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This paper presents the theory of directional couplers using matriz
formulation for lumped, distributed, or any linear time-invariant black-boz.
The starting point is the matriz theory of uniform multiple coupled trans-
mission lines in terms of which are brought in the concepts of characteristic
impedance mairiz, propagation matriz, reflection matriz, and scattering
matriz. Next, we use the results obtained with the theory of multiple coupled
transmission lines to derive expressions for the loading impedance and
voltage ratios for distributed dirvectional couplers. We do this using the
spectral properties of the matrices. Then we generalize the concepts of
characteristic impedance matriz and propagation matriz for a class of
black-bozes with the aid of the A, B, C, D transmission malriz. We give
conditions for the loading tmpedance and expressions for the voltage
raiios, using the spectral theory of the transmission malriz. We discuss
the physical significance of the directional coupler effect at all frequencies
in a vector-mairiz framework and analyse in detail some lumped direc-
tional couplers. Finally we discuss hybrid (lumped and disiributed)
directional couplers.

I. INTRODUCTION

The directional coupler is an important device in many transmission
systems. The theory for the electrical design of certain types of dis-
tributed-parameter directional couplers is well established through the
contributions of a number of researchers.'””

The purpose of this paper is to present the theory of transmission-line
symmetric directional couplers in matrix form and then extend that
theory to arbitrary lossless reciproeal circuits. There are many nota-
tional and conceptual advantages in using a matrix formulation which
give further insight for the synthesis of different types of directional
couplers,
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The starting point is to examine the coupled-line directional coupler
as a particular application of multiple coupled transmission line theory
and then to use the concepts of characteristic impedance matrix and
propagation matrix to examine the whole problem, rather than one
line at a time or one mode at a time. By using a matrix approach the
fundamental properties of the modes become more evident and thus
physical intuition and mathematical reasoning blend to give a clearer
picture of the situation. For instance, when the lines are no longer
identical it is the eigenvectors of the matrices which provide the in-
formation of how to extend the mode concept.

II. MULTIPLE COUPLED TRANSMISSION

2.1 Propagation and Characteristic Impedance M atrices

Several researchers® ™ have analyzed the behavior of a set of multiple
coupled transmission lines. For reference in subsequent sections of this
paper we present a brief account of this theory. For simplicity the
discussion is restricted to two identical lines operating in the TEM
mode. Fig. 1 shows schematically a differential section of two lines
and a ground plane. The circuit of which Fig. 1 is a differential section
obeys the following vector differential equations* in the steady state

av
dl
al 0
T — —yv, e

where

_— [Vltx)] 1= {I:(ﬂ ,

Vz(x)J I,(z)
7 - {zl. zm] yo Y+ Y —Y. 7’
Zu Zan - Ym Yz + Y.

By solving for I in (1) and substituting its value in (2), or solving

for V in (2) and substituting its value in (1) the following are obtained:
d’Vv

3)

Fr

* The matrices V, I, Z, Y are all functions of frequency. For simplicity in the
notation this dependency is not explicitly indicated.
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Fig. 1 — Differential section of two coupled lines above a ground plane.

d’l

i YZI. (4)

Define the matrices T, Y, and Z, as follows:

r & Vzy, (5)

Y, £ Z7'T, (6)
Z, £ Y, 7
In terms of the matrices defined, the solution of (3) and (4) is*
Viz) = ¢ "v. + v, (8)
I(z) = Yol v, — e™v), (9)

where the 2-vectors v, and v_ are arbitrary constants (dependent on
frequency) which depend on the boundary conditions. Their inter-
pretation is very similar to the one of single line theory, v, may be
called the forward wave and v_ the reflected wave.

Equations (3), (8) and (9) have the same form as the single trans-
mission line equations. For this reason the matrices I, Y,, Z,, are
called propagation matrix, characteristic admittance matrix, and char-
acteristic impedance matrix, respectively. Many properties of the
single transmission line hold for the multiple ease. In particular, if
the set of lines is terminated in a network whose open circuit impedance
matrix is equal to the characteristic impedance matrix of the set of
lines, a vector of incident voltage waves traveling down the lines will
experience no reflection. The manner in which the voltages and currents

_ * In evaluating VZY to calculate T the convention is made to associate with '
eigenvalues whose real part are positive and with —T" the ones with negative real
part.
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in the lines interact is best understood by examining the matrix func-
tions ¢”** and e"*. (See Appendix.)

2.2 Reflection and Scattering Matrices

In single transmission line theory the voltage reflection coefficient
I'r at a discontinuity is defined as

v = PRU+, (10)

where v, is the incident voltage and v_ is the reflected voltage. The
expression for I'; in terms of the characteristic admittance Y, of the
line and the input impedance Z, at the discontinuity is

_ZYe—1
= 7.7, +1 (11)

The concept of reflection coefficient can be generalized very simply
for the case of a multiple set of lines. Consider Fig. 2 depicting a pair
of coupled lines of length I and matrices T, and Y, terminated at
z = 0 in a device of open circuit impedance matrix Z, . According
to (8) and (9) forz = 0

Tr

V) =v, +v-, (12)
10) = Yo(v. — v.). (13)
The box marked Z, obeys
V(0) = Z,I(0). (14)
Substitution of V(0) and I(0) from (12) and (13) into (14) gives
v. +v. =Z. Y (v, — V), (14b)
from which solving for v_
vo = Z. Yo+ D7TZ, Y, — D, (15)
T\ Yo |
]
r=-1 7 m=°| Z
|

Fig. 2 — Pair of coupled lines terminated in a circuit of impedance matrix Zz.
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Thus, defining the reflection matriz Ty as a generalization of (10)
according to
v_ = IRV, (16)
it follows from (15) that
e = (Z,Y, + D7(Z.Y, - I), (17)

which is the generalization to multiple lines of (11).
The scattering matriz S is a reflection matrix in which the incident
and reflected voltages are normalized.* It is defined by

v. =S¥, ; (18)
where
¥, =Ylv,, Vv.=Yiv_, (19)
vV = Yiv, f=12zh (20)
From (14b) it follows that
Zi%, + ¥) = Z.Y[Zi(v. — V)] (21)

Defining the normalized load impedance matrix Z, according to
Z.=Yiz.Y}, (22)
equation (21) may be rearranged as follows:
Vo= (2, 4+ D72, — I, (23)
Comparison of (23) and (18) gives
S=@Z,+1D"'Z - D. (24)

Trom either (17) or (24) it is clear that if the load has an open circuit
impedance matrix equal to Z, of the lines the reflected wave is zero
since both the reflection matrix I'r and the scattering matrix S vanish.

