Extensions to the Analysis of
Regenerative Repeaters with

Quantized Feedback

By M. K. SIMON
(Manuseript received May 23, 1967)

The functional iterative approach given by Zador for calculating the
average bit error probability in a regenerative repealer with gquantized
feedback s extended fo the vector case. For a channel with a rational frac-
tion transfer function, the vector extension permits us at least formally
to deal with the following practical conditions:

(1) The pulse transmission plan is described by an m-ary alphabet
with independent digils.
(#7) Perfect and imperfect low-frequency tail cancellation cases are con-
sidered.
(14) High-frequency signal shaping and its inferaction with the pre-
dominantly low-frequency tail are taken into account.

Expressions for error probability on the kth digit are derived in terms of
the kth vector iterate of a known junction. The restriction to independent
noise samples 1s also removed. The resulting expression for kth bit error
probability is then derived from an operational iteration procedure which
acls on the k 4 1 dimensional joint distribution of the noise samples.

I. INTRODUCTION

In the design of digital communication links, various reasons exist
for the removal of low-frequency components during or prior to trans-
mission of a pulse train. In the case of vestigial sideband (VSB)
modulation® of data over voice-frequency channels, the de and low-
frequency signal components are removed at the transmitter before
modulation and carrier reinsertion. This is required to insure satis-
factory carrier recovery at the receiver for relatively low transmitted
carrier power. In the T-1 Carrier System,® the loss of low-frequency
information results from transformer coupling of an unbalanced
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repeater to the balanced line. In either event, the effect of low-fre-
quency suppression is to cause the positive impulse response of the
overall equalized medium to exhibit an undershoot which gives inter-
symbol interference.

One means of reducing the effect of low-frequency suppression in a
regenerative repeater is to feed back a signal in an attempt to cancel
the long transient tail. This method of compensation has been called
quantized feedback and its use dates back to the 1920’s (as noted by
Bennett?). We assume that the reader is familiar with Bennett’s ex-
cellent expository paper. Until recently, analysis of the effects of
quantized feedback on average bit error probability in a noisy en-
vironment has received essentially no attention. The first to examine
this problem were Anderson, Gerrish, and Salz* who considered the
polar binary case, neglecting signal shaping and assuming perfect
matching of the feedback cancellation signal to the input signal tail.
They have obtained results, with the aid of the computer, that have
provided insight into the problem. In addition, they have exposed com-
putational difficulties involved in grinding out numerical results for
any given set of system parameters.

A more analytical approach to the basic problem is found in Zador®
who used the theory of generalized random jump processes® to obtain
an iterative procedure for computing error probability. Unfortunately,
the class of physical systems that can be handled by Zador’s approach
as originally stated is quite restrictive in the following sense (see
TFig. 1):

() The transmitted message sequence is composed of independent
binary digits.

(it) The low-frequency behavior of the channel as represented by
(G (s) is dominated by a single pole.

(i1i) G(s) and H(s) are exact complements of each other so that
perfect feedback tail cancellation is achieved.

(iv) The time dispersion of the transmitted pulses caused by the
medium, C(s), with or without equalization E(s) is strictly limited to
two pulse intervals.

(v) The noise samples at the input to the threshold detectors are
assumed independent.

It is our intention here to remove some of the above restrictions. In
particular, we extend Zador’s approach along the following lines:

(1) By allowing a multilevel threshold device as a regenerator, the
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Tig. 1— Block diagram of reconstructive repeater with quantized feedback.

allowable pulse transmission plan is extended to include m-ary alpha-
bets with independent digits. (The ternary case is treated in detail.)

(%) The high- and low-frequency behaviors of the channel may be
individually characterized by rational functions. The implication of
this is twofold. First, the predominantly low-frequency tail is now
described by several exponentials. Secondly, the impulse response of
the overall equalized medium C(s) K (s) is not restricted to be time-
limited.

(##t) The restriction to perfect tail cancellation is removed to allow
for imperfections in the forward and/or feedback paths.

(7v) The more realistic case of correlated noise samples is examined.

