Communications and Radar Receiver Gains
for Minimum Average Cost of Excluding
Randomly Fluctuating Signals
in Random Noise

By STEPHEN S. RAPPAPORT
(Manuseript received October 25, 1966)

The problem of automatic gain control is approached from a statistical
point of view. A simple generic equation s found whose solution yields
the required receiver gain or atlenuation for minimum average cost of
excluding (from the receiver’s limiled dynamic range) randomly fluctuating
signals in random noise. A canonical phase-incoherent link is considered
and the resulting transcendental equation 1is solved using an ilerative
technique. The analysis and the resulls obtained apply to both linear and
nonlinear incoherent receivers including those of the logarithmic or lin-log
type and to a range of fluctuation models including Rician, Rayleigh,
and nonfluctuating cases. It is shown that the optimum receiver gain is
relatively insensitive lo the ratio of costs of saturation at the upper and
lower dynamic range bounds, differing at most by about 3 dB from the
optimum for the equal cost (minimum exclusion probability) case for
typical parameters. The effect of noise introduced by the gain adjustment
cascade itself is discussed.

The results, presented in concise normalized form, are applicable to
a wide range of signal, noise, and channel conditions and have important
implications for communications through fading channels as well as for
radar observation of fluctuating targets.

I. INTRODUCTION

Sinee the ability of both communications and radar receivers to per-
form satisfactorily can be seriously degraded when the signal ampli-
tude does not lie within the dynamic range of the receiver, the setting
of receiver gain to minimize or prevent saturation at the upper and
lower dynamic range bounds is an important problem. The problem
arises in various forms. In simple receivers, the gain might be fixed
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to optimize performance for nominal signal and noise parameters.
More complicated receivers can adjust the gain automatically by any
of several methods. The most common AGC circuits, for example, use
a time averaged baseband signal as an indication of signal strength.
Another possibility is to have the gain adjusted on command from a
digital computer. This latter configuration has important implications
for communications terminals which can use sophisticated techniques
for estimation of signal and noise parameters as well as for certain
radars which must observe from look-to-look radar targets of differ-
ent cross-section which have been illuminated by various transmitted
waveforms. The analysis presented here does not depend on the
particular configuration and is applicable to both linear and non-
linear receivers including those of the logarithmic and lin-log type.
The application to a nonlinear receiver can be accomplished by re-
ferring the overall dynamic range of the signal processing chain to
a point before the nonlinearity.

In a recent correspondence, Ward® determined the placement of
dynamic range bounds to minimize the probability of excluding a
Rayleigh distributed signal. This was extended by Rappaport® who
determined dynamic range bounds for minimum probability of exclud-
ing a signal from the dynamic range of incoherent radar or com-
munications receivers. The viewpoint taken there* considered ran-
domness due either to background noise or target fluctuations (channel
fading). This paper considers several further gemeralizations of the
problem. The case in which the randomness is due to both causes
together is treated. In addition, the criterion for optimization is taken
as the minimum average cost of execlusion. The required receiver
gains as well as the optimum dynamic range bounds are determined.

The present paper proceeds from the specific to the general. That
is, first the determination of optimum dynamic range bounds for
minimum exclusion probability with non-fluctuating target (no chan-
nel fading) is presented.

The criterion is then generalized from minimum exclusion prob-
ability to minimum average exclusion cost; the former being a special
case of the latter. Finally, dynamic range bounds and receiver gains
for minimum average exclusion cost in an environment of fluctuating
targets or channel fading is determined. It is assumed throughout
that the signal, noise, and fluctuation parameters are known to the
receiver. By letting the parameters involved assume certain values the
relations for the fluctuating case reduce to the nonfluctuating case.
Hence, the general treatment presented here includes either criteria
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and either the case of fluctuating or nonfluctuating SNR. Rician and
Rayleigh SNR fluctuations are considered.