The complex power in terms of the normalized variables is given by

P=VV=1I1 (25)

(The superseript + denotes transposed conjugate of a matrix.) For a
lossless device the incident power must be equal to the reflected power,

* Tn the literature on the scattering matrix the variables are normalized with
respect to a diagonal matrix (usually a real matrix). Here the matrix may be complex
and not necessarily diagonal. This derivation provides the physical interpretation
for a scattering matrix normalized with respect to a complex nondiagonal matrix.
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hence, from (18)
P = ¥'%_ = ¥;S8'S¢, = ¥iv,. (26)
which means that
S's =1, (27)

that is, the scattering matrix is unitary.

2.3 Terminal Matrices of a Set of Lines

Viewed from its terminal behavior the two coupled lines and ground
of Fig. 3 can be studied as a four port which may be characterized by,
among others, an impedance matrix ¢ or a transmission E matrix.
(The E matrix is the extension to 2N ports of the concept of the 4, B,
C, D parameter matrix of two ports. See Ref. 11.)

The ¢ matrix may be written in partitioned form as follows:

| eoth (T-1)Z, | (csch [T-1)Z,)’
(= [csch (r-nZ,| coth(r-nZ, :I (28)

(The prime indicates the transpose matrix.) The E matrix, written in
partitioned form, is

E - [A_‘E] _[ cosh I'-1

~Lc|D]  LY,sinh !

If the two lines in Fig. 3 are identical then I' is symmetric and hence
I’ = I so that in (29), A = D. Furthermore, for this case all the
matrices Z, , Y, , I, A, B, C, D and their analytic functions commute

and therefore may be treated unambiguously as ordinary numbers.
For instance (29) may be written

sinh (T Z)ZD]
cosh Il | (29)

E — 1ccnsh r-1 | z,sinh -1 . (30)
—sinh F-l‘ cosh Il
Z,

= -+

Vy I L v

Ve Iz Is Va

+
-

Fig. 3— Two coupled lines above a ground plane forming a four-port.
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The analogy between the E matrix of (30) and the 4, B, C, D parameter
matrix of a single transmission line considered as a two port is now
complete.

IIT. SYMMETRICAL TRANSMISSION DIRECTIONAL COUPLERS

3.1 Derivation of Matching Impedances

A symmetric matched directional coupler is a four port device whose
scattering matrix is of the form of S of (31) when the ports are ad-
equately numbered. 8 and & are, in general, frequency dependent.
It is well known in microwave circuits that, given any lossless reciprocal
4-port, if all ports are matched, then the device is a directional coupler.*
By properly numbering the ports it may be assumed that the directional
coupler has the following scattering matrix

0 8

(31)

o O o

0
B0 0 &
8§ 0 B
0 6 8 0
For the case of two identical lossless coupled lines equally loaded
at the four ports all that is necessary to obtain a directional coupler
is to match one of the ports. This results from the great symmetry.

Fig. 4 shows two identical lines loaded at ports 2, 3, and 4 with
equal resistances, K. To calculate the driving point impedance at
port 1 the following procedure can be used. Consider Fig. 5. The
equation

7z _BA+B _[Z, Z.] 32
~RC+ D | 1 (32)
L-Zm ZzzJ
i - 1
Vy 1 3 li R
- ‘ — bl
L VI Ity
R% 2 4 R
L _ 1

Fig. 4 — Two-terminal circuit formed by a pair of coupled lines above a ground
plane loaded with resistances at three ports.
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is the matrix version of the well known formula for calculating the
driving point impedance at one port of a two-port when the other
port is loaded. In (32) Z is the open circuit impedance matrix of the
two-port at the left in Fig. 5, A, B, C, D are the matrices given by (29).

Once the Z of (32) is known the resistor R may be connected to
port 2 as shown in Fig. 6 and the driving point impedance at port 1
caleulated by a second application of (32) although now, instead of
matrices, 4, B, C, D are scalars. The matrices in (32) are all of the form

K=E “1, (33)

hence the methods of the appendix are applicable. Using (30) and (32)

i + q) ip — q
2Ry +ra = [J0ESHEE], &4

where R, and R, form the spectral set of Z and are

R1=F fJ Ra=[%'ﬂ, (35)
33 1 3

and p and ¢ are the eigenvalues of Z and are

.
coshv*l + i—“sin.h'y*l
p=Ep , (36)
——sinh 41 + cosh y*l
0

cosh v~ [ 4+ % ginh 71

i_sinh v I + coshyl
0

g=R @37

The symbols v*, ¥~ denote the eigenvalues of I'; and Z73, Z7 the
eigenvalues of Z, .

- © 7 PPPI7

Fig. 5 — Intermediate circuit for calculating the driving point impedance at
port 1 of the circuit in Fig. 4.
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1 Z E%R

Fig. 6.— Second intermediate circuit for calculating the driving point im-
pedance at port 1 of the eircuit in Fig. 4.