Extensions (1), (i), and (112) are possible only through a vector ap-
proach based on Zador’s original iteration scheme. The assumption of
a nonflat noise spectrum as in (iv) leads to an operational iteration
procedure for caleulating bit error probability. It is to be emphasized
that the question of computational procedures, which even in the sim-
ple binary case was a formidable task, grows considerably in com-
plexity with the degree of generality assumed.

The generalizations listed above will be treated one at a time so as
to demonstrate individually the necessary changes in Zador’s original
formulation. A review of his model is given in Section II.

Section III assumes an unrestricted ternary message sequence to-
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gether with the remaining restrictions as imposed by Zador. An ap-
plication of the results is given for a particular high-frequency behavior
of the system. The response of the high-frequency portion of the chan-
nel, C'(s) E(s), to a transmitted rectangular pulse is assumed triangular
in shape and time-limited to two pulse intervals.

Section IV derives the general expression for error probability when
the overall channel, Y (s) = C(s) E(s) G(s) is assumed to be charac-
terized by a rational function. The feedback network, H(s), is de-
signed to cancel only the low-frequency poles, i.e., those of G (s). The
special case of a binary input format is treated in detail.

Section V modifies the results of Section III by including the case
of imperfect match of the G'(s) and H (s) characteristies.

Section VI begins with Zador’s original assumptions on the signal-
ing format, channel, and feedback network characteristics, but re-
moves the restriction of independent noise samples. An expression for
kth bit error probability is derived from an operational iteration pro-
cedure which acts on the & + 1 dimensional joint distribution of the
noise samples. The analogy between this scheme and the functional
iteration proposed by Zador for the uncorrelated noise case is demon-
strated.

II. REVIEW OF ZADOR'S MODEL

We begin with a brief review of Zador's mathematical assumptions
and emphasize their physical significance. Consider once again the
repeater-to-repeater transmission link illustrated in Fig. 1. The out-
put of the nth repeater at time rT is a binary rectangular pulse®
d.p (t—rT) where

p(t)=p0 ltlétu
=0, [ 2] >t

d, = =1, and 1/T is the pulse rate of the system. Zador does not ex-
plicitly describe the high-frequency behavior of the system. The class
of channels that satisfies his underlying assumptions is discussed below.
Let the response of C(s)E(s) to the pulse p(t), denoted by z(f), be time
limited to 2T, and zero at its end points. It is understood that in practice
these conditions are usually met only approximately. Then, by passing
z(t) through a single pole high-pass filter, G(s), the part of the resulting

* Zador assumes =1 impulses as repeater output. As we shall see, in the sam-
pled systems we consider, this modification has no effect on the ensuing analysis.
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response, g(f), for ¢ = 27 is dominated by a single exponential. If s(f)
is sampled at time { = 7" and held until £ = 7' 4 ¢, , then by employing
an ideal slicer element as a threshold detector a unit rectangular output
pulse, b(t) is regenerated. Furthermore, by passing this pulse through
H(s), the response tail of s(¢) for ¢ = 2T may be exactly cancelled in
the absence of noise and circuit imperfections. These observations are
illustrated in Fig. 2 for a triangular pulse shape z(f). The response of
H(s) to the regenerator output pulse is denoted by A(f). Turning now
to a sample notation, let g, , Ay , and b, represent the values of g(t), h(z),
and b(¢), respectively, at time (k + 1)7T, & = 0, 1, 2. Then, from Fig.
2, it is obvious that the following conditions must hold, in general, in-
dependent of the waveshape of z(f) within the 27 interval:

(1) ga > 0, hy =0
(i) h: +g: =0 1=1,2,---.
(i12) gi = r§i-1 1= 2
1 I —
T |
|
o |
Ve
|
0 T 2T
o[~~~ = ?
I i
= I
o o | 2T
T i
i
9y
=
o

Fig. 2— System pulse responses.
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where r is related to the single pole, @, of G(s) by r = ¢ *". Con-
dition (#77) is clear upon noting that the response of a single pole high-
pass filter to a time limited signal of width 27" has a single exponential
response for values of ¢ = 2T. Statements () to (iiz) as above are
identical with Zador’s restrictions on the system as reported in Ref.
5.* The shape of z(f) is solely used in determining the two dependent
quantities g, and g, . For a triangular z(f) waveshape of unity height
(Fig. 2) and G(s) = /s + «,

—aT]

1
gO_aT[l_e
_ Ly ey
7 = aT[l P

III. TERNARY PULSE TRANSMISSION

When considering a ternary system, the only essential modification
of the model suggested by Zador is an ideal slicer with positive and
negative pulse detection thresholds set at +ao and —ay, respectively.