Fig. 1 shows a model for an incoherent radar or communications
link. The blocks labeled K;, K., and K represent variable gain de-
vices (perhaps, variable attenuation pads) whose total gain K =
K K2Kj3 is to be adjusted so that the random signal appearing at ()
is in some sense confined to a specified range. The model used for
the propagation medium and/or target is deseribed in Section IV.
Extension of the explicit results obtained here to an important class
of nonlinear receivers by conceptually including a ZEro-memory
nonlinear device between points (D) and (E) will be described subse-
quently. The other blocks in the figure require no further explanation.
The figure is presented so that the reader can obtain a clear under-
standing of where in the signal processing chain various quantities
arising in the following analysis are being determined. However, the
analysis applies to incoherent signal processing links in general and
is not constrained, for example, by the number of components or IF
frequencies that may be used.

The receiver structure shown in Fig. 1 may be used for recovering
the envelope of a transmitted sinusoidal signal or it may represent
an optimum ineoherent receiver for the detection of finite duration
signals of known form in a background of Gaussian noise. The
probability density function (pdf) of interest in the former case is
that of the voltage appearing at the input to the video processing
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TFig. 1 — Model for an incoherent radar or communications link.
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[point (E) in Fig. 1] while in the latter case the pdf of concern is
that of the voltage at the same point in the receiver at the decision
time only. Either of these cases gives rise to a Rician pdf. Differences
between the two are reflected only in the definition of a suitable
SNR.A ¢

The analysis presented here can be easily extended to determine
optimum gain settings for an important class of nonlinear incoherent
receivers; namely, those in which the nonlinearity can be represented
by a memoryless nonlinear device acting on the envelope of the received
signal. For example, logarithmic or lin-log receivers can be repre-
gented by a logarithmic or lin-log characteristic inserted between
points (D) and (E) regardless of whether the actual nonlinear device
is a video or IF amplifier. One needs only to first refer the dynamic
range and equivalent limiting voltages from the output of the non-
linear characteristic [point (E)] to the corresponding values at the
input to the characteristic [point (D)] and then to determine the
gain setting by considering only the linear portion of the receiver.
In what follows it will be assumed that this first step has been taken
if necessary and only the linear incoherent receiver will be treated
explicitly.

II. DYNAMIC RANGE BOUNDS FOR MINIMUM EXCLUSION PROBABILITY WITH
NONFLUCTUATING SNR

Tor nonfluctuating SNR the voltage gain of the radar or communi-
cations link is fixed. It is convenient to assume (without loss of
generality) that the voltage gain y, of the propagation medium
and/or target [ie., the portion of the link from (4) to (B) in Fig.
1] is unity. In the more general case of fluctuating SNR, the voltage
gain of this portion of the link will be treated as a random quantity.

The optimum placement of dynamic range bounds for incoherent
receivers is determined by the pdf of the envelope detected signal, v,
which appears at point (D) in Fig. 1. Let o be a normalization
parameter and define

R = normalized envelope of received signal = v/¢
a = lower normalized bound of dynamic range

ad = upper normalized bound of dynamic range

D = 20 log,, d = dynamic range in dB,

where these quantities are referred to point (D) in Fig. 1. If p, (R)
denotes the pdf of the normalized envelope, the corresponding exclu-
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sion probability is

Pa,d) =1 — ["d p,(R) dR. (1)

“va
To minimize P,(a, d) with respect to a for fixed dynamic range d,
(1) is differentiated with respect to a and this derivative is set to zero.
This yields the necessary optimization condition

'])‘,(ﬂ) = rfp,,(ad) (2)
which must be solved for a. Consider an optimum incoherent receiver
for deteetion of signals of known form in Gaussian noise. Let 20° be
the mean square value of the signal voltage envelope, v, when only
noise is present. In this case, the pdf of the normalized signal envelope
is

p.(R) = R exp [—R*/2]. @)
The optimization condition (2) for this case leads to

2= 2 n (d) a
T =1

A7 (4)

in which 4 £ a/4/2 is the optimum normalized lower dynamic range
bound. When signal-plus-noise is present the probability density of
the normalized envelope has a Rician distribution®*
py(R) = R exp [—(R* + ~°)/2]1,(vR) (5)
in which
I,(x)
v

Il

modified Bessel funetion of first kind and order zero
voltage signal-to-noise ratio for ¢ =

It

In this ecase condition (2) gives the following transeendental equation

which must be solved for the optimum normalized lower dynamic
range bound A = a/4/2:*

1~ﬁ4+(!_ )unf(wﬂf)—inf(w\/“) (6)
The minimum exelusion probability becomes
Pla,d) =1 = Qk, AV?2) + Qy, 4dV2) @)

in which Q(e, 8) is the tabulated® Q-function defined by

Qe ) = [ §op [~ E + a’)/21, () de. ®)

.
;
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Solutions to (6) for various v and d are presented in Ref. 2 along with
minimum exclusion probabilities for this case. The solutions can be
obtained from TFig. 2 with v used in place of ¥ and A in place of A.

