large, the flatness of the response in both amplitude
and phase permits matching the array for all angles in the region of
flat response, at least at one frequency.

The discontinuity in slope of these curves at kb sin § = 2x(1—1/b)
coincides with the onset of a grating lobe at that angle. Notice that
the singularity in the derivative of the modulus of R( | R | ) lies on the
right side of grating lobe incipience, but on the left side for the phase
of R. This is the same as that found for thin walls" ? and it is plausible
that this will lead to the same asymptotic coupling,

The table in Fig. 3 shows the self-reflection coefficient Cy and the
coupling to the adjacent element C'; when a single waveguide element
is excited and the others merely terminated with a perfect match.
The adjacent element coupling is found to be an order of magnitude
smaller for the H-plane than for the quasi-E plane. For ¢« = 3.0, some
higher-order coupling coefficients for the H-plane case of Fig. 3 are:

[Col 1G] (Gl [CG]  |C]
0423 0081 0032 0017 0.013
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Fig. 3 also shows the transmission phase and amplitude curves for
e = 3.0. These curves are in fact the far field patterns when a single
waveguide element is excited* (except that the maximum value for 0
is somewhat less than 90° since b/A > }). The very flat phase curve
is an indication that the phase center for the singly excited element
lies in the aperture plane.

Tor a wavelength further removed from the waveguide cutoff length,
the variation of R between curves of constant e is considerably re-
duced. Fig. 4 gives some typical results for b/A = 0.400. (The dielec-
tric loading here permits an element spacing of less than A/2.)

3.2 Quasi-E Plane Results

Fig. 5 gives typical quasi-E plane results, where R(6), | Co |, and
[ Cy | are shown as a function of e from ¢ = 0.8 to ¢ = 1.6. This range
of e generally depicted all the important characteristics observed.
Furthermore, a slightly greater value of ¢ than e = 1.6 would cause the
waveguides to multimode (more than one mode propagates). Notice

50

0
-50 —

7’

-100

-150 144
-200 1 ]
1.0

PHASE OF R IN DEGREES
A

0.8

E=By//

0.6 —
| _— 3.5 /
e
o

0.4

ABSOLUTE VALUE OF R

0.2

(o]
o} 20 40 60 80 100 120 140 160 180

kb sSIN @ IN DEGREES

Fig. 4 — Dielectric loading inside waveguides for H-plane scanning (element
spacing << A/2).a = 0.937b = 0.3748\, b = 0.400A,
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in the table of coupling coefficients that the adjacent element coupling
magnitudes are an order of magnitude greater than those for the H-
plane scan case, independent of dielectric constant. This is also true
for higher coupling coefficients for the case depicted in Fig. 5, as shown
below:

S I N N N I N N
0.515 0245 0153 0102  0.075

This behavior is attributable to both element spacing and polarization.
(By making b < A/2, and with an appropriate dielectric loading,
H-plane results very similar to these quasi-E plane results are obtainable.
For example; see Fig. 4. The A\ we refer to here is that which is appro-
priate at the aperture for z > 0.)
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The curves of | R | in Fig. 5 show that total reflection occurs beyond
a critical angle (~100°). This occurs because the element spacing d
is less than \/[4 — (\/b)’]'. Again, the infinite slopes for | R | and for
the phase of R, which occur at this critical angle, exhibit the same
behavior found in the thin wall analysis"'® when ¢ = 1. Hence the same
asymptotic behavior of coupling, exp (—jkr)/r}, may be expected for
thick walled dielectric loaded arrays. (Here r is the distance between
the excited and coupled element.)

A point of special interest in connection with these curves is the ap-
pearance of a resonance that occurs near the critical angle. A sharp
dip in | R | occurs precisely at the same angle for which the slope of
the phase of R curves has a maximum. Although the sharpness of the
resonance increases gradually with e, it is interesting that there is no
resonance for e < 1.0.

Fig. 6 illustrates the transmission phase and amplitude, or equiva-
lently, the far field pattern of a singly excited element.

In Fig. 7 we illustrate the effect of a capacitive iris loading (that
results when h < ¢) together with dielectric loading. In this case we
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Fig. 6 — Transmission coefficient for dielectric loading inside waveguides, with
quasi-E plane scanning. ¢ = b = d = 05714\, h = ¢ = 0937d = 0.5354A.
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have let @ = b = oo so that a true E-plane scan in a parallel plate ar-
ray is considered. The effect of the iris tends to flatten the phase and
amplitude responses, particularly the phase response, at the expense
of a somewhat greater average | R |. The larger average | R | can, how-
ever, be uniformly reduced for all scan angles in a region of flat R (6)
response,

The solutions of the integral equations (1) and (2) are actually
complete solutions of the boundary value problem. The fields as well
as the scattering matrix are determined. The variation of E, in the
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aperture as a function of scan angle (kd sin 6) is sharper when the
waveguides are loaded. Particularly interesting is the field change near
the critical angle kd sin 6 = A\/[4 — (A/b)*]!, which has the value 99.57°
for the results shown in Fig. 8. Since the relevant eigenvalue equation
(See p. 157 of Ref. 4.) for [E,(6) + E,(—0)] has a Hermitian kernel*
for | kd sin 6| > 99.57°, the phase of [E,(8) + E,(—6)] should be
constant in this region. By observing the phase of the approximate field
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Fig. 8— Tangential electric field distribution, Ey(y), in the aperture plane,

for quasi-E plane scanning. ¢ = 16, a = b = d = 05714\, ¢ = h = 0.937d
= 0.5354), ¢y cutoff = 99.57°.