To transform the Z,; of (32) to A, B, C, D matrices the well known
formulas:

A=12,Z;, (38)
B=2,23'2, — Zy,, (39)
C =2z, (40)
D= Z3;\Z,, (41)

which hold for matrices (and hence for scalars considering them as
1 X 1 matrices) may be used. The second application of (32) with
the aid of (38)—(41) gives

(p + @R + 2pq

— . 42
TR+ pta “2)
For port 1 to be matched z must equal R, hence, the condition for
directional coupler effect is

R~ @+ IR+ 2pg
2R+p+4q ’

which reduces to
R = Vpq. (43)

When the values given by (36) and (37) are substituted in (43), after
some algebra, the following equation results:

AV R*). oy - (g g_). - .
(R2 77 sinh "I sinh v 1 + R 7. sinh v~ cosh v

5 B) o ol =
—!—(R 7z sinhy l coshy [ = 0, (44)
If a matched directional coupler at all frequencies is desired, (44)
must be satisfied at all frequencies. Some possible mathematical solu-
tions are the following:
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(1) Make the three terms in parentheses in (44) vanish. This happens if
Zt =7, =R. (45)

(72) A second possibility is to make

’-Y+ = ’Y— = . (46)
Then (44) reduces to
+rr— 2
( 10350 - Z{Bz-) sinh’ 1
& o
%R ), _
n (R + 3 =g —7)sinhvlcoshal = 0. (4D

To make the quantities in the parentheses in (47) vanish, R is given by
R = VZ7ZiZ . (48)

Equation (45) or (46) and (48) give possible conditions for directional
coupler effect at all frequencies. If a narrow band directional coupler
is desired one may match the coupler at the discrete frequencies which
satisfy (47). Since (47) is a transcendental equation it is not unreason-
able to expect an infinity of roots. For instance, suppose (46) holds,
and [ is made so that

sinh vl = 0. (49)

Then the device will be a directional coupler at the frequencies that
are roots of (49).

Some explicit relationships for two identical lossless lines of inductance
per unit length L,, , mutual inductance per unit length L,, , capacitance
per unit length of one line alone C, and capacitance between the two
lines per unit length C,,, are:

’Y+ = 3 V (Lu + Liz)C w, (50}
v = iV — L)€ + 205 w, (51)
+ (Lll + LlE)
Zy = ——————t—,
Vs + Lu)C 52
Z(-l- _ (Lll _ L12) (53)

B \/(L11 - le)(c + 20;1!)-
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The condition expressed by (45) implies, equating (52) and (53)

_ h _ C+Cy
le Cx ’

_ Ly, .
R=A\gxcn (55)

While the condition expressed by (46) implies

(54)

L, C+Cy
le - CM » (56)
and (48) reads
_ Lll
k= \jC + Cy’

which is the same as (55). Equation (54) implies that the lines have
negative mutual inductance, which is not achievable with parallel
lines. This condition can, however, be satisfield with counter-wound
lumped elements.

If (56) holds, which implies (46) then (49) implies

_ kx
l\/LmCM - LU(C + CM) '

Wy

k=0,1,2,---. (57)

That is, for the frequencies given by (57), independent of the value
of the loads (as long as they are all equal) the lines will be matched
and will exhibit directional coupler effect.

3.2 Frequency Dependency of the Coupling Between the Ports

Equations (54) and (55) or alternatively (56) and (55) are not fre-
quency-dependent. This means that the resulting circuit will be matched
for all frequencies. Therefore, the directional coupler effect will exist
for all frequencies, meaning that the coupling between uncoupled ports
is zero at all frequencies. However, the coupling between coupled
ports is frequency-dependent. This dependency is derived as follows.

Considering the coupled transmission lines as the load to four un-
coupled lines, each of characteristic impedance R as shown in Fig. 7,
the scattering matrix of the load is calculated according to (24) and
(22) with
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1
R 0 0 O
0 %B 0 0
Y, = (58)
1
0 0 i 0
1
_0 0 0 R

and Z, given by ¢ of (28). Applying the methods of the appendix the
matrix { may be expressed as follows:

(= Ra)\ra + Rb)\rb + RJ\;‘: -+ Rd)\rd ’ (59)
where R, , R, , R, , R, are the spectral set of { and they are given by

(165)-(168) of the appendix and Ay, , Ars 5 Are , Ara are the eigenvalues
of ¢ and are given by

Ao = coth (y*1)Z% + cosch (v*1)Z%, (60)
Ao = coth (v'D)Z% — esch (v'DZ}, (61)
Are = coth (y")Z5 + esch (v )27, 62)
Ao = coth ()27 — csch (v 125 (63)
I1__,'
+ r
V| R
12'_"
- [
Vo R
- g ’ ‘ COUPLED LINES OF
I,—> IMPEDANCE MATRIX
P Z =¢
va R
I4g—
-+ L
Vi R

Tig. 7— Two coupled lines above a ground plane of impedance matrix given
by equation (28) serve as load to four uncoupled lines of characteristic imped-
ance R for calculation of scattering matrix of coupled lines.
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The matrix S may be written

S = Rsa + RAss + Rdse + Rarsa, (64)
where the eigenvalues of S are
ey T (65)
Ass = H , (66)
e R ©

If the values of A, Ay, Are , Ara are substituted in (65)—(68) and those
are in turn substituted into (64) while the conditions indicated by
(46) and (48) are imposed, the following result is obtained after some
algebra

0 S12 Sla 0
S — Sz 0 0 S, ; (69)
Ss 0 0 S
0 83 8. 0
where
(E - B
Sz = - R 2 = , (70)
Zo, Lo o8
2 cosh yI 4 (\‘Z; + \}Z;)Smh'yl
2
S = 7+ 7 ) (1)
Lo Zo) .
2 cosh vl + ("’Za_ + \/;,)) ginh !
where
Y= jﬁ’ \% (Lu + LLZ)Ca (72)
+ Lu Ll.
7 = (il (73)
ZD_ — Lll - Ll2 . (74)

v C(L]l + L12)
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If, instead of the condition of (46), the one of (45) is imposed plus (48)
then the following result is obtained

0 0 Sla Su
S — 0 0 Sy S , (75)
Sa S 0 0

S S 0 0

where
1 1
Sis = cosh y*1 —2]— sinh 4" t cosh v~ ! -Ei— sinhy 1’ (76)
1 1
Su = oyl Fsimha'l  cohy I smhy 1l D
where

Lll
Zy = \[m; ; (78)

"J’+ _ ?w(LuZ"' L;,) , (79)
i
,Y“' — J(Lll Z_u L]!)w_ (80)

The matrices of (69) and (75) with the aid of (70)—(74) and (76)—(30)
give the frequency dependency of the coupling between the ports for
the two types of directional couplers derived (matched at all frequencies)

IV. EXPLANATION OF THE EFFECT

Two sets of conditions have been derived for obtaining the directional
coupler effect at all frequencies for transmission lines. Fig. 8 represents
a pair of lossless lines ¢, d which are coupled from ¢ = —ltoxz = 0.
The coupled lines are connected to four (uncoupled) lossless transmission
lines a, b, e, f, each of characteristic impedance R and each terminated
in RB. The matrix Z, is the characteristic impedance matrix of the set
of coupled lines (¢ and d in Fig. 8) and I its propagation matrix.