III. DYNAMIC RANGE BOUNDS FOR MINIMUM AVERAGE EXCLUSION COST
WITH NONFLUCTUATING SNR

In certain situations it may not be desirable to use dynamic range
bounds which minimize the exclusion probability. It may be reason-
able to favor saturation at one dynamic range bhound to the other.
In the case of a radar, for example, the signal is invisible if it falls
beneath the lower dynamic range bound, while if the receiver satu-
rates at the upper dynamic range bound the presence of the signal
would be detected although its information content would be cor-
rupted by the limiting. In such cases, a more reasonable ecriterion
might be to minimize the average cost of excluding the signal from
the receiver’s dynamic range.

Suppose that when the signal falls below the lower bound a loss,
¢, is incurred, while saturation at the upper bound causes a loss, ¢,
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Tig. 2— Optimum dynamic range centering for vz = 0.
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(c1, ca > 0). The expected or average cost of excluding the signal
from the dynamic range is

L=o [ p.@dk+ec [ 0,®) dr. ©

)

It is convenient to divide (9) by e¢; to obtain the normalized
average exclusion cost

- f () dR + » fm p.(R) dR (10)

in which » is the cost ratio, » = ¢,/c,. It is seen that for » = 1 the
normalized average exclusion cost, [, reduces to the exclusion prob-
ability. In order to minimize the average exclusion cost, the derivative
of (10) with respect to a is set to zero. One then finds that the optimum
lower normalized dynamic range bound a must satisfy

P-,(ﬂ) =v dp‘j‘(ad)l (11)

which reduces to (2) for v = 1 as it should. For the incoherent
receiver substitution of (5) in (11) leads to the following transcen-
dental equation for the optimum normalized lower dynamic range
hound*®

1

A = A2 4 A2+ @ = L4 dyV'2) — In I(AyV2)]  (12)

in which by definition

” _Inw

Ade = o T (13)

It is noted that it is entirely possible for ¢, to be less than ¢, making
A? negative. However, the sum A? + A? is positive if »d* is greater
than unity. Using (12) it is seen that for v = 0, i.e., Rayleigh distributed
envelope, the optimum normalized lower bound can be determined
explicitly from

Ay = AT 4 A7 (14)

When the cost ratio, », is unity (14) reduces to (4) as expected. It is
convenient to measure the cost ratio in dB using

W = 20 lOg;u V. (15)

* The desired lower dynamic range bound is the positive real root of (12).
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Thus, positive values of v imply ¢, > e¢,, while negative values
imply ¢; < ¢,. van = 0 is the case of minimum exclusion probability.
If van = —2D, then A2 is 0 and A* = 0 solves (12) for any v. For the
foregoing formulation to be meaningful, A* must be positive. Hence, (4),
(12), (13), and (14) require that vss > —2D. If this constraint is not
satisfied, then the average exclusion cost, [, is not stationary with
respect to A. For given v, d, and » it is generally necessary to solve (12)
for A. This equation is of the general form 2 = f(x). A proposed scheme
to find the solution is to iterate x,,, = f(x,) beginning with an approxi-
mate solution x, . It can be shown that this scheme will converge if the
magnitude of the derivative of the RHS, | f'(x) |, is less than unity in the
neighbmhood of the solution, z, . Moreover the convergence is faster
as | /(z,) | is closer to zero. In 01de1 to speed convergence an extrapolated
1te1dt10n scheme can be used by introducing another parameter, B.
Consider the equation

x = f(@) — Bl — ()] (16)

Provided 8 % —1 the solution to this equation is the same as that
of x = f(z). If one could choose

f(l) o
8=1C76y @) =1, (17
the derivative of the RHS of (16) would be zero at x, . However,
since x, is not known at the outset the approximate solutions are
substituted for a, in (17) to speed convergence.
Using this approach (12) can be solved to any desired accuracy with
the aid of the iteration formulas