Letting s denote the total reshaped input at the £ + 1th timing
instant, and ¢, the feedback voltage at the same instant in time as
before, the slicing operation is described by

by =1 f s +ne+c = a
=0 i —a <si+n+ 0 < ao
= —1 lf Sk‘!‘nk'l‘cké_al:

where

Il

Sk

k
Egk—idi k=0|1,”'
i=0

k
Cp = Ehk—ibi ]K::O, 1,"'
i=0

and n; is a sample from a stationary noise process n(t) having a fixed
but arbitrary distribution function N (z), and independent samples.
The process n(t) is actually the result of passing the additive white
noise process in the system, £(¢), through E (s). We assume, however,
that the correlation between noise samples introduced by the above
is small and can be ignored as a first approximation. When this as-

 Note that Zador also requires g: < for t = 1. This restriction is not neces-
sary although it is often true.



REGENERATIVE REPEATERS 1837

sumption is invalid, the method discussed in Section VI must be used.

It is of prime interest to examine the conditions under which the
system will operate error-free in the absence of noise. For 0 < a,,
a = g,

8o + ¢o = gudo
thus if,
a, = 1, S0+ € = go , by =1
= 0, sy +¢, =0, b, =0
= —1, S0+ 6= —go, by = —1,
or b, =4d,.
Continuing, in thisway k =1,2,- - - |k — 1,
b= e 2 (s i),
= goy .
Thus, if b,, = d,, form =0,1, - - - |k — 1, then b, = d;; and the sys-

tem operates error-free in the absence of noise.
For the more general case when noise is present,

k=1
s+ e = }: Gra(di — b)) + gode = 20 + gods ,

i=0
biFEdi
where x; represents the cumulative effect of any and all errors prior
to time k.
Letting p and ¢ denote the @ priori probabilities of a plus one and
minus one, respectively, the probability of error on the kth digit p(k)
can be written as

p(k) = p Prob {n,+ 2, £ ag — go} + g Prob {n. 42, > —a, + g0}
+ (1 —p— ¢ Prob {n.+ 2. 2 ay ;. + 2 £ —a,}.

The independence of n; and ;. allows p(k) to be expressed in terms of
the noise distribution function N(z) and the distribution function of
x, Fr.(x) as follows:

pk) =p '/:w N(ay — g — 2) dFy(x)
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+ Q’f_: 1 — N(go — a, — 2)] dF(x)

+0—p—9 [ V- =2 + 1= N = D] dF@).

Tor the case of a zero mean symmetrical noise distribution and equal
a priori probabilities for all input symbols (i.e,p = ¢= (1 —p — @) it
is easy to show that the optimum threshold settings are 4go/2 with

p®) = =) [ (1 = N2 = 9 + N(=g0/2 = D) dF@).

It now remains to show that the sequence of random variables
To, &, + - - are representative of a random jump process studied in
Ref. 6 and thus p(k) can be expressed as the kth iterate of a known
function evaluated at zo with a finite limit as k — oo.

Consider,

13
Try1 = E gk+l—i(di - bl)
i=0

k—

1
g.(de — be) + Z rg—i(d; — b))

i=0

Tre1 = g;(dk - bk) + ray .

There are five possible transition states each of which takes place
with probability depending on the value of z; .

