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We consider, from a number of different viewpoints, the tensor coefficients
which deseribe second harmonic generation, oplical rectification, and the
Pockels or linear electro-optic effect in acentric crystals. Stationary per-
turbation theory is used to calculate the low-frequency limit of the intrinsic
electronic nonlinearity neglecting all effects due to local fields or lattice
polarization. Solid methane is used as an example and the result used to
estimate the coefficient tn hexamethylene tetramine. The calculated result
is within a factor of 2 of the experimental figure. The method is susceptible
to further refinement and, since it requires only a knowledge of ground
slate wave functions, and is essentially very simple, it appears to offer a
useful approach to the calculation of the coefficients.

The classical anharmonie oscillator model 1s briefly covered and the model
is related lo a quantal treatment. We find that the anharmonic potential
used in the model is directly related to the actual crystalline potential. It
can also be related lo the charge distribution in the elecironic ground stale.

Local field corrections and the effects of laltice polarization are presented.
These alter the nonlinear properties in a simple and obvious way, bul one
which has been misunderstood in some of the literature.

Our results form a theoretical background to Miller’s empirical rule
relating the nonlinear cocfficients to the linear susceptibilities. An extensive
table of Miller-reduced tensor coefficients collated from the published litera-
ture is presented.

Finally, we draw together some of the threads of the previous sections.
An appendixv deals with the vexing question of definitions.

I. INTRODUCTION

Second harmonic generation, optical rectification, and the linear
clectro-optic effect are particular aspects of a process in which two
fields, %" and Eje¢'™", generate a polarization

Pt = diVE™E . (1
913
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Our concern is with the tensor coefficients d25" which (Nye') necessarily
vanish in centric (centrosymmetric) ecrystals and which, in acentric
crystals, are subject to symmetry restrictions, (Kleinman®) which often
leave only one or two independent components.

Experimentally, the values of the allowed components of d in different
materials and at different frequencies range from about 2.107"" esu
(cm/stat volt) to about 6.107° esu. This range may be contrasted with
the linear optical susceptibility x which is between 0.1 and 0.3 for the
vast majority of materials and only quite exceptionally exceeds unity.
There is, however, a connection between the tensor d and x which is
expressed by an important empirical rule due to Miller.” If we write
dzhy as

d?fk'y = X?ixf‘ix:kAfik , (2)
where x .2 is the i component of x at a frequency e, and if we have chosen
a principal axis system for x, then the allowed components of A
for all effects and all materials are similar in magnitude. We shall see
in a later section that for very many materials in both the visible and
10 u region of the spectrum (Patel'), A,; is near 3 X 107% esu. No
materials with A above 20 X 107° esu have yet been found and very
few are known to have a value below 0.2 X 107° esu. In the case of
NH,H,PO, where the best measurements of s.h.g., optical rectification
and the electro-optic effect are available (Francois,” Ward,” Carpenter”)
the value of A,,; from all three effects is 3 X 107° esu within the experi-
mental error of 15 percent. The fact that s.h.g., a purely optical effect,
leads to the same value of A as rectification and the electro-optic effect
indicates quite clearly that the basic mechanism of the nonlinearities
is common to all three effects and must therefore reside in the electronic
motion of the system. In the next section, we shall concentrate on this
aspect of the problem and neglect the effects of local fields and lattice
polarization,

A number of authors (see Section IV for references) have given quantal
treatments of the optical nonlinearities whose end result is an expression
for the coefficients d%3’ in terms of sums of rather inaccessible matrix
elements. Useful as these expressions are, in establishing some of the
general properties of the coefficients, they are not a practical step on the
road to calculating the coefficients from other empirical quantities. At
the other extreme, the classical anharmonic oscillator model has been
used to demonstrate some of the qualitative features of nonlinear be-
havior (see Section III). This treatment, though simple and appealing,
suffers from the defect that the relation between the parameters of
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the model and those of the real system is obscure. In Section IV, we
shall remedy this defect and show that the two approaches are closely
related.

First, however, we give an approximate method of calculating the
low-frequency limit of the coefficients from stationary perturbation
theory in a form in which it has been successfully applied to the linear
properties of n electron atoms (see, e.g., Dalgarno®).