Al =F, —B(AT = F) 8= —1 (18)

F,= Al + 4, t@ - )[lnI(ld'y\/z—lnI(Av\/_)] (19)

G = ]\/2 [d I(A, dvV?2) _ I.(A,-y\/2:| @0)
2 = DAL 1,04,y V) L(AxV?2)

B, =G/ —@G) G #1 (21)

in which 7,(x) denotes the modified Bessel function of the first kind
and nth order. One may begin with small values of v, 7 = 0, 47 given
by (4) and A? given by (13). The iteration is stopped when | A, — 4 |
is less than the allowable error. Equation (12) was solved by this
method for various values of v , D(dB), and y(dB).

For d >> 1 an approximate solution to (12) can be found explicitly.
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Neglecting the second term in brackets in comparison with the first
and taking /,(r) &~ ¢” reduces (12) to a quadratic equation in Ad
which has the solution Ad =~ (v/v2) + / (v*/2) + In» d*. Thus,
the optimum normalized upper bounds (as shown in Fig. 2 for » = 1)
continue to increase slowly as D increases.

The solutions obtained using (18) to (21) show that the optimum
lower bounds for a wide range of cost ratios do not differ appreciably
from those for »;5 = 0. The difference (in dB) in optimum lower bounds
for values of vy = £25 and vyy = 0, and for vyy = 250 and vgy = 0
for various values of § and d are shown in Fig. 3(a) and (b). (For non-
fluctuating SNR take 7 in the figures as y and A as 4.) It can be seen
that for any given values of » and d, the largest difference is for ¥ = 0.
This maximum deviation ean be determined explicitly. From (14)

Ap = A1 4+ A2/4Y). (22
LEquations (4), (13), and (15) then yield

20 Iog.,. ;IR — 20 logm AG = 10 logm (1 + r—)v%) . (23)
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Thus, the maximum difference in optimum dynamic range bounds
is determined by the ratio of the cost ratio in dB to the dynamic range
in dB. A plot of (23) is shown in Fig. 4.

The fact that the optimum bound is relatively insensitive to cost
ratio at least for large D and large ¥ is an important one since exact
assessment of the costs ¢, and ¢, is difficult or impossible. However,
this analysis shows that for large ¥ and D an optimum solution for
vas = 0is nearly optimum for —D = vqs = 2D. For ¥ = 0 the optimum
dynamic range bounds are most sensitive to cost ratio but in this
region differ only by about 8 dB from the optimum for » = 1.

When the optimum normalized lower bound, 4, is determined, the
normalized minimum average cost of excluding the signal is given in
this case by 3

I=1— Q@, AV?2) + Q(y, AdV?2). (24)
These minimum average exclusion costs are shown in Fig. 5, in which
the parameter ¥ is to be taken as v. For »s = 0, (24) becomes the
minimum exclusion probability (7).

IV. A MODEL FOR TARGET FLUCTUATION AND FADING CHANNELS

Thus far this paper has considered the case where the SNR at the
receiver is fixed. However, in the case of radar the target cross section
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presented to the receiver generally varies, while in communications
links the phenomenon of fading generally causes fluctuation in the
received SNR. Consider the case in which the SNR fluctuation is
slow so that it is essentially fixed for the duration of a given signal
but will fluctuate over longer time intervals.

Following Turin® it is assumed that the medium from the trans-
mitter to the receiver can be characterized as propagating two com-
ponents, a fixed or specular component and a completely random or
scatter component. Thus corresponding to a transmitted signal
Re {s(t) exp (jw.f)} the reciever’s IF signal [point (C) in Fig. 1] with
K & K ,K.,K, = 1is given by Re {«({)} where

2(f) = s(t — 7)|a exp (—j8) + S exp (—je)]
-exp (ju,t) + n(l) exp (jw,l). (25)