Il

Ifd, =1, b, = —1, then z,,, = rz, + 2¢, with probability p,(x.).
Ifde=1, b, =0
or , then z,,, = rx, + g, with probability p.(z,).
d, =0, b= -1
Ifd, = b, then z,,, = rx, with probability ps(z.).
Ifd. = —1,b. =0
or , then z., = rx, — g, with probability p.(z.).
d.=0, by =1

Ifd, = —1, by = 1, then 2., = rz, — 2g, with probability ps(z:).
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The transition probabilities p,(x.), n = 1, 2, - -+, 5 are defined by
pi(r) = pN(—a, — go — 1)
pa(x) = p[N(ay — go — @) — N(—a; — go — 2)]
+ (1 —p— QIN(—a, — 2]
Pa() = 1 = pa(a) — pa(a) — palw) — pslwa)
pa() = qIN(ay + go — ) — N(—ar + go — )]
+ (1 —p— @l — N — =]
ps(xd) = g[l — N(ay + go — z)].
Note,

p®) = [ i) + p.0) + pi@ + po@) AP,

Defining U'[f(z)] = p(@)f(rz + 20,) + p:(2)f(rz + 1) + pa(x)f(rz)
+ p@ftrx — g)) + ps(@)f(rr — 2¢,)
and denoting the kth iterate of U'[{(x)] by U*[f(=)],

p(k) = U'lpi(@) + po(v) + pa(@) + pa(@)] iesemo
If A(x) is the limiting distribution of Fy(z), then

lim p(k) f (@) + pol@) £ pae) + ()] dAG)

k—m -

lim U'[py(x) + po(x) + pu(@) + ps(@)] |z=z0m0 -

k=00

A few remarks are now presented to indicate the obvious extension to
the m-level (m-ary) pulse transmission secheme. A random jump proc-
ess with 2m — 1 transition states will result requiring an iteration fune-
tion U'[f(z)] having 2m — 1 terms, It should be indicated that com-
putationally the amount of computer storage or operations required to
evaluate p (k) is of the order (2m — 1)

1V. RATIONAL FUNCTION APPROXIMATIONS OF THE CHANNEL AND
FEEDBACK NETWORKS

As the subtitle indicates, we are interested here in studying the
repeater error performance under the assumption of a rational fune-
tion approximation to the channel and feedback networks. This gen-
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eralizes the assumptions of Section III in that (i) the tail of the pulse
response, ¢ (), is no longer described by a single exponential, and (22)
the high-frequency behavior of the channel allows its time response to
exceed two pulse intervals. To isolate these effects, however, perfect
feedback tail cancellation is still assumed and we return to a binary
message format.

It is convenient to represent the output rectangular pulses of the
nth repeater as the impulse response of a filter F(s) = (1/s)[1 — e "
where £, is the pulse width. Including this filter in the forward path
of Fig. 1, the overall channel link between repeaters, T'(s) = F(s)C(s)
E(s)Q(s), is assumed to be characterized by a rational function as

follows:

M
T(s) = Go—— x —L

IT G+ a0 I.Il(s+ﬁ,)

with its associated impulse response

M

N
gf) = 2 Ae™=" + X Be ™.
i=1

i=1

Note, the impulse response of T'(s) is the same as the rectangular
pulse response of Y(s) = C(s) E(s) G(s) and is thus denoted as be-
fore by g(t). All poles are assumed to be simple, but in general may be
complex. The terminology used henceforth will refer to the set {a},
i=1,2 ¢+, M as low-frequency poles and the set {#:},1 =1, 2,
- - -, N as high-frequency poles. The inference here is that the 8's are
predominantly responsible for signal shaping and the «'s determine the
low-frequency cutoff of the channel.

A low-pass quantized feedback path H (s) is proposed which in the
absence of noise would provide perfect low-frequency tail cancellation
at all sampling instants beyond the input pulse peak (the effect of im-
perfect low-frequency compensation will be discussed in Section V).*
Thus, if

NO

M )

‘I=Il(s+a.-)

where r, represents the physical delay in the feedback path beyond the
oceurrence of the input pulse peak at £ = f,,y, then, the response to a