II. MAGNITUDE OF THE COEFFICIENTS

At low frequencies, i.e., well below any electronic resonance we can
use stationary perturbation theory to calculate, to arbitrary order in
the applied field £ the energy W of the ground state. The polarization
is then given by

aw

We shall assume that we are dealing with a crystal containing N identical
atoms or molecules in unit volume whose individual ground state energies
are w, so that W = Nuw.

If H, is the Hamiltonian of an unperturbed molecule, its Hamiltonian
in the field F is

H=H,+h=H, —e¢ER, 4)

where
el =e i ™ (5)

is the dipole moment operator of the molecule, and the sum extends over
all n valence electrons. We can neglect the core electrons because of
their high binding energies. If we expand w in increasing order in E as

w= wy, + w + w, + wy, ete., (6)

the term w, gives the permanent dipole moment of the molecule, w,
gives the linear susceptibility and w, gives a polarization quadratic in
£ which leads to the desired nonlinear coefficients. The electric field
will perturb the state function ¢ and we shall write the perturbed func-
tion as either

v=v%o+ v+ ¢+ - or J>=|0>+ll>+|2)+ Q)

Knowledge of ¢ or | ) to first order in E is sufficient to determine w, , w, ,
and w; for
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w, = (0] h (1) (8)
wy = (1] h |1).

Moreover, the correct value of ¢, or | 1) is determined by the require-
ment that it minimize w. Thus, we can obtain | 1) by a variational
procedure and the only element of choice left to us is that of the trial
wave function,

Minimizing w is equivalent (see Dalgarno and Lewis®) to the simpler
problem of minimizing

(1] A2, |1y + 20| & |1, (9)

where the notation &, or 4 means H, — (0 | H, | 0)or h — (0 | A | 0).
As a trial function, we take

1) = M [0) (10)
so that (9) becomes

N0| AR |0) + 2M0| 7* |0). (11)

The minimization with respect to A gives

?\=_(0fﬁo>z_(0ffo>, (12)
(0| hH h |0) (0| hHH |0)

The unperturbed Hamiltonian of the system is of the form

n

= _.@ri 2 7 :
Ha - 2m ,; vm + I o (l'g)

and so, in the denominator of (12),
2
Ak = hl, + %eE- 2V . (14)
Thus,

232
0| hH b 0) = —%f ¥, Z E-r.B- 2, Vb, dr, (15)

where dr is an element of configuration space and we have used a0y =
0. Equation (15) can be written asg
232
O a0y = g [ XV X Bradr, (0

2m
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and integrated by parts, to give
(O] KBk 0) = ”ﬁ ‘LB Ef,p,, dr, (17)

where the discarded first integration part vanishes at the limits, if
these are infinite, or if they are the boundary of a cell in periodic lattice,
provided only that E does not vary appreciably within a cell (dipole
approximation).

If we are dealing with isolated atoms [ ¢ dr = 1 and we have
en’

o EE, (18)

O hAh |0) = +n

a somewhat unfamiliar form of the sum rule. If, on the other hand,
we are dealing with overlapping molecules in a periodic lattice, the
variational problem is to minimize the contribution to w from a single
cell of the lattice. Thus, in (11) and all succeeding equations, the inte-
grals implied by the expectation values are to be taken only over the
interior of a cell. This will also apply to all integrals involved in evalua-
tingw, = (1| 2| 0)and wy, = (1| A |1). In this case (18) remains un-
changed. This can be shown to be a general consequence of time reversal
invariance and the commutation rule

(p, 9 = h. (19)

We now have

1) = M [0) = Mﬁ [0) (20)

2 2E2
or
2
1 = +2meOLER10) .4 g, (21)
From this we obtain the second-order energy
2 ((E-R)?
wp = Q—E# ) (22)

where a, = 4*/me* = 0.53 A Ifwelet E = E.,0,0,and R = X,Y,Z
this gives

C)E: (23)

W, = —



918 THE BELL SYSTEM TECHNICAL JOURNAL, MAY—JUNE 1067

and the atomic polarizability is
4

na,

a = (X%, (24)
For the H atom, this gives @ = 4a} instead of the correct value 4.5a;,
while for the helium atom, taking an effective nuclear charge Z =
97/16 gives 1.8 X 107*° ccs. The experimental value is 2.1 X 107" ces.
In general, (24) is a lower limit to «, if we evaluate (X*) correctly as the
expectation value of the mean square moment of all the electrons. It
the electrons are uncorrelated

(X%) = n(#), (25)

where () refers to one electron. We used this procedure in helium since
the two electrons are in orthogonal spin states and are automatically
uncorrelated. In more complicated atoms correlation exists and almost
always results in