In (25) « and 8 are fixed while S and ¢ are independent variates;
S having a Rayleigh pdf with mean square 2p* and ¢ a uniformly
distributed phase over an interval of 2. w, and w, denote the angular
frequencies of the transmitted carrier and the receiver intermediate
frequency, respectively. n(t) is a narrowband Gaussian noise process.
It can be shown® ¢ that the joint distribution of the resultant ampli-
tude, y, and phase, §, of the sum of the fixed vector («, 8) and the
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random vector (S, ¢) is

p(y, 8) = O—lp} exp l:_ ."V +a — 221\;’/ (ﬁ_(@ _ 5):|

for 0= ¢ 0<60—5=2m (26)

In (26) o« can be regarded as the strength of the fixed component
while u* is proportional to the strength of the scattered component.
The quantity 8° £ o’/u’ is twice the ratio of the energy received via
the specular component to that received via the scatter component.
The variates ¢ and 8 are, respectively, the instantaneous voltage gain
and phase shift of the path from the transmitter to receiver and 8
is the average phase shift of the path. Note that (26) is just the two
dimensional Gaussian distribution in polar form. The pdf of ¥ is found
by integrating (26) over the range of 4 giving”*®

p(¥) faew [— %i:lr(j"f) for ¢ =0 @7)

Il

0 elsewhere.

Letting r = ¢ /p, (27) becomes*

pa(r) = r exp [—(° + £°)/2]1.(8r). (28)
The voltage gain of the propagation medium and/or target [from
(A) to (B) in Fig. 1] is ¢ = wr. The model above is an adequate
representation of propagation conditions which are encountered on
ionospheric and tropospherie radio links.® The pdf (27) is sufficiently
general since as B approaches zero (no specular component) (27)
becomes the Rayleigh distribution with parameter p while if g ap-
proaches infinity (presence of specular component only (27) may
first be approximated by a Gaussian pdf of mean « and variance p?
and in the limit by a delta function, 8(y—a) corresponding to the
case of no SNR fluctuation. Radar target fluctuations have been
deseribed by Rayleigh statisties” a special case of the above model
(8 = 0). In this case, u* is proportional to the average target cross-
section. It is reasonable to expect that radar targets which can be
modeled as a single large reflector plus a large number of independent
scatterers will yield signal returns of the form (25). For this more
general Rician fluctuating target p?(1+p%/2) is proportional to the
average target cross-section.

Il

* Note that (28) is a pdf of the same form as (5) as it must be since either
equation is the probability density of the magnitude of the sum of a constant

vector and a Gaussian vector.
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V. GENERAL CASE: DYNAMIC RANGE BOUNDS FOR MINIMUM AVERAGE
EXCLUSION COST WITH FLUCTUATING SNR

The phenomena of radar target fluctuation and channel fading are
evidenced by fluctuating SNR in the receiver. To account for these
fluctuations, v in (10) must be weighted by a random voltage gain
pr, where g is a parameter and r is a random variable whose pdf $g(r)
determines the form of the SNR fluctuation. The normalized average
exclusion cost can then be obtained from (10) giving

< a

L= [ po® AR + v [ 5 dR, (20)
U d
where
Po®) = [ 5s0pss ®) . (30)

In (30), y is the voltage SNR at the receiver for unity channel gain,
ie., for ¢ = ru = 1. The product ruy appearing in the integrand is
the voltage SNR at the receiver for a particular realization of the
random gain ¢ = rp; that is, the “instantancous” voltage SNR at the
receiver.

The condition for minimization of the average exclusion cost (29)
becomes

Py (@) = v dp,,(ad). (31)

Consider phase incoherent reception of signals in Gaussian noise with
fading or target fluctuations described by the probability law (28),
i.e., pg(r) = ps(r). In this case the integral appearing in (30) becomes

Pu(®) = [ RUexp [—(F + &)/21L(80)

cexp [— ('Yl + R)/2]LGRI dE (32)
which can be evaluated using an identity in Watson* giving
X R [ (R* + #27952)} ( uyBR ) .
= gwexp| — 5o ee [T ) 33
P () L4 iy O 2(0 + wv) L+ 33)

To evaluate the average exclusion cost (29) one necds to integrate
(32) or (33) with respect to R from some number 5 to . This
integral of (33) can be easily evaluated using the definition (8).

*See Ref. 8, p. 395. Take Watsons @ = tpyR, b = i, » = 0, p* = (1 4 u242)/2.
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Performing the integration with respect to R in (32) then establishes
the resultf

[ po@ dr = [t ew (= + 8)/2L60001 1 d

(34)
_ Q( wyB n )
V1 4+ % VI + Y
Using (34) in (29) yields
]=1-— ( uwyB , a o)
¢ V14 V1Y
d
+ ( pf @ ) 35
VQ \/1 -+ #2‘72 \/1 - ,uz'yz ( )

in which @ is the optimum normalized lower dynamic range bound
obtained as a solution to (31). By substituting (33) in (31) and
manipulating the result it ean be shown that the optimum a must

satisfy

a'z 2 2 1
o = AL AL

2(1 + w'y)
. wyBad ) B ( wyPa )]
[ln Io(l + u272 In Ia 1+ “272 (36)

Let
i=—9 37
V2 V1 + oy S
and
- wyB
= 38
K VI 4+ pwy (38)

From (33) it can be seen that if 8 is zero the mean square value of
R is 2(1 + u*y"). Thus 4 is the optimum lower dynamic range bound
normalized to the rms voltage that would appear at the output of the
envelope detector [point (D) in Fig. 1], if the specular component were
zero. Since u8 = « the quantity ¥ in (38) is twice the ratio of the rms
voltage that would appear at (D) when only the noiseless specular com-

+ The integral to the right of the first equality in (34) would appear if the
average cost for the nonfluctuating case is determined first as in (24) and then
this cost is averaged over the random fluctuations of .
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ponent of (25) is present, to the rms voltage that would appear if only the
scatter and noise components of (25) were present. The mean square
voltage at the output of the envelope detector when specular, scatter,
and noise components are present is 2¢°[1 + u*y* + (a’y")/2]. Using (37)
and (38) in (36) gives
A= A4 A + (_d“lZT) [n I,GA dV3) — In 1LGAV2)]  (39)
and (35) becomes
I=1-Q@F AV2) +QF, 4dV?2). (40)

Equations (39) and (40) are of the same form as (12) and (24), re-
spectively, with y replaced by 4 and A by A. These results show that
the optimum dynamic range bounds and performance curves obtained
previously for nonfluctuating SNR can be used directly for the more
general case of fluctuating SNR by merely changing the variables
via (37) and (38). Therefore, although there are two additional param-
eters in the fluctuating case it is not necessary to increase the number
of curves to describe performance. For vgs = 0 the criterion reduces
to the minimum average exclusion probability as in the case of non-
fluctuating SNR.

VI. RECEIVER GAIN REQUIRED FOR THE GENERAL CASE

The optimum gain or attenuation required for insertion in the
signal processing chain at a point preceding the components which
limit the dynamic range can now be calculated. Let ¢ be the lowest
voltage at which the signal processing chain can operate satisfactorily,
referred to the output of the envelope detector.* Optimum dynamic
range utilization requires that the signal be multiplied by a factor K
such that the sealed lower normalized dynamic range bound is equal
to the voltage ¢, when normalized to the same base. That is,

Ka = ¢/o. (41)
Substituting from (37) for a and transposing, (41) gives
K@V?2/0V1 + p* = A7 (42)

in which A is the solution to (39). Denote the LHS of (42) as K, ,
the normalized voltage gain, and let A, be the normalized required
attenuation in dB. Then
A, = —20 log,s K, = 20 log,, 4 (43)
* Point (D) in Fig. 1.
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which expresses the normalized required attenuation in dB as a function
of the optimum normalized lower dynamic range bound. Since A is
the solution to (39) A, depends only on », ¥, and d. It is fortunate
that the normalized results can beexpressed in terms of only a few
parameters since this permits a concise description of optimum per-
formance for many signal, noise and channel conditions. Optimum
normalized attenuation required for the case of minimum exclusion
probability (vss = 0) is shown plotted in Fig. 6. From (43) the actual
required attenuation in dB can be obtained. Let A = —20 log,, K
denote the actual required attenuation in dB. Then (42) and (43) yield

A= A, 7, d) + 20 logi (e V/2/¢) + 10 logy, (1 + 5" (44)

in which the functional dependence of A, is shown explicitly.

From (43) and (44) it can be seen that the difference in optimum
receiver attenuations is the same as the difference in optimum normalized
dynamic range bounds. Hence, Fig. 3(a) and (b) also show the differences

Ay, 7,d) — AL, 7, d) (45)

for values of vgg = =25, 50, and various values of 4. For given
v, 7, and d one can, therefore, determine A,(, ¥, d) by finding A,(1, 7, d

60

40

20

REQUIRED NORMALIZED ATTENUATION, An,IN DECIBELS

DYNAMIC RANGE,D, IN DECIBELS

Fig. 6 — Required attenuation for minimum exclusion probability. v = 0.
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in Iig. 6 and adding the difference (45) found in Tig. 3. Iig. 4 is a
plot of the differences

A, 0, d) — A(L, 0, d), (46)

that is, a plot of (45) for zero SNR. For given » and d these differences
are of the same sign as (45) but are always larger in magnitude. Hence,
T'ig. 4 shows the maximum change in optimum receiver attenuation

due to a nonunity cost ratio.
The definitions of the parameters appearing in (44) are summarized
by the following list:

Il

» = cost ratio
¢’ = noise power with no fluctuation
v = voltage signal-to-noise ratio for unity propagation
and/or target gain (i.e., ¢ = 1)
p’ = strength of seatter component of the propagation
medium
B* = twice the ratio of strength of specular component of
the medium to that of the scatter component
v’ (1 + B°/2) = for the ease of Rician fluetuating radar targets this
quantity is proportional to the average target cross-sec-
tion over all target fluctuations. 8 = 0 corresponds
to the case of Rayleigh fluctuating targets
d = dynamie range of receiver

w8/ V1 + uy’

— 9 rms voltage at (D) for noiseless specular component only |
rms voltage at (D) for scatter and noise components only

]
Il

In the general analysis presented here, which includes fluctuating
or nonfluctuating SNR and the criteria minimum average exclusion
cost or minimum exclusion probability, special cases which may arise
in various applications are represented when the parameters take on
particular values. Some special cases are shown in Table I. The entries
in the table are for either eriterion.

TABLE I — CONSTRAINTS ON PARAMETERS FOR SPECIAL CASES

Type of fluctuation Type of envelopa
Constraints on parameters or fading detected signal
p>0,8>0 >0 Rician Rician
u>0,8=0 9>0 Rayleigh Rayleigh
p—0,8— 0, uf =ay >0 none Rician
uB = a,y =0 none Rayleigh
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It is noted that for u, 8, and v greater than zero one has the general
case of Rician SNR fluctuation and Rician envelope detected signal.

When @ is zero the medium from transmitter to receiver does not
propagate any specular component and the envelope of the received
signal has a Rayleigh pdf independent of the other parameters. Setting
3 to zero in (33) shows that the envelope of the received signal in this
case has o mean square of 26°(1 + w®y"). When v is zero only noise
at the receiver is demodulated again giving rise to a Rayleigh distributed
envelope but of mean square 20° independent of the other param-
eters. In each of these two cases (i.e., § = 0 and v = 0), the optimum
normalized lower bound is found from (14), Ar = VA + A, . Since
the minimum average exclusion cost (40) depends on the value of A
the minimum costs are equal for these two cases. However, it can be seen
from (44) that the actual optimum lower bounds or actual required atten-
uations for these cases differ. This is because the quantity, e v/1 + u™v7,
to which the received signal voltage envelope is normalized is different in
these instances. Note that in the former case (83 = 0) the required
receiver attenuation (44) is affected by the randomness of the scatter
component while in the latter case (y = 0) it is not. This can also be seen
from (25). When g is zero there is no specular component and the
received signal (25) depends upon the scatter component while if v is
zero the entire first term can be omitted and the received signal consists
of only noise.

When x goes to zero and 8 approaches infinity such that pf = «
(a constant), the medium from transmitter to receiver propagates only
a specular component with a voltage gain of a. In this case there is
no SNR fluctuation (nonfluctuating case) and the envelope of the
detected signal is Rician if ¥ > 0 and Rayleigh if ¥y = 0. Letting up = 0
and B = «in (33) and (38) shows that for this case the SNR at the
reciever is ay, a result which is clear from (25) if the scatter component
of the medium is deleted. There is no essential loss in generality in
this case if « is taken as unity. With g = 0 and « = g8 = 1in (33)
that equation reduces to the pdf considered in Sections IT and III.

Fory > 0, u > 0, 8 finite, the optimum gain settings for the fluctuating
and nonfluctuating cases differ and the minimum average exclusion
cost (probability) for the fluctuating case will be greater for the same
values of v, d, », and a.

VII. EFFECT OF NOISE INTRODUCED BY THE GAIN ADJUSTMENT CASCADE

In the foregoing discussion, the attenuation or gain required for
optimum dynamic range utilization has been idealized as a multiplica-
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tive parameter. These results apply when the noise introduced by the
gain adjustment cascade itself is virtually independent of its gain.
This condition is often realized in practice. When this condition is not
satisfied some modification is necessary. The phenomenon can be
represented by using an equivalent noise source at the point in the signal
processing chain where the dynamic range calculations are being made.
The quantities ¢ and v used previously must be replaced by equivalent
. and 7., respectively. Let F,(G) be the operating noise figure’ of the
cascade when it is set for an available gain of G (dB). Then the equiv-
alent noise power when the gain is G, is

2
2 o gn(g)
o) = —=9- 47
0'(9) go(go) ( )
in which g, is the gain for which the SNR is v and the noise power
is ¢”. The equivalent SNR is determined by

7.6 =7 5.9 (48)
In the case where the noise depends upon the gain, K, (g = 20 log,, K),
both the quantities v and a in (29) or (35) depend upon gain. Hence,
the optimization condition must be found by differentiating (29) or
(35) with respect to K (or §) rather than a and setting that derivative
to zero. However, this condition is generally too complicated to be
useful and it is usually better to evaluate (29) or (35) for various §
to determine the optimizing value. For the general case of the incoherent
receiver the normalization for B in (29) is with respect to o, rather
than ¢. In addition vy, and ¢, must be used. Define

a, = ¢/[Ka.(§)] (49)
and
10 =— 2 . 50
9 Vavitaen o
Then
1@ = 1 zf‘.(ga)}i[l + WT
4.6 A[EFD(Q) 1+ u'y: 1)
_ C_-10(—‘5/20) [37,.(8:.)]!
a\/§ V1 4 py? 5.6 J°
From (38), (47), and (48) one can find
7.g) = — 2B (52)

T+ sQF



1772 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1967

In order to find the optimum receiver gain (47), (48), (51), and (52)
are used in conjunction with

I=1-QF.©, V2 1.9 + QK.©),dVv?2 A,©)] (53)

which must be minimized with respect to G. It is easiest to use a numer-
ical method which requires only successive evaluation of (53) for various
values of G, as opposed to methods requiring analytical evaluation of
the derivative of (53). In the important case where only a finite number
of gain settings G;, (i = 1, 2, --- N) are possible, minimization of
(53) is easy requiring at most N evaluations for any given set of pa-
rameters. Likewise when —/ is a unimodal function of G any of various
search methods can be used."

VIII. SUMMARY AND COMMENTS

This paper considers the general problem of determining optimum
receiver gains for radar and communications receivers. Dynamic range
bounds and receiver gains are determined which yield minimum average
cost of excluding fluctuating signals in noise. The analysis is general
enough to include minimum exclusion probability as a special case
as well as a range of fluctuation models including Rician, Rayleigh,
and nonfluctuating cases. The analysis is applicable to both linear
and nonlinear receivers and has important implications for certain
radar processors and communications terminals which can use sophis-
ticated techniques for signal and noise parameter estimation. The
results are presented in a concise normalized form making them ap-
plicable to a wide range of signal, noise, and channel conditions. It is
shown that the optimum receiver gain is relatively insensitive to cost
ratio for —D = vyn = 2D differing at most by about 3 dB from the
optimum gain for » = 1. The effect of noise introduced by the gain
adjustment cascade is discussed.

The analysis presented assumes that certain signal, noise, and channel
parameters are known to the receiver. In practice the receiver would
be required to estimate these parameters. When these estimates are
good, performance of the system will approach that described here.
An extension of this work is to study both the optimization problem and
the deterioration in performance when the parameters are not known to
the receiver. Optimum dynamic range utilization for various coherent
and partially coherent receivers can also be studied.
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