H{s) = H,

*It is to be emphasized at this point that all of the following is easily gener-
alized in terms of MacColl’s conception of quantized feedback™ wherein restora-
tion of both low- and high-frequency signal components is attempted.
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positive regenerator output pulse at t = #,,,x would be
A A
h() = 20 Dy 7 ) = SRR for £ 2 fyae + o + 1y -
i=1 =1
Ideally, for perfect low-frequency tail compensation, we desire
M M
Z‘E‘e—a.‘t + Z Ale—uit =0
i=1 =1
at all instants ¢, + nT, n = 1,2, ---, where T is the uniform sam-
pling period.
Letting h; and g, represent the values of the pulse responses h(t)

and g(t), respectively, at the kth sample point the above statements
may be expressed in brief as follows:

() hitgi= D e, 1¥0

n=12. .- N
Cin = ZLi-1,n
) 2

(=
Con = 0
2, —faT
M
(441) he = 2 hi
ne=1
n=1,2, , M
hi,n = T'nh.‘—z.n
i =2
ra=e¢ 7,

The term e; , represents the residual intersymbol interference at the
ith timing instant due to the nth high-frequency pole. To simplify
what is to follow and at the same time allow a hetter comparison with
the previous work of Zador, we introduce the following vector nota-
tion:

Tr 0 00 0 _ll [E T ) PR 0

i [ R T 0 r 0 Zyrrreeneens 0
R = l Sy Z=

0 0

E | : .

T Fal (0, .
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hoy  hia han hay co hea —{
= o 2 ya o Tl sy |
ho Iy u ho,ar hs,nf e h-n..wJ
o (A [/EN s G 1
G = Jn .2 G,z G2 [EM! T2 |
L}n._‘u vy Guoarsxy J2oarsx Gaarax 0 Groaran
N 1
0 en e esn Tt G|
|
B = 0 €2 €s €2 - ck,?i!.
L0 ey €2x €3y - ()L,.\'J

Using H as an example, the ith row written as a column vector is de-
noted by h' and the ith column by the vector h; . Also any vector written
not in bold face is by definition the scalar representing the sum of its
elements (e.g., h' = 2 i, h,.:). Finally, we denote the column vector
obtained by summing all rows of H (i.e., whose ith component is he)
by h. All of the above statements are equally applied to the matrices
R, Z, G, and E.

In terms of the above, (3), (%), and (747) may now be rewritten as:

(7) he =0, go >0
(12) h+g=e¢e

e; = Ze;_,, i=2

(722) h; = Rh;_,, iz 2.

Some further interpretation of the above statements in terms of
the actual system operation might prove helpful at this point. (2)
indicates a positive input pulse peak (go > 0) and a delay in the feed-
back path (h, = 0). Statements (47) indicate that perfect feedback tail
cancellation is achieved at the sample points starting with the second
except for the effects of the high-frequency poles By, Bay =+ 5 Bw).
In contrast to the previous sections, we do not assume that the high-
frequency components of the response have died out before the oc-
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currence of the next input pulse peak. Feedback cancellation of only
the channel low-frequency poles is described by statements (777).

For the binary message case, the threshold detector box of Fig. 1
reduces to a simple ideal slicer element operating between +1 and
—1 levels. The input sequence {d;} is a random train of 41 and —1
impulses represented by the vector d with elements d; .

The total reshaped input at the £ + 1th timing instant, s, , and the
feedback voltage at the same instant, ¢, , are desceribed by,

=@ 41,2, ...
e, = (b *h),
where the kth element of b, b, = sgn {s; + ¢, + n.} is the kth regenerator
output digit. The notation (a * b), represents the convolution of two
k 4 1 dimensional vectors a and b (i.e., 2_%_, aby_.).

Considering first operation in the absence of noise, we see by in-
spection by = d, . (This tacitly assumes that no intersymbol interference
due to precursors is present.) Proceeding as in Zador,” if b,, = d,, for
m=0,1,.--- &k — 1, then

Sk + C, = (d * e);: = L(/Qd_g- + (d * e);,_l .
From this, one concludes that if

k=1
Qu > E [ei ||

then b, = d, and the eye is open. The system will therefore operate
error-free in the absence of noise for any length input sequence if

g¢.> ;ifi l

If all N high-frequency poles (3,, 8., - -+, By) have positive residues,
the above criterion reduces to
N e
G0 > Z 1 LH:'
n=1 ~n

The above implies that the eye is open if the total high-frequency
contribution at all sample points beyond the firstis smaller than the
pulse peak.