* Since no power is radiated foré kd sin @ | > A / [4 — (A\/b)2]} when the
phasing is directed in the +8 and —# directions simultaneously, the phased
array behaves like a closed system, a cavity, and it is easy to show that a
Hermitian kernel results. It is well known, then, that the eigenfunctions (the
field solution here) of such a kernel have no varying phase.
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solution at angles greater than the critical angle, we may obtain some
evaluation of the errors in this solution. For most angles the errors are
small. However, it is evident that errors in phase do occur for @ near
the critical angle and also for y near the singularity obtained for | E, |.
Nevertheless, since the computation of R is an averaged quantity over
the range of y, these errors do not greatly affect the values obtained
for R.

IV. DIELECTRIC SHEATH INSIDE WAVEGUIDES

When we add another dielectric boundary inside the waveguides,
that is, when we place a dielectric sheath inside the guides, the results
obtained for R are substantially different. This is true despite the fact
that we will consider only thick sheaths, in the sense described earlier.
The large change in R(8) behavior occurs because, even when a thick
sheath is assumed, the second dielectric boundary is accounted for by a
bilinear transmission line transformation which changes the input varia-
tion of R with 6. (A linear transformation would leave R(6) functionally
unchanged.)

In the following we will keep the dielectric constant fixed and plot,
R(6) versus kb sin # with d,, the sheath thickness, as a parameter,
The phase of R will be referred to the aperture plane, z = 0, although
R is the reflection coefficient for, or into, the region z < —d,. The
choice of ¢ in any given figure was made so that the illustrated results
were typical of a wider range of e. With the thick sheath approximation,
the results will repeat every half guide wavelength, so that d, is varied
over only one half wavelength. The minimum d, for which the thick
approximation is valid is determined by the relative decay of the first
evanescent mode in the distance d, . This deeay factor, df, is presented
with each curve. It is found, generally, that df < 0.1 is sufficient for
the thick sheath approximation to be valid. This result is usually
satisfied for some d, S ),/2. Of course, by adding a sufficient number
of multiples of a half guide wavelength to d, , the results must become
valid to any accuracy desired.

4.1 H-Plane Scan Results

In Fig. 9 we have illustrated some typical results with e = 2.0. For
any given e we have found that there exists a thickness, d,, for which
both the amplitude and phase of the reflection coefficient is flat over
the generally useful region of scan angle (region in which only one
lobe radiates). However, as the dielectric constant is increased, the
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frequency sensitivity of the angular response is increased. This is
manifested, basically, by an increased spread between the curves
shown. Furthermore, since the nearly flat curve also is found to have
the maximum amplitude of R (d, = 0.618b in Fig. 9), the necessity of
matching out a larger | R |, when e is greater, further aggravates the
frequency sensitivity problem that occurs with increasing e. The re-
sults in Fig. 10, when compared with those in Fig. 9, show the effect
of increasing .

4.2 Quasi-E Plane Scan Results

Qualitatively similar results are obtained in the quasi-E plane scan
case as illustrated in Figs. 11 and 12. The increasing dielectric con-
stant, illustrated by comparing the results in Figs. 11 and 12 (e = 1.2
and ¢ = 1.6, respectively), causes a greater spread between curves and,
consequently, a greater frequency sensitivity.
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In addition, we again notice a sharp resonance here (increasingly
sharper with greater ¢), just as we noticed when only a single dielectrie
boundary was present. The primary difference between these results
and those for a single dielectric boundary is that we may keep the
dielectric constant fixed here and vary the thickness, d,, to obtain a
flat response. This is done, however, with the cest of increased fre-
quency sensitivity.

V. DIELECTRIC SHEATH OUTSIDE WAVEGUIDES

We notice that very similar results are obtained in the quasi-IE
plane scan independent of whether the second dielectric boundary is
placed inside or outside the waveguides; that is, independent of
whether there is a dielectric sheath inside or outside the waveguides.
Fig. 13 illustrates a typical result. In this figure the value of € is
held fixed while the sheath thickness (see the bottom figure of Fig. 2)
is varied from curve to curve.

Notice first that when the interaction between the second dielectric
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Fig. 10 — Dielectric sheath inside waveguides, for H-plane scanning. ¢ = 3.0,
e, = 1.0, a = 0.937b = 0.5354\, b = 0.5714.
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boundary, at z = +d,, and the array face is accounted for, with all
the evanescent modes, then the results shown by the circles and tri-
angles are obtained. The results agree very well with those results
in which higher order mode interaction with the second dielectric
boundary is neglected, that is, the sheath satisfies the earlier specified
thickness criteria.