(X% < n(#") (26)

since electrons repel each other. Thus, while (24) is a lower limit we
cannot say anything about the sign of the error in
4n

= (). (27)

We note, in passing, that, in a solid with overlapping molecules, « the
polarizability is large. This leads to an element of instability in the situa-
tion for as « increases the screening of the coulomb potential becomes
more effective and the electrons less localized leading to a further in-
crease in o and eventually metallic behavior. For this reason, most
materials, which are not regular insulators, are metals. Those rare
materials which have values of Na appreciably greater than 0.3 (n > 2.2)
owe their existence to a rather delicate balance of forces.
The third-order energy is

2m \? 2
w = AR = (Y@ RERY . @)
In most cases a is very nearly isotropic and we have
2me’ 2
Yo = — s — (20 ViR (29

so that

Wy = —

nae ((E-R)"). (30)
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With N molecules in unit volume this gives a nonlinear coefficient

d”kzi@bﬁzg_x&’ (31)

wher;e
Tijw = (RR,R) = (RR;R) — (RYRR) — (R)RR,)
— (RXR.R;) + 2(R)R;XR,).  (32)

Equation (31) is the central result of this section. It expresses d;;; in
terms of the linear (corrected for local fields) susceptibility x and a
cubic moment (third-order semi-invariant) of the electronic distribution
in the ground state.

If we neglect overlap and, for simplicity, also assume that the electrons
are uncorrelated so that T,;, = nt,;, where ¢,,, refers to a single electron
we have

/4
dijp = a.e Liie (33)

0

and 7', is now apart from numerical factors the octupole moment of
the charge distribution. If the electron density in the molecule is p(r)

P = f f f # i Fep(@) dr. (34)

If we account for local fields through a Lorentz correction the correct
value of x to insert in (33) is obtained from

n® —1 4r
w42 3% (35)
and the observed value of d;;, (see Section V) is
2 b} 3
ati = (52 a... (36)

At first sight (33) seems to imply that d is proportional to x in conflict
with Miller’s rule. However, x depends on N /n(R*)* ~ nN (‘2)2 and N is
inversely proportional to (+*)! so th‘tt x & nr, while d =~ »*. Thus, d is
in fact more nearly proportional to x* than x.

We now consider as an example, the tetrahedral molecule methane
CHZ{, which erystallizes in the tetrahedral space group F43m with a
lattice parameter ~6 A and a molar volume of 32 ccs. If we take Car-
tesian axes along the sides of the cubic cell, the bonds point in the 111,
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and tetrahedrally related, 11T, 111, 111, directions. From symmetry,
there is only one independent component of d;;; , in which all the sub-
scripts are unequal.

The shortest ¢-¢ distance is 4.2 A and from the size of the free molecule
we conclude that overlap is unimportant.

Turner, Saturno, Hauk and Parr'” haveused one center wave functions
to caleulate the electronic density p in the molecule. From this we can
obtain #,,; using (34).

The result is

t“‘k = 0.5 X 10_24 cm3 (37)

and this is not very sensitive to the limits of integration. The experi-
mental molar susceptibility of CH, is 1.6 ces and so x = 0.05. Thus, if
we neglect correlations between the eight valence electrons we have
from (33)

dios = 3 X 107" esu. (38)

In a similar way, neglecting correlations, we can calculate the molar
susceptibility from (27). Turner et al’s charge density leads to

(x*) = 3.3 X 107" em®

and so, with eight valence electrons, we obtain @ = 6.5 X 107 and
x = amolar susceptibility of 3.9 ccs, rather over twice the experimental
value.

This is a clear indication that the electrons are correlated. However,
the correlation enters twice in x but only once in d (since we have ex-
pressed d in terms of the experimental x). Thus, d problaby lies between
2 X 107" and 3 X 107° esu.

To see whether 3 X 107° esu is a reasonable value for d,,; we compute
the Miller reduced tensor d/x* = Ay = 24 X 107" esu.

This is quite exceptionally high. Most materials have allowed com-
ponents of A near 3 X 107° esu and only one coefficient in LiNbO;
(9 X 10™%) and A,z in hexamethylene tetramine (15 X 107°) approach
this value.

However, we believe it is in fact not far wrong. In most materials
geometric factors conspire to reduce d by various factors of cos 6 and
the atomic groups are in the first instance less aspherical than CH,.
In CH, the effects of every electron are directly additive.