More specifically, the values of e,, and z, may be related to the
allowable amount of degradation of the eye. That is, for any eye which
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is X percent closed.
N
e _ X
2T =10
Turning now to the more realistic situation in the presence of noise
8 T ¢ = gody + (d * g)k—l + (b *h)kﬁl .

Consider subdividing the vector d into two parts d’ and d” in such
a way as to separate the input digits into two classes corresponding
to b; = d; and b; # d; respectively. That is,

di=d;; di’ =0 {1; by = d.}
=0 =d, {i;b # di}.

(Obviously d = d’ 4 d".)
Then, using (47),

u; (d * ET){.-—] Ve = —2(d * HT)L‘—]
S+ e = gode + U + v,
= godi + Tk,

where (d * ),_, is a vector whose ith component is the convolution of d
with theith column of G. Again omission of the bold face notationindicates
summation over all the components and 7' is the transpose operator.

The first term in z, denoted by wu; represents intersymbol inter-
ference due to residual high-frequency tail components irrespective of
previous decisions. The second term v, again represents the cumulative
effect of any and all errors prior to time £.

The expression for error probability on the kth digit is identical
to that given by Zador, namely,

@) =p [ N—go— 2 dF) + g [ 11 = Ngo — ] dFia).

The only difference being the nature of the distribution function Fi(z).
The recursive properties of the intersymbol interference x. are now
examined.

Toay = (A * BT, — 27 * HT), .
If by # dy , then
2o = (e — 2h)dy 4 27@d * BNy — 207@7 * HY),o,
= (&, — 2h)d, + zux + 17V, .
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If bk = d;, s then
Tre1 = 81(111- + ZTCd * Er)k_l - QI'T(d” * }IT)A-_l
= eldk + ZTUk + l'Tvk .

Letting @ = —2h,, the intersymbol interference sequence x,, =z, ,
T, -+ - may be expressed as a random jump process,®*® with the following
transition states:

Ifd, = 1 # b, , then with probability p,(x:)

T T
Tpyr = ZUg + e + 1V + a.

1 = b,, then with probability p.(z:)

If d,
o1 = Z'Ug + e, + 17V .
It d, = 1 = b, , then with probability ps(x,)
Teer = Z2Ug — e, + TV — a.
If d. = —1 = b, then with probability p.(x;)
Tpor = 20, — e, + 17V,
where
) = pN(—go — x)
pue) = pll = N(—go — 2,)]
pa(x) = q[l — N(go — x)]
ps(x) = q[N(go — )]
In the above, N (z) is the distribution function of the stationary noise
process, and p and q are the a priori probabilities of a plus one and
minus one, respectively. In terms of the above elementary probability

density funetions, the error probability on the kth digit may be ex-
pressed as:

pm=ﬁmm+mmw@.

We propose a vector extension of Zador’s procedure, namely; an M + N
dimensional iteration scheme in which each of M + N variables is re-
placed by a linear transformation on itself during each iteration. To
elucidate the meaning of A/ + N dimensional iteration and at the same
time recall some of our earlier vector notation, the first-order itera-
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tion function U'f is written in summation notation as:

U'f(e, @) = p:(E bt 3o ) [E (280 + €1.0) + 3 (rugen + am)]

ne=l m=1 m=1

‘q

N N M
+ p.!(z 6!! + ﬂom [; (2',,9" + el.n) + Z=; (mem)]

n=1 m=

A

5e)
Pa(i 0, + sﬂm)
)

[ 3 6o —an + 5 0 — )]

n= m=1

=

N A

+ zu(Z 6.+ 2 en [E (b — €1) + 2 (rmqom)]-

n=1 m=1

It follows that the probability of error on the kth digit is

p(k) = Uk[Pl + psl ]u.¢=n

where UF is the kth M + N dimensional iterate of U*. The convergence
of p(k) in the limit as k& — o has not been examined for an M+ N
dimensional branching process. From Zador’s work on one-dimensional
branching processes® we may conjecture that absolute system stabil-
ity (i.e., all poles in left-half plane) implies convergence in the multi-
dimensional case.