Fig. 14 shows a useful way of estimating what value of d, will be
properly “thick”. Notice first that the rate of decay of higher order
modes away from the array face is a function of scan angle in the
exterior sheath case. Hence, a single value cannot be used as a decay
factor for all 6. In Fig. 14, however, the actual ratios of the first and
second evanescent mode amplitudes to the propagating modes is
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Fig. 11 — Dielectric sheath inside waveguides, for quasi-E plane scanning.
e=12,¢ = 10,a = b = d = 05714\, ¢ = h = 0937d = 0.5354\.
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Fig. 12— Dielectric sheath inside waveguides, for quasi-E plane scanning.
e=16,¢ = 10,a = b = d = 05714\, ¢ = h = 0937d = 0.5354x.

plotted versus kd sin 8. Again we see that if RD1 and RD2 (see Fig.
14 for definitions) are less than about 0.1, then the particular d, is
thick.

A “thick” d, means that, for a given scan angle, the results for R (6)
will repeat periodically so that

}‘2") — R(8, d))

R(ﬂ, ds+n

for all n > 0. The question remains whether A,, = 27/84* (see equation
(7)) varies rapidly with kd sin 6. This may be answered by examining the
grating lobe structures in the dielectric sheath as compared with that
in free space, as shown in the inset in Fig. 13. This structure is obtained
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Fig. 13 — Dielectric sheath outside waveguides, for quasi-E plane scanning.
e=1818,a = b = d = 05596\, ¢ = h = 0.937d = 0.5243).

by setting
‘ [ = \/4& B (z) _ (&fﬂ’ﬂ_:i) (¢, = kd sin 0)
and - b d

N ]

(Actually (12) defines the intersections shown in the Fig. 13 inset.
The total grating lobe structure requires setting the two-dimensional
z-directed propagation constants to zero.) Now the z-directed wave-
length in the sheath is given by

(12)

2
}\:e = _:r;:
0e
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which is a slowly-varying function of 6 in that part of the grating lobe
structure bounded by the dashed lines in the Fig. 13 inset. Only this
region is useful, because the propagating wave in the dielectric is
totally reflected at (kd sin 6)* = k* — (x/b)*(¥,> 90.6°). Hence the
pole in A, doesn’t affect the variation of .., and ., varies very little
with 6, from ¢, = 0 to ¢ = (k* — (x/b)"), providing that

Ve—1
Ve- ()

2b
We should mention that the quasi-E plane results for the sheath
inside and outside the waveguides are similar, primarily because of
the element spacing that causes total reflection to oceur at the defined
critical angle. When the element spacing is changed, very markedly
different results can be obtained. The results depicted in Fig. 15 for

the H-plane are typical of this.

In examining the grating lobe diagram in the inset of Fig. 15 we
notice that, in the shaded region, two waves propagate in the dielectric

sheath whereas only one wave propagates in free space. This is a
potentially very useful operating region for the phased array because

~ 1. (13)
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Fig. 14 — Validity check of transmission line approximations, for quasi-E
plane scanning with a dielectric sheath outside waveguides. e = 1818, a = b =
d = 05596\, ¢c = h = 0.937d = 0.5243\.
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Fig. 16— Dielectric sheath outside waveguides, for H-plane scanning. ¢ =
1429, a = 0937b = 0.5915\, b = 0.6313\.

only one beam will be radiated. However, we find that interference
between the two propagating waves in the dielectric causes some very
interesting anomolous results associated with what might be described
as unattenuated surface waves. This effect is markedly different from
that which may occur for a sheath inside the guides (although as a
function of frequency or sheath thickness, as opposed to scan angle,
similar results may occur). Further discussion on this subject is
deferred to another paper.*

The results in Fig. 15 for the | R | and the phase of R are shown in
the scan angle region in which only one wave, at most, propagates in
the sheath. In this angular region the results are also very different
than those for the interior sheath in that the response is comparatively
flat for a wide range of sheath thicknesses.

VI. CONCLUSIONS

In summary we may state that dielectric loading or covering has a
very substantial effect on the array performance to the extent that an
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array and dielectric cover should be designed as an integral unit in-
stead of being designed for minimal effect or match correction. Never-
theless, the additional parameters available in the design of an array
with a dielectric cover can be used to match the array over a wide
angular and frequency region.

No particular method of loading or covering appears to be uni-
versally superior except that when only one dielectric boundary is
present (Fig. 2, top ), the wide angle match appears to be less fre-
quency sensitive than when a sheath or two boundaries are present.
Furthermore, with thick sheaths, the maximum permissible value of ¢
is small before serious matching problems occur (a large | R | together
with a flat R[#]). Finally, by placing the sheath inside the wave-
guides instead of outside, certain anomolous reflection phenomena,
associated with the exterior sheath grating lobe structure and sur-
face waves, can be avoided.

Although we did not give analytic proof, the numerical results do
Indicate that the asymptotic behavior of the coupling coefficients? is
not altered by the presence of the dielectric materials.
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