Hexamethylene tetramine (HMT), the other exception to Miller’s
rule, is, like methane, a tetrahedral molecule N,(CH,); in a tetrahedral
I43m crystal. The 4 nitrogen atoms form the 111 111, T1T, 111, corners
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of a regular tetrahedron and the CH, groups occupy the edges but the
N-C-N bonds are bent outwards in such a way that all the angles are
very nearly tetrahedral. The carbon atoms occupy the six sites 2, 0, 0
ete. (see Kitaigorodskii'').

The refractivity of the molecule as a whole can be very satisfactorily
accounted for by a system of additive bond refractions. (See LeFevre"
for a review of bond refractions.) The three basic units are 12 C-H
bonds pointing in the I, T, T, and related directions, 4 nonbonding orbitals
on the nitrogen atoms pointing in the 111 and related directions, and
12 N-C bonds in the 111 directions.

Since the refractivities are additive, these units appear to act inde-
pendently in determining the molar refractivity. Le Fevre (loc. cit.) gives
values of B = (4r/3)La (where L is Avagadro’s number) of 2.8 ces for
each unbonded nitrogen pair, 1.65 ces for each C—H bond and 0.62 ccs
for each N-C bond. Thus, the N-C bonds make a rather small con-
tribution to x, and probably even less to d since they have an approxi-
mate inversion centre at the centre of the bond (C and N are similar
atoms as compared with C and H). We therefore neglect them.

The 12 CH bonds in the 111 direction are roughly equivalent to 3
methane molecules in the molecular volume 105 ccs, and further the
electrons will be less correlated than in methane. Thus, their contribution
to d,sy i8

ds = —185- -3 X 107" = —2.7 X 107° esu. (39)

To calculate the effect of the nonbonding nitrogen electrons we assume
that they occupy SP? hybrid orbitals directed along 111 ete. with Slater
radial wave functions Ar exp (—2.5r/2a,). It is then straightforward
to show that for one electron

tey. = —0.055 X 107" em®. (40)
The contribution of the 4 nitrogen atoms to x is

v _ 3 4X28

XN = 05 = 0.0255

and so

diss = —1.7 X 107° esu. (41)

Thus, the total value of dyz3 is —4.5 X 107° esu. This could be slightly
increased by the effects of atomic overlap, and possibly by contributions
from the N-C bonds. It could be either increased or decreased by elec-
tron correlations on individual CH, groups. The experimental values
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for the electro-optic effect Heilmeyer' and second harmonic generation,
Heilmeyer, Ockman, Braunstein, and Kramer,'* when corrected for local
field. effects using a Lorentz factor, both give d = +8.2 X 1077 esu.
Thus, our caleulation is within a factor 2 of the observed value.

This method is therefore capable, in simple cases, of predicting the
magnitude of d rather successfully. Moreover, the experimental value
of d for HMT suggests that we were correct in assuming that CH,
will have an anomalously large reduced tensor A;.; .

The fact that the division of a complex molecule such as HMT into
simple components leads to a reasonable value for d leads us to hope
that a similar procedure will be possible in other cases. It might then
be possible to assign empirical values of d to basic components such as
the C-H bond or the N: nonbonding pair, and to combine these ad-
ditively (with a proper attention to geometry) to predict the values of
d for even more complex molecules. This would not be surprising since
a similar procedure (see LeFevre loc. cit.) works very satisfactorily for
the linear susceptibilities.

It is then obvious that large nonlinear effects will only result, if the
molecule contains polarizable groups disposed in an arrangement which
results in a ground state of, far from inversion, symmetry. The large
value of A in HMT results from the fortunate coincidence that the
most polarizable components are themselves strongly asymmetric and
so oriented that their effects are additive. The much smaller values of
A commonly observed can then be explained as partly due to no group
in the erystal being quite so asymmetric as N: or CH, in HMT and
partly due to unfavorable geometric relations between the groups. For
example, if our approach is correct we should expect the analogous
compound adamantane (CH),(CH.), in which the nitrogens are re-
placed by CH groups with the CH bond along 111, ete. to have a a3
appropriate to 2 (=3 — 1) CH, molecules in 105 ccs, i.e., diass = 2 X 107°
esu or about half the value for HMT.