Although the notation in the foregoing analysis appears formidable
(quite an understatement) the procedure and its usage are straight-
forward (at least analytically) for a particular example. At the ex-
pense of being redundant, we once again point out that even in simple
cases, numerical results are hard to come by.

V. IMPERFECT LOW-FREQUENCY TAIL CANCELLATION

It is relatively simple at this point to include the effect of imperfect
low-frequency cancellation in the results of Section IV. As an example,
such a phenomenon might be caused by a delay of amount 7 in the
feedback path. Defining an L matrix by

ro Il.l 11‘1 l:!,l lk.l

0 ll..M I-'._-u lu..\[ lk..’l!
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where

ll'"‘ = hl-"’[]’ — exp (_ T}“l IOgo L)] m = 1: 2! Ty ﬂ[:

T'm
statement (11) of Section IV may be modified as follows:
G) h+g=e+l
i = Rl iz2
e, = Zej_y .
The effect of this on the recursion relationship for x, is as follows:
If b, # d,, then
Tiwr = (e + L — 2h)d, + z'ui + 17 + 0.
If b, = d,, then
T = (6 4+ Wdp + 2"ue + 17V + 1o,
where @, = (d * L"), .
If d, = 1 # b, , then with probability p,(z,)
Tpon = 20 + e + 1V + a + o, + L.
If d. = 1 = b, , then with probability p.(z,)

T T, T
Tpeor = ZUx T €, +T Ve +T o + [,

If d, = 1 #£ b, , then with probability p,(ax)
Ton = 20 — e + 'V —a + 1o — L.
Ifd. = —1 = b, , then with probability p.(x)

T, T, T
Tpsp = ZUg — € +T Vg +Tog — [,

where p,(x), pa.(x:), ps(z), and p,(x,) are still defined as in Section IV.

The kth bit probability of error is now evaluated by a 2M + N
dimensional iteration scheme where the first-order iteration function
U'f is written as

U'f(0, ¢, v) = p.(‘; g, + Z. en + O v)

m=1

-{me+aw+2mm+a»+2@wfumﬂ

m=1
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+pz(29 +m2¢m+m§vm)

[Z (2.0, + e.) + imm) + Z (rocym + 1, m)]

n=1 m=

o(So+ Tet Xn)

me=1

1[2 (2.0, — e1.n) + Z (rupm — @) + Z_: (rwym — fn.,,.)]
+ P*(Z - + E P + Z 7»1)

me=

M
'j[zl (2"8" - cl.ﬂ) + Zl (TIIJPM) + Zﬁ (rm7m - ll.rrI):l'
It once again follows that the probability of error on the kth digit is

'p(k) = Uk[p: + pa] Ia.;;.-f:o )

where U* is the kth 20 + N dimensional iterate of U".

To reward the reader for his patience up to this point, we will at
least demonstrate that the general expression for p(k) given above
reduces to Zador’s result for the single low-frequency pole, perfect
cancellation case. The assumption of no high-frequency signal shaping
and perfect cancellation imply that 0, e;, and ¥, 1, are, respectively,
zero. Furthermore, a single low-frequency pole results in r;, ¢, , and
a, being the only nonzero components of r, ¢, and a, respectively. Under
these conditions,

p(k) = Ulpy + ps] [oi-0
where
Ulf = pi(e)f(re + a,) + ple)f(rer)

+ pale)frer — @) + pule)f(rien)
which is identical to Zador’s result upon combining pa(e:) and ps(e:).

vI. THE EFFECT OF NOISE CORRELATION

In this part, the emphasis is placed upon removing the restriction of
uncorrelated noise while at the same time arranging the results in a
form which allows easy comparison with the uncorrelated case. The
approach to be followed is the reformulation of Zador’'s work into
an operational iteration procedure which acts on the joint distribution
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of the noise samples. The details are presented for the simple binary
case with perfect feedback cancellation considered by Zador. With
sufficient patience, extension to the more general situations covered in
the foregoing sections can be accomplished, but that is not done here.