Consider a case in which the eigenvalues of the matrix Z, of the
lines ¢, d satisfy

R =24 =273,
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which implies
Z, = RI*

where I is the unit matrix. Assume that a pulse travelling down line
a occupies at time ¢, the position shown in Fig. 8. Lines a and b together
may be considered as a particular case of a set of multiple lines, in
which both (Z,)., and (I"),,—the characteristic impedance and propaga-
tion matrices of lines a, b—are diagonal because lines ¢ and b are
uncoupled. Thus it is convenient to think of the pulse traveling down
line a as a vector of pulses traveling down the two lines a, b; the second
component of the vector which corresponds to line b being zero. When
the vector of pulses arrives at the position x = —I, indicated by M
in Fig. 8, the vector of pulses continue ‘“‘seeing’ the same characteristic

a M C N e

l—i. — S "V [ — — _'; B i
e — | — L — =
(T ) <R _TL - P N R<
T 71 = It | ta 9
1 Tr=-11"" ’ r=0 i 1

< — | — i — .
.-:R —_— : e T ‘r e~ RAE:'
SRR , T

b ‘ d . | f )

UNCOUPLED i COUPLED COUPLED i UNCOUPLED

Fig. 8 — Pair of coupled lossless lines ¢ and d above a ground plane which has
uncoupled terminated lines a, b, e, f of characteristic impedances R. This shows
the progress of a pulse to explain the directional coupler effect in physical terms
for a coupler with diagonal characteristic impedance matrix.

impedance matrix RI as before and hence no reflection of the vector
is created at M.

In a vector formulation one speaks of reflections in a multidimen-
sional sense. The voltage on line ¢ may give rise to a reflected voltage
on line a [self reflection] or to a reflected voltage on line b [mutual
reflection]. If all the lines are self matched and mutually matched
there will be no reflections whatever. Often a line might be self matched
but not mutually matched; then no self reflection will occur, but a
mutual reflection will.

At time ¢, the second component of the vector pulse is no longer
zero because the pulse on line ¢ which is coupled to line d induces a
pulse on line d as shown in Fig. 8. These component pulses will be

* Although for simplicity in the explanations, parallel lines are assumed, this

kind of coupler requires negative mutual inductances which are in general achieved
with counter-wound helices.
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distorted because continually varying portions of them travel at
different speeds on the lines ¢ and d.* When they reach z = 0 marked
by N in Fig. 8, the vector again continues to see the same characteristic
impedance matrix and hence no reflections are caused at N. Finally
the pulses travel out on lines e and f and are dissipated at the resist-
ances R.

From this it is clear that the two ports at M are uncoupled and also
the two ports at N are uncoupled. However a port at M is coupled to
both ports at N and vice versa. All the ports are self matched. This
explanation suggests a simple way of determining the conditions for a
nonsymmetric coupler realized with transmission lines. Assume lines
¢ and d are no longer identical but that the characteristic impedance
matrix of the set is still diagonal

ZD — [(ZD 11 0 j!
0 (Zu)zz

while the propagation matrix I is not. If the lines a and e have char-
acteristic impedance (Z,),, and lines b and f have characteristic imped-
ance (Z,).; and a, b, e, f are properly terminated, the coupled lines
¢, d will constitute a matched nonsymmetric directional coupler since
the discussion above holds for this case without modifieation.

A physical account of the directional coupler satisfying

+

Y = 7_ =7
_ Ly,
B=+tt20,
is as follows.

Fig. 9 shows the same arrangement as Fig. 8. A pulse traveling
to the right on line a is shown at ¢ = ¢, . The second component of the
incident pulse corresponding to line b is zero since lines a and b are
uncoupled. As the vector of pulses reaches the position M, the vector
of voltage is reflected according to a reflection matrix because for
this case, the vector no longer sees the same characteristic impedance
matrix in the transition from lines a, b to lines ¢, d. However, because
line @ matches line ¢ there is no self reflection; only a mutual reflection
appears on line b. Besides the reflected pulse, an identical transmitted
pulse appears on line d at time ¢, as indicated in Fig. 9. The appearance

* The propagation matrix should not have equal eigenvalues, otherwise it will be
diagonal which, together with a diagonal characteristic impedance, implies un-
coupled lines.
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d M C (N e

f—————— }
>R L B . R
<l’ 1, "t taita

:
! b
7 }:L‘:—L i sy S = Y 2z /?

\,“: —_— | — -(———I—-)- R
< — _l-|Tr-|_ (: _)
1 b 1z |tz talts
1 T T
b | d i f
UNCQUPLED }COUPLED CQUPLED | UNCOUPLED

Fig. 9 —Same structure as in Fig. 8 showing the progress of a pulse for a
coupler with scalar propagation matrix,

of the mutual reflection indicates that the two ports at M are coupled.

After ¢, , as the two forward pulses travel along lines ¢ and d they do
so at the same speed, without distortion and do not interact with each
other since the propagation matrix is diagonal. As the two pulses
arrive at point N they encounter a reflection matrix of opposite sign
to the one they encountered at A7. This means that the pulse on line ¢
passes through N undisturbed but creates on lines d and f reflected
and,transmitted pulses identical to the ones created at M but of op-
posite sign. Likewise, the incident pulse on line d goes right through N
(since each individual line is matched) creating transmitted and reflected
pulses on lines e and ¢, but being cancelled on line f by the transmitted
pulse created by the incident pulse on line ¢; thus, nothing comes out
of line f.

At time {, right after the reflection at N the situation is depicted
in Fig. 9. After ¢, the reflected pulses are traveling to the left at the
same speed undisturbed and undistorted on lines ¢ and d. As they
arrive from the right at point M the pulse on line d goes out line b
undisturbed but ereating transmitted and reflected pulses on lines a
and ¢. Likewise the pulse on line ¢ goes out line a undisturbed creating
transmitted and reflected pulses on lines b and d, but being cancelled
on line a by the transmitted pulse created by the incident pulse on
line d. This eliminates any delayed reflections on line a to the original
incident pulse. The process continues in the same manner, the outgoing
pulses on lines a and f always being such that they cancel. This means
that the ports associated with lines a and f are uncoupled, but the
ports of lines a, b and e are coupled.

It is clear that what is necessary for directional coupler effect on this
type of coupler is: all ports self matched, equal propagation velocities
without attenuation or distortion. Hence it should be possible to
realize a nonsymmetrieal directional coupler of this type whose propaga-
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tion matrix is a scalar matrix* by self matching its ports. This may
be useful for interconnecting lines a and b of different characteristic
impedances.

Because the reasoning above was made in the time domain with
pulses of arbitrary shape, the results hold for all frequencies. This
is an example of the gain in insight owing to the vector-matrix for-
mulation.

V. EXTENSION OF THE THEORY

5.1 Matrices for a 2N-Port

Let us generalize several concepts introduced in Section 2.1. Con-
sider a (2N + 1)-terminal network in which terminal 2N + 1 will
be grounded and ports from terminals 1 through 2N to ground will
be considered. Ports 1 to N will be considered input ports and Ports
N + 1 to 2N output ports. Suppose the 2N-port is characterized
by A, B, C, D N X N matrices. (Extensions to 2N-ports of the 4, B,
C, D parameters of a two-port). Assume the circuit is such that

A =D, (81)
A’ —BC =1, (82)

where I is the N X N unit matrix and A, B, C are N X N symmetric
matrieces which commute.

By analogy with a multiple transmission line the characteristic
impedance matrix Z, and the propagation matrix I' are defined so
that they satisfy the following equations:

A = cosh T, (83)

B = sinh T, (84)

C = Z;'sinh I. (85)
Solving for I'" and Z,

I' = cosh™ A = sinh™' B, (86)

Z, = VBC™. (87)

The N X N matrices I" and Z, will also be symmetric and commute.
The matrix Z, is the open circuit impedance matrix of that network
which, when connected to the output ports N 4 1 through 2N of

* A scalar matrix is the unit matrix multiplied by a scalar.
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the circuit whose A, B, C matrices are those of (86) and (87), will
result in an open circuit impedance matrix of Z, when the ecircuit
is viewed at its ports 1 through N. This property is analogous to the
one of the characteristic impedance matrices of a set of multiple
coupled transmission lines. The matrix I', has virtually the same
properties of the matrix I'l of a set of coupled lines (although the
single quantity I looses its significance as a length in case the 2N-port
is a lumped circuit). For instance, if n identical 2N-ports are cascaded
the resulting 2N-port has a propagation matrix equal to nT.

The matrices I" and Z, may be expressed in terms of the 2N X 2N
impedance matrix Z of the 2N-port with the aid of (38) through (41)

T = cosh™ (Z,,Z3)), (88)
Z,= VI —1,; (89)
where the Z matrix is partitioned as follows:
Z,|Z
7 = I:A J:‘ , 90
Zo | Zao (90)

the submatrices Z,, , Z,, , Z,, , Z;; are N X N symmetric matrices
and commute with each other. The characteristic impedance matrix
may also be expressed in terms of the so-called open and short impedance
matrices. If the N-vector V, and I, denote the voltages and currents
at the N input ports and V, and I, denote the voltages and currents
at the output ports, then if I, = 0, that is, the terminals on the output
ports are open then

V, = AV, , (91)
I, =CV,. (92)

Solving for V, in (92) and substituting in (91)
V, = ACTT, . (93)

which shows that the N X N impedance matrix Z,, seen at the input
ports is

Z,, = AC™". (94)

Now, if the output ports are shorted, that is V, = 0 then
V, = BL,, (95)
I, = AL, (96)
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from which
V]_ = BA-IIl . (97)

That is the N X N impedance matrix with the output terminals shorted
Zg,is

Zs, = BA™' (98)
TFrom Eqs. (94) and (98) it is seen that
Z,= VZ;Z,. (99)

Equation (99) gives an experimental method of determining Z, if
it is known that the network satisfies equations (81) and (82), and
the symmetry and commutativity conditions.

5.2 Multiport Circuits and Multiple Transmission

It is often convenient to analyze some lumped or distributed (or
combinations of lumped and distributed) systems as though they were
multiple transmission lines using such concepts as reflection matrix
and incident voltage.

Consider the connection shown in Fig. 10. Each network is an (2N +1)-
terminal network in which ports from each terminal to ground are
made. Ports 1 through & and 1’ through N’ are considered input ports.
Ports N + 1 through 2N and (N + 1)’ through (2N)’ are considered
output ports. The voltage vector at the junction B whose components
are the voltages of nodes N + 1, N 4 2, - -+, 2N to ground is denoted
by VB .

The vectors v, , v_, i, , i_, called incident voltage, reflected voltage,
incident current, and reflected current at the junction B (assuming
the direction of propagation from left to right), are defined to satisfy

B

| I

, N+t | 1 ‘ (N+1],

N+2 2' (N+2)
2 O - My
3 o——— NETWORK |3 3 NETWORK, [(N+3)'
: M 1 M’ I

N 2N N (2N)

Fig. 10 — Connection of two 2N ports in cascade used to define the reflection
matrix.
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Ve =v, +v_, (100)
I, =14, — i, (101)
i, =Z7,, (102)
ii=2Z'v_; (103)

where I is the N-vector whose components are the currents flowing

out of terminals N 41, N+ 2, - - - , 2N and into terminals 1/, 2/, - - - , N';

Z is the N X N open-circuit impedance matrix of network M seen

from the ports N 4+ 1, N 4+ 2, --- , 2N with network M’ disconnected.
The reflection matrix I'y - is defined according to

Ve = DV o (104)
The matrix 'y satisfies the following relationship:
o = (Z’Z_l + I)_‘(Z’Z_l - I); (105)

where Z’ is the N X N open-circuit impedance matrix of network
M’ as seen from ports 1/, 2/, --- , N’ with network M disconnected.
I is the N X N unit matrix. The indices MM’ on Iy indicate the
direction of propagation from M to M’. If the indices are reversed
the roles of Z’ and Z are reversed, that is

Taow = (Z(Z') +D(Z(Z)" — D). (106)
The transmission matrix T,y is defined by
Va = Tyylv.'. . (107)

Hence T, satisfies

Tyw =1+ Carner - (108)

5.3 Directional Coupler Equations

Taking advantage of the derivations done for transmission line
directional couplers and the analogies introduced in Sections 5.1 and
5.2, it is possible to write without further work, the equations of a
directional coupler having the same mathematical symmetry of a
multiple transmission line directional coupler but which may have
lumped components or combinations of lumped and distributed com-
ponents. Suppose a four-port is characterized by its E matrix whose
2 X 2 submatrices A, B, C, D have the form of the matrix K of equa-
tion (1) of the Appendix and satisfy equations (81) and (82). Without
any further work it can be stated that if the load impedance 2z and the
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four port satisfy for some frequency the equation
=27y =1Z,, (109)

the device will be a directional coupler for that frequency.
This result is deduced from equation (45). Likewise from equation
(46) it may be deduced that if the four port is such that

=1, (110)
and
: = VZZ,, (111)

then the device will also be a directional coupler for those frequncies
for which (110) and (111) are satisfied.

It is convenient at this point to exemplify with a simple lumped
circuit.

Consider the four-port lumped circuit shown in Fig. 11. The E
matrix of the circuit of Fig. 11 may be calculated by cascading 3 sec-
tions, the first and third containing only capacitors and the second
containing the inductors and mutuals. By proceeding carefully much
labor can be saved using the spectral sets given in the Appendix. The
results are

IlofjI |Z|| I|O 1+ 2Y Z .
E= [Y_i_l][bl}[f )I} - [(Yz + 2DY ‘ YZ + I:| ;o (112)

where

Y=S8

FC + C.u _CM J
L —Cxw C+Cy

0 LJ
Lo Lu

v, —=C ==C A

Fig. 11 — Four-port lumped circuit that can be used as a directional coupler.
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From (86) the hyperbolic sine and cosine of the propagation matrix is

cosh I' = [l + S°C(L,, + L,»)]

2 Ll
+ %Ji ! _1—![1 + SZ(C + ZCM)(LH - Ll2)]r (113)

1 1]
( -1
|- 1

[SR

S, 4 L +
1

‘ ]S(Ln - le)- (114)
1

IF'rom (87) the characteristic impedance matrix is found to be

17([ (L., + L) )* 1[ 1 —1]

1 L1
B Ze ‘ ;
-fL 1] S°C(Ly, + L) + Q]C 2 | —1 1

Z, =

{ Y ) )
[S*(C + 2Cy)(Lyy — Lyy) + 2](C + 2Cy)
The condition expressed by (109) is, for this case,
_ ( Ly + Ly )*
* TS + L) + 20C
Ly, — Ly, ¥
B ([S”(C +2C.) (L — L) + 20(C + zc,,,)) - (19

The second and third members of (116) imply
[S*(L1, — L) (C + 2Cw) + 2(Lyy + Li))(C + 2Cy)
= [S*C(L}, — L1,) + 2(L,, — Ly,)]C. (117)
If this condition is to be satisfied at all frequencies then
(L, — LL)(C + 20,)° = (L1 — Lin)C?, (118)
2(Ly; + L) (C + 2Cy) = 2(L,; — Ly,)C. (119)

Both (118) and (119) are satisfied for the following choice: L,; = —L,,,
C = 0. Thus the circuit of Fig, 11 with ¢ = 0 and L,, = — L. (per-
fectly coupled counterwound inductors) is a directional coupler at all
frequencies, provided it is loaded at all ports with the impedance

(. L, )
Z= (4L116"\,S2 T ec,) (120)
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The impedance z is frequency dependent. The voltage ratios will be
given by (76) and (77),* that is

1 1
8 =3 (1 T 10,5 + 1) : (121)

1 1
se=3(1 - mms1) o

5.4 Equations in Terms of A, B, C, D Mairices

It is often convenient to express the equations of a directional coupler
in terms of the A, B, C, D matrices directly instead of the Z, and T
matrices. For this purpose assume a lossless reciprocal four-port is
characterized in terms of its A, B, C, D matrices which are of the form
of the matrix K of equation (150) of the Appendix. Assume A = D.
The condition A* — BC = I is automatically satisfied if the circuit
is reciprocal. A, B, C, D commute, since they have the same eigen-
vectors. Because all matrices commute they may be treated without
ambiguity as sealars. The open circuit impedance matrix is

AC'| ¢!
(= l:‘ET‘ F] (123)

Suppose the ports are loaded with equal impedance z. The impedance
matrix ¢ normalized with respect to the matrix 21 is

¢ = [%C_;z__,l f(;?;.il- (124)
The eigenvalues of ¢, are
Y 9
A = A;CT ! , (126)
=t (127)
N = A;c: L (128)

where A*, A~, C*, C~ are the eigenvalues of A and C associated with
the sum and difference modes. (See Appendix.) The reflection matrix

* Because for lumped elements I" corresponds to I'l in using the formulas derived
for distributed elements for circuits with lumped elements one should take | = 1.
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(or scattering matrix) is
Ty = —DE+D7, (129)
which may be written

A — 1
+1+Rb)\+1+Rc)\+1+Ra)\+1s

where R,, R;, R,, R, are the members of the spectral set of ¢, and
which are given by equations (165) to (168) of the appendix.

To find the condition for self match at port 1 (which because of the
symmetry gives the condition of self match at any port) the eigenvalues
given by equations (125) to (128) are substituted in (130) and the
upper left corner of I'g is equated to zero. After some algebra this yields

(47 +2C7)" — 1][(A4")" = (:C*)* — 1]
+ [(4% +2C°)° = 1][(47)" — :C")* = 1] = 0.  (131)
Equation (131) is a quartic in 2 which may be rewritten
2(C*CT) +2(C*A” + C"4Y)
—2(A"B" +B*A") — B'B" =0 (132)

PR=R

(130)

The solutions of Equation (118) give the values of the impedances which
will match the four ports in terms of the eigenvalues of the matrices
A, B, C. Although a quartic algebraic equation can be solved in terms
of the coefficients, the solution is extremely cumbersome algebraically
and it would be very difficult to see the effect of varying the quantities
A*, A7, B*, B~, C*, C". A sounder approach is probably to look at
particular simple cases. For instance if

C*'=0 and B =0, (133)
Equation (132) reduces to
2(CAY) —2(B*A7) = 0,
whose solutions are

e
z=0 and z = g%:- (134)
A second possibility is

c* =0, A" = 0. (135)
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Eq. (132) then reduces to
_2(B*A") — B'B™ =0,
whose solution is
s= 5. (136)

Obviously there are many possibilities. Some of the solutions are not
immediately apparent. For instance from equations (46) and (48) if

At = A7, (137)
then
. IB*B”
2 ="\g70 (138)

is a root of equation (132). This fact can only be seen after a good deal
of algebra, for this reason it is convenient to express (132) in different
ways so that different possibilities may be ‘“seen.” With this in mind
equation (129) may be written

r, =1-2+0D7 (139)

Using the spectral set of I, the following alternative expression for
the condition for the self-match of all ports is obtained

12 12
44" 4+1 447 —1
zC+ + 1 zcv+ + 1
1 2 1 2
+1A‘+1+1+1A‘—1+1_1'
2C” 2C”
which after some algebra may be written
(A" + 20M)2C n (A~ 4+ 2070 1. (140)

(A" +207°—1 " (A 4200 -1
It is simpler (although not trivial) to verify that the conclusions asso-
ciated with equations (137) and (138) are true from (140) than from
(132).

The reflected voltages caused by an incident voltage at port 1 may
be obtained from equation (130).
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Vie _ (A — @C —1 (47" — (C) — 1 (141)
Vie 2047 +207 — 1]~ 2[(4” +20) — 1]

Vi 2C* 2C~

Vie (A" +207)" =1 + (A7 +207) — 17 2
Vie _ 2C* B 2C°

Ve (A 42007 -1 (A +2007F =1 (143)

Equations (123) through (143) all are good for any four-port, whether
lumped, distributed, or made with combinations of lumped and dis-
tributed elements.

5.5 A Degenerate Situalion:

Consider the circuit of Fig. 12. Notice the structure is not physically
symmetrical. The A, B, C, D matrices of the circuit are

3]~ (I - ] o

11
Z = {1 IJ‘ZSL” Y= { L IJQSCM
11 o1

Although in equation (144) A and D are apparently not equal, it turns
out that Y and Z are orthogonal and therefore YZ = 0. Thus (144) reads

AlB 1|z .
[i:_ —n} = [? T] (145)
The matrices A, B, C, D commute and satisfy equations (81) and
(82). Thus, although the structure is not physically symmetrical, it
is electrically symmetrical. When one attempts to use equation (87)

to determine Z, one finds that the matrix C™' does not exist because
C = Y is singular. Since Z, does not exist, equations (48), (70), and

where

° 7 77
T 2Ly
,{\ 2Cy DEL“
[s ou0 'EL“ o
C—. / s "J

Tig. 12 — Lumped directional coupler which, when connected to a resistive load,
exhibits directional coupler effect of all frequencies.
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(71) cannot be used. Equation (132) can be used instead. The eigen-
values of A, B, C are:

AY =1, A" =1
B* =48L,, B =0
" = 0, ¢ = 4SCM

Thus (132) reads
4SC)|133 - 4SL“Z = 0,
the solutions of which are
- _ | = —|Eu,

z =0, 2 =1g,’ 2 = Cu (146)
The load impedances are frequency invariant, which indicates that
the circuit may be matched with a constant at all frequencies and
should exhibit directional coupler effect at all frequencies when loaded
with a positive resistance of value \/L,,/C, . Using equations (141)-
(143) the voltage ratios are found to be

Voo L 28VEnCy (147)
Vie 14 28VL,Cy' ‘
V- 1

. = —_— T e y 1'18
Vie 14 28VL,C, (148)
Ve
Fo=0. (149)

Equation (149) corroborates that the coupler exhibits directional coupler
effect at all frequencies. This example illustrates the use of the direc-
tional coupler equations in terms of the A, B, C, D matrices.

5.6 Lumped and Distributed Elements

The formulation that has been developed allows the handling of
cireuits with both lumped and distributed elements without any changes
because the formulas are good for “black boxes.” For example, for
the circuit shown in Fig. 13, the total E matrix is found by multiplying
the individual E matrices of the sections. The E matrix of section P
or T is given by equation (145) while that of @ is given by equation
(29). Once the total E matrix is known, it is partitioned into A, B, C, D
matrices and equation (132) applied to determine the proper z for
terminating the coupler. When the eoupler is thus terminated, equa-
tions (141)-(143) yield the voltage ratios.
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2Ly I, Zp,L Ioaly
] 000

2Cy 2Cy ==
. ‘\I\EL“ 2Ly (! N
e ——— N A

aly | Y

P | Q | T

Fig. 13 — Directional coupler configuration containing both lumped and dis-
tributed elements.

In general, the algebra will get quite unmanageable and one will
have to resort to numerical calculations on a digital computer at
discrete frequencies."” The z may be found by numerically solving
the quartic equation (132) at a set of discrete frequencies and then
realizing it as a driving point impedance through successive approx-
imations, or some similar procedure. The processes of normalizing the
impedance z and of making frequency transformations can be used
very effectively in the realization of directional couplers of this sort.

VI, CONCLUBSIONS

Although strictly speaking all physical devices are distributed in
space and thus, in general, have transcendental transfer functions for
certain frequency regions, it might be possible to model the devices
accurately enough with conventional ideal lumped elements, or more
generally with elements having given frequency curves, which may
be given analytically or numerically. In this paper we give a matrix
theory for lumped and distributed circuits, keeping this fact in mind.

By using matrix formulation and treating the circuits as black boxes,
it is possible to extend the classic theory of stripline directional couplers
to more general cireuits while still keeping many of the conecepts (such
as even and odd characteristic impedance) that have been found useful.

The paper makes evident the fact that the concepts of odd and even
mode arise because of the special symmetry of the matrices and that
they correspond to their eigenvectors and eigenvalues. We indicate
in the appendix that when such special symmetry is lost, the odd and
even modes are also lost and it might be necessary to introduce one
set of modes for the currents and another for the voltages. This fact
is not simple to see without the matrix formulation.

By thinking in vector-matrix terms, we explain the directional coupler
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effect and gain considerable insight which is useful for realizing direc-
tional couplers lacking double symmetry.

We have given general equations for analyzing and designing black-
box directional couplers in terms of the characteristic impedance and
propagation matrices, and in terms of the transmission A, B, C, D
matrices. The latter may be necessary to analyze circuits whose char-
acteristic impedance matrix (hence even or odd characteristic imped-
ances) does not exist but which have a scattering matrix.

The topic of the actual design of directional couplers with lumped
or with lumped and distributed elements, and more specifically the
design of multisection directional couplers using computer aids, is not
treated because it is the subject of a forthcoming paper.

APPENDIX

Here are some spectral properties of the principal matrices in the
paper for ease of reference."*
The symmetric matrix

K = P" IW (150)
Lk Ky
has eigenvalues
Moo=k A ke (151)
A =k — koo (152)
and normalized eigenvectors

1 [1] 1 [ o]
U, = _\/5 JilJ ) U, = ‘\/5 |:_1J! (153)

This can be seen by verifying the following identity
1 (1 l]l:k“ + ki 0 J[l 1"{ 1 Pc” kn] (
— = = 154)
\/itl —1 0 ko — ki L1 —1 \/5 lkl2 ki

The spectral set of K is:
1{1 1
R, =UU; R, = 5[ } (155)

1 1 -1
R, =TU.U0; ; R, = 5 {: —’ (156)
-1 1]
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Hence an analytic function f of the matrix K may be written
J(K) = R,f(\) + Rof(hs) (157)

Iror example

a

cosh H:k” k”J]

ki ki
=[%[003h(k11+k12)+003h (kn_km)] %[COSh(kn'i‘ku)_COSh(kn'_kLz)]—r_

3[cosh (k,,+Fk,,) — cosh (k,, — k,,)] 3[cosh (k,,+Fk,,)+ cosh (k“__'klg)]j

The quantities associated with the vector U, are called the “even mode”’
or “sum mode.” The quantities associated with the vector U, are
called the “odd mode” or “difference mode.”

In our main paper, the eigenvalues of the matrices Z, and I" which
are in the form of equation (1), are denoted by Z% and ¥* for the sum
mode and Z7 and v~ for the difference mode.

The partitioned matrix

M = RI‘— %] , (158)
where M,, and M,; are the following 2 X 2 symmetric matrices
M, = {“ ﬁJ, M,, = [" ﬂ, (159)
a 6 vl
has the following eigenvalues
N=(a+p)+ &+ 8, (160)
N=(+p —&+9, (161)
AN =(@—8+ k-2, (162)
N =(a—p) —(x— 9, (163)
and the corresponding eigenvectors
1 1 1 1
v.=3', u=| ', u="" w=|T" a6
1 -1 1 —1
1 -1 —1 1

This can be verified by a matrix multiplication similar to that of equa-
tion (154).
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The spectral set of M is

1 1 11
RG=U,,U{.=i1 111 (165)
111 1
1111
1 1 -1 —1]
Ro=vw =1 1 7T (166)

-1 -1 1 1
-1 —1 1 1]

1 -1 1 -1
R —vw -1 bt obo b (167)

1 -1 1 —1
—1 1 —1 1
1 -1 -1 1
-1 1 1 -1
-1 1 1 -1

1 -1 -1 1

R, =00, = (168)

=

Any analytie function f of M may be written

]‘(M) = R.J'O\u) + Raf(?\b) + Rcf (N) + Rdf()\d)- (169)

Concerning the so-called “modes of propagation” of a set of two
coupled lines, when the I matrix of the two lines has the double sym-
metry exhibited by the matrix K of equation (1), the eigenvectors
of the matrix are those given by equation (4). Since the matrix is
symmetrical, the eigenvectors of the transposed matrix I' are the
same; therefore, one may speak of the ‘‘sum mode voltages and cur-
rents”’ and “difference mode voltages and currents.” However, it might
happen that I' does not have the form of K in equation (1). Then the
concept of sum and difference modes disappear because the eigenvectors
that will result will not be quite so simple. If he wishes, one may then
speak of “first mode” and “‘second mode,” associating each mode with
each eigenvector.
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If the matrix I' is symmetrical the voltage and current modes will

coincide. However, if I' is not symmetrical then the eigenvectors of
I’ will not be the same as those of I'. It will be necessary to speak of

“first voltage mode,

" “geecond voltage mode,” “first current mode,”’

and ‘“‘second current mode”’ because the voltage modes will differ from
the current modes if I" is not symmetrical. The eigenvalues of a matrix
and its transpose are always the same, hence no distinction is necessary
for the propagation constants of the voltage and current modes.
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