Exceptionally small values of A will occur in materials where most
of the molecule possesses local inversion symmetry, so that only a
fraction of the molecule contributes to d, while the whole molecule
contributes to x. We shall consider an example of this in a later section.

Overlap between adjacent molecules is neccessarily bound to lend
further uncertainty to the calculation in materials with a pronounced
band structure, but it seems possible that rough approximations should
be obtainable from, for example, the relation between bandgap and
the corresponding separation in the isolated atoms. In fact, since what
we actually require is T';;,/n, which, if the electrons are uncorrelated,
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is simply

fCel]
f‘,‘f‘,‘ﬁklﬂ(r) dﬂT
Lw 4 "7 7 (42)

n Cell .
f p(r) d'r

we may expect that this factor will, to some extent, be self-cancelling.

Finally, we may remark that very much better approximations to
d;;, can obviously be made if we know the ground state wave function
explicitly and also use more sophisticated trial wave functions in the
variational caleulation. It is at first sight surprising that a knowledge
of the ground state wave function alone is sufficient to determine x and
d which, in the more usual treatments involve the properties of excited
states. However, we should remember that a knowledge of the exact
ground state wave function is, except in pathological circumstances,
sufficient to determine the unperturbed Hamiltonian; thus, the whole
spectrum of states.

III. THE CLASSICAL ANHARMONIC OSCILLATOR MODEL

Although the considerations of the preceding section are sufficient
to determine the magnitude of d at low frequencies, they offer little
guide to the variation of d with frequency and, if recast in terms of time
dependent perturbation theory they tend to lose their attractive sim-
plicity. In the next section we shall show that a more familiar form of
time dependent theory leads to results which can be represented in
terms of a classical anharmonic oscillator model. Here, we discuss the
properties of the model itself.

We assume that unit volume of the material contains N optical elec-
trons which move in a potential

V = ImQal + Ve, (43)
where a sum over repeated subseripts is implied. The potential V;;,
obviously satisﬁ_es Viie = Vi, ete.
In a field E% the equation of motion is

i+ Qx4+ 3 Vi T = — B (44)
m m
and the linear response obtained by neglecting V;;, is

e A
m 1
2V = g (45)
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There will be a similar response to a field E%e’”* and, if we introduce
these responses back into the nonlinear term in (44) we obtain a re-
sponse at the sum frequency @ = 8 + 7 given by

2 3 V,‘,- .82 1 1 1 iat
o= - m:: 9? — & ﬂf — Bz o — ,Yz (EfE: +E1Ef)e . (46)
The resulting polarization is Nex{® and so the nonlinear coefficient is
3V...Ne’ 1 1 1
afy _ __ iik .
ik = m Q- o 9';_! — g Qf — 72 (47)

Thus, the symmetry of d,;, mimics that of V., if we neglect the res-
onance denominators.
The linear susceptibility obtained from (45) is the familiar expression

o _Ne 1
Xii = m 9? o (48)
and so if we express dif’ as
o= Xiol XA (49)
the reduced Miller tensor is
A = —Wi ' (50)

which is frequency independent and has the same symmetry as Viie -

If we assume that V., is electrostatic in origin its order of magnitude
will be ¢*/d* where d is an atomic spacing and we shall also have N, d* ~ 1.
Thus,

d2
| Asix l ~3 e (1)

With d equal to 2 A this is 2.5 X 107" esu, about the mean value of A
for most materials. In a later section, we shall give another estimate of A.

The potential V;x.x;x, distorts the shape of the ground state of
the harmonic oscillator and as a result the system acquires a cubic
moment ¢;,, [defined in (32)] which we now calculate.

Let | 0) represent the unperturbed ground state wave function in
the absence of the anharmonic term and | p) be an excited state, then
the perturbed wave function is

) =10y = 3P ) 52
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The expectation values of even operators such as (z?), (z,z;) are un-
altered by V, while the expectation value of an odd operator such as
T; OT Z;;2; is given by

(:l’? .'.'E,':UA—) = - 2

> O 2z, [p)Xp| V [0), (53)

hu,

It will suffice if we calculate ¢,;, with ¢  j > k. Since (z.x;) = 0 if
¢ # j we only require (r,r;x,) and contributions to this come only from
the 6 = 3! terms in V with ¢ ¢ j 5 k. The only state which contributes
tothesumis | p) = |1, 1, 1) with an energy 2(2, + @, 4 ©,). The matrix

element is
- () (L)
<O| T2 'lll) - (Qm) (919293
and so
B . i)“ Vi2s .
b = (@2225) = 12(2m A2 2W(2 + 2 + Q)

It is straightforward to show that a similar result
_ 3 (’l) Viie
i = 5 ) T, + o F o) (54

holds for all the components of t,,, .
If we substitute this relation in (47) and take the limit as a8y — 0
we obtain

3
dii.\: = 2{1_; Liji (55)
This is twice the value obtained in (33) because there we treated ¢, ik
as a fixed property of the ground state which was then perturbed by E;
whereas here we have considered an even ground state perturbed by E
and a fixed potential.

Thus, if the real system has a cubic moment ¢,,, in the ground state,
the equivalent anharmonic oscillator model requires an anharmonic
potential

m’Q*

V‘;ik = __ITLE_ f‘n‘k (56)

and this will result in a cubic moment #/;, = 1t,;, in the oscillator ground
state.
In the real erystal ¢;;, may be an accessible quantity. It obviously is
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in molecular crystals of strongly covalent compounds such as CH,.
But, in ionic crystals it may be more sensible to consider the ions as
spheres perturbed by a crystal potential V3, . In a later section we
shall see that there is a simple relation between the model potential
and Vi, .

The classical anharmonic oscillator model has previously been used
by Bloembergen,'® Garrett and Robinson'® and Kurtz'’ to give a qualita-
tive account of nonlinear phenomena. The latter authors also discuss
in some detail its relation to Miller’s rule.

Obviously, the model is the nonlinear analogue of the classical har-
monic oscillator model used with such success for the last 60 years in
the discussion of linear behavior such as dispersion, and, just as the
harmonic model is directly related to the results of a quantum mechan-
ical treatment, we may expect the anharmonic oscillator to have a
similar basis. In the next section we explore this relation.

IV. TIME DEPENDENT QUANTAL TREATMENT

A number of authors Bloembergen,'® Armstrong, Bloembergen,

Ducuing and Pershan,’ Butcher and McLean,'” Kelley,”® Cheng and
Miller** and Ward®® have given rigorous quantal treatments of optical
nonlinearities in solids. We select an expression due to Armstrong,
et al (loc. ¢it.) which expresses the nonlinear coefficients in terms of the
energies hw, of excited states and the matrix elements |z | p),
(p | z: | ¢), ete. of the dipole operator between states. The ground state
is {0 |.

This expression is valid, either for an assembly of N isolated atoms
in unit volume or, in the dipole approximation, for a real solid where
the wave functions overlap. In the latter case, the solid must be divided
into cells of the periodic lattice, and N is then the density of cells, while
the matrix elements are to be evaluated only over the interior of a cell.
The periodicity of the lattice ensures that contributions from parts of
the wave function outside a cell cancel in the crystal as a whole.

To avoid a plethora of subscripts we let each of z, y, and z serve to
represent any one of the components and we can then write the expres-
sion for d as

Neé' { w,w, + ay
defy = =+ Colfpiien TE
S T L\l (Y 7)

o g+ B - ww, — 7B ,
+mﬁ“@—m@—ﬁ+%mhﬁ—ﬁm—m}@”




NONLINEAR OPTICAL COEFFICIENTS 927

This expression vanishes if the states | 0), | p), ete. have adefinite parity,
its value therefore depends on the existence of matrix elements whose
presence is contingent on the absence of inversion symmetry. For this
reason, it is almost impossible to make an informed guess about its
magnitude or behavior.

An analogous expression for the linear susceptibility is

w 2]\?"32 WpLoplpa =
Xew = i ; & — o (58)
and in both expressions an operator x is to be understood as the total
operator for the contents of a cell, i.e., the sum of the individual electron
operators. Of course, we can neglect the core (nonvalence) electrons on
the grounds that they are too tightly bound to contribute to the optical
properties.

A familiar approximation to x is obtained if we note that in (58) the
variation of the summand with | p) is almost exclusively due to the
matrix elements. These not only obey selection rules, but also decrease
rapidly in magnitude as the state | p) increases in energy, and therefore
overlaps the ground state less and less. For example, in the H atom with
a 18 ground state the matrix element z,, vanishes unless p is one of
the states 2P, 3P, etc. Moreover, as we go from the 2P state to the SP
state x,,2,, decreases by over a hundredfold. At the same time, w,
changes by less than 30 percent. Thus, except near a resonance, we can
treat w, as a constant 2, somewhere near the first allowed transition and
write (3.2) as

X, = ﬁi—% ! 2l (59)
where the primed sum excludes p = 0. Now
2 Tloe = 2. Tosllpo — Tocllo = (a0 = Taolos
={(@— @ - W) (60

where a ( ) denotes a ground state expectation value. Thus,

X = s (@ = @ — ). (61)

We shall not pursue the further manipulations of (61) using the sum
rule which lead back to (27) but we remark that in many cases a form
such as (61) for x, involving a single Sellmeier or classical oscillator
term, gives an excellent account of optical dispersion, and that when
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applied to the hydrogen atom, with AQ set equal to 3¢%/a, the 18 — 2P
energy, it leads to a value of x at low frequencies

x = ¥a;
which exceeds the correct value 4.5 af by 32/27 or 18 percent.

Before we can adopt a similar procedure with the nonlinear coefficient
we must first satisfy ourselves that there is no essential difference be-
tween a sum with three matrix elements and one with two. In x all
matrix elements terminate on | 0) but in d it is quite possible in a term
such 88 T.,Ype?e0 , With p X ¢ corresponding to highly excited states, of
great spatial extent, that the term y,, may be large enough to compensate
for the smallness of z,,2,, . If this were the case it would be possible for
the exact value of the sum to depend critically on cancellations between
large terms involving highly excited states. The removal of the frequen-
cies w, , ete. as a single average would then have disastrous results on
the sum.

We will advance three arguments why this is unlikely. Consider first
an even higher-order calculation, that of the fourth-order Stark shift
of the ground state of atomic hydrogen due to a field F. In atomic
units this is given by an exact calculation (Dalgarno™) as

W = —2F' ~ —56F". (62)

We can also express W' (Dalgarno, loc. cil.) as

Wﬂ) — _Er Er Z Iﬂ,,f Iﬁq,.iE,.r, + Z:; opLpa Z xnvxnn
» a

Wpletw, Wy wy

Our procedure treats w,w, and w, as a single constant @ and leads to
F* .
W = =% (@ — @)) — 2@ - =N’} (63)

For the H atom (z) = 0, (z°) = 1 a.u. and (z*) = 9/2 a.u. so that, if
we set @ = 3/8 a.u., the 18 — 2P energy difference

WH) —_ _1250F4 ~ _48F4. (64)

This is close to the correct result (36), but despite the fact that we have
taken the lowest possible value of @ it is too small. This is a clear indica-
tion that some cancellation of higher terms, which we have aggravated
by our cavalier treatment of w, , ete., is occurring. This is not surprising
for, if in the triple sum we consider the lowest possible sequence of levels
18 2P 28 2P 18 for which w, = w, = w, = @ the product of the matrix
elements is 5 a.u. while for the sequence 18 8P 8S 8P 18 the product
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is 10 a.u. made up of a contribution of 0.0033 from the two 1S 8P
elements and 3000 from the 88 8P elements,

However, this is not quite so serious as it appears, for in a real solid
no matrix element can exceed the linear dimensions of a cell say 5 a.u.
so that the produet in the low transition would remain at 5 a.u. while
the product for the upper transition would be reduced to 0.08.

Our final argument is empirieal. If cancellations between large terms
are critically important, the relevant feature of our procedure is the
change in the ratio w,/w, it causes for highly excited neighboring states.
In hydrogen the ratio of the 18 — 8P energy to the 1S — 7P energy
is 1.005 and we replace this by unity. In a time dependent theory res-
onance denominators appear, and if the sum is really so critically
balanced, we expect the observed quantity, in this case the hyper-
polarizability, to vary rapidly with frequency when o® ~ 0.005 Q°,
i.e., at a frequency 10 times lower than the first absorption edge. In
nonlinear opties, no such variation is observed until one of the frequen-
cies approaches much more closely (about 70 percent) to the absorption
edge (Chang, Ducuing, and Bloembergen®).

Taken together these arguments give us reasonable grounds for
hoping that the sums will not bite us if we remove w, , ete. from under
the summation sign.

In the sum in (57) there is no restriction on p or g, in particular terms
with either p = 0 or ¢ = 0 occur. These will lead to trouble if we attempt
to approximate the sums as they stand. We therefore first segregate
all such terms. Let { } denote the entire summand in (57), then

_ I 4 Yorfro a Lorlro
’ZUZ{l*JZ,’qZ’{l -Tona,rzw‘:’__yz Zo0 Z’ 3 3

Yy T ow —a

a Zorid'rs 8 York
e g 2 T e D

—~ w; — a’ ;
B Torlfro Y ZorLra -
+ 20 = T A Yy B D (65)
o Y rz W, — B JB r w, —

Three single sums remain unprimed, but because @ = g + v the terms

with » = 0 cancel and so we may regard all the sums as primed.
We can now remove w, , w, and «, as a single average 2, and this leads

to an expression containing terms such as

Z’ Z’ Loplpefao = Z E Loplpafan — Too E Yorkro
P ] P ] r

— 2 2 Torlire F 2Xaufuron -
r
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Each of the sums on the right is now a ground state expectation value.
When all the terms are collected together we obtain

ity = N e BGEH LT s laue) — () — e

— {&)ay) + 2AaXyX2)| (66)

which we can also write as

3
a8 = ¢ D0, a, B, V)T (67)
in terms of the, by now, familiar cubic moment 7', . This expression
bears an obvious resemblance to (61) for x.

Our expression (66) or (67) would be very nearly exact if all the optical
levels had very nearly the same energy. It would then correspond to
the fictitious two level system (see Refs. 15, 16, 18) often used to oblit-
erate some of the intractable features of (57). Unlike this model, how-
ever, our expression retains the geometry of the system implicit in the
selection and sum rules.

Equation (66) is possibly valid up to a frequency where one of «, 3,
or v approaches the first allowed transition frequency. At somewhat
lower frequencies, it is legitimate to drop the term gy — o’ in the numer-
ator. This then allows us to make a further generalization at no increase
in complexity.

By removing w, and w, from (57) as a single average we have tacitly
neglected the possibility that the system might be birefringent. We
can remedy this by noting that in (57) each frequency w, or w,
is uniquely associated with a matrix element such as x,, or z,, which
terminates on the ground state | 0) and therefore also appears in x.
Thus, we can consistently introduce three averages Q,, ©, , and 2, as-
sociated with correspondingly polarized transitions. If we follow this
process through all its tedious ramifications, we find that, except in
the term By — & which we are omitting, it leads to the surprisingly
simple result that D(Q,a,8,7) is replaced by

__2.0,0(9 + 9 + 2) .
DS, e 8,7 = Tor oyt — @)@ — 4 (@9

Thus,

afy __ E Qr‘Qvﬂz(Qt + QJI + Qz) "
e N ATy [T R )
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If we compare this with the result for the classical anharmonic oscillator
obtained by combining (54) with (47) we see that they are identical
except for a factor 2 which once again arises because in one case we
assumed that 7',,. was a fixed parameter while in the other it was V. rys -

We now see that the classical model is equivalent to the quantal
treatment, except near a resonance, in the following sense.

If we construct the model, by choosing 2, , 2,, and @, to give the
correct linear properties then we must choose the anharmonic term in
the potential to produce a cubic moment in the ground state of the model
equal to 3 the corresponding moment in the real system. The dynamical
properties of the two systems are then equivalent and the model can
be used to treat more complicated systems where the quantal treatment
is too difficult.

We now consider the relation of V/,, to the actual potential respon-
sible for the existence of T,,,. Obviously, the relation is obtained by
requiring that both potentials yield the same cubic moment, one in the
model, the other in the real system. In this case, there will be no factor
of 2.

For simplicity, we consider only a system which is isotropic before
the application of the anharmonic potential. TFurther, we restrict our-
selves to atoms in which there is only one valence electron. Our results
will, however, be directly applicable to atoms with more electrons if
we can neglect electron correlations.

We already have an expression for the oscillator (54) which we can
write as

T = —da" Vi R (70)

he,

where w, , the classical frequency, also corresponds to the first allowed

transition, and
h ) _
a = \g — i1
(2-»@,, (1)

is a measure of the extent of the system in one dimension. The direct

proportionality between 7'.;, and the corresponding component of

Vijx occurs because the oscillator Schridinger equation separates in

Cartesian coordinates. In general, as we shall show, it will only hold if

V= Viraz,, the crystal potential, satisfies Laplace’s equation.
We will consider a more general potential of the form

Vo= 3 VPO, o), (72)

nlm
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where P" is an associated Legendre polynomial normalized to unity.
This potential satisfies Laplace’s