To review, the operation of the simplified system may be described
by the equation

b, = sgn (n, + godi + x:f, (1)
where

&

-1
=2 gk—.'d.‘ (2)

=0
—=di

by

represents the intersymbol interference accumulated at time ¢, as a
result of errors (d; = b,) prior to that time.
The system output b, is in error when

N+ x, < —go and d, =1 @)

ne + 2 > o and d, = —1.

Since the noise samples are not assumed to be independent, the random
variables n, and z, are not independent. Hence, the distribution of the
effective noise n, + x; is not simply the convolution of the distributions
of n; and x,. Instead, the expression for error probability p(k) =
prob {b, # d,} must be written as

pk) =p f f " ma(n, , x.) dn, da

+ 9 j: [ Ma(ny , ) dng da, (4)

Ja—Tk
where ma(n, ;) is the joint density function of ny, and x; and p and q
are the a priort probabilities of a +1 and —1, respectively.

A careful examination of the branching process described in Refs, 5
and 6 for the uncorrelated case shows that a similar process governs
in the correlated noise case. Define the integral operators p,(z), p. (),
pa(x) by

pia) = p fﬂ
p=(2) = fw - P f_u“ -9 fi (5)

ps(x) = Qf_
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Note that the action of each of these three operators on a single di-
mension Gaussian density function results in the three transition prob-
abilities defined by (13) of Ref. 5. If f(x) is defined analogously (but
operationally) as

@ =po) +p@ =2 +af | ©

then the first-order iterative operator Uf(x) is expressed as in Zador,
namely:

Uf(x) = p(@)fez — a) + p(2)f0r2) + ps(2)fCrx + a) )

with ¢ = —2g,. We note that after separating f(x) into its two com-
ponents parts, each term of (7) represents a double integration and
thus (7) has meaning only when applied to a second-order density
function. Proceeding as in Zador, the error probability on the k41th
digit in a random input sequence is expressed as the kth iterate of the
operator Uf(x) acting on the k41 dimensional joint density function
of the noise process vy 1 (y1, vz, * * *, yx+1) €valuated at x = 0, 1i.e,,

p(k) = ka(x)[vk('}'l y Y2 Tt Vi) [:su-* (8)

The meaning of iteration for the operators defined here is the same
as in Zador's functional case. As an example, we write out p(1) in
detail:

p(l) = Uf(@) [v:(v1 , v2)] J::*vﬂ = ??2 f_—h [;g“ nve(‘fl s Ya) dyy dys

+rg /; f valys s ¥2) dyi dy: + p f_ f va(v1 , v2) dyi dy:

gota

+ q [ f 1'2(’}’1 f ’)’2) dy, dys — pz [ [ v:(’Yl ’ ‘Yz) dy, dvys

— Pq f f vy, ¥e) dyy dy. — Pg f f va(y1 , v2) Ay dye
—o Yoo g0 Y-
- Qz f f v(v1 , ¥2) dya dy: + Pg f f valy1 , v2) dy: dye

+ qu f_ va(y1 , v2) dyy dya . (9)

* The convergence of the operational iteration procedure defined by (7) and
(8) has not yet been proven. Nonetheless, we proceed with our results.
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The above expression for p(1) can be simplified for a symmetric den-
sity function v,. It is further emphasized that the arguments of each
term in the operator as defined by (7) determine the limits on the
integrals in (9) (i.e., the region of integration).

VII. CONCLUSIONS

The analysis presented in this paper might in a broad sense be
described as vector and operational extensions of the work of Zador.
In addition to simply considering a vector of low-frequency poles,
however, the vector approach has enabled us to remove certain other
restrictions from the basic regenerator problem such as lack of high-
frequency signal shaping and perfect tail cancellation. Although, the
question of convergence of the operational iteration scheme for cor-
related noise samples remains as yet unanswered, the formulation itself,
is of interest. Little has been suggested for solving the exact computa-
tional problem. A future paper will discuss some useful approximations
to cases of relatively low dimensionality. This will generalize results
given in Ref. 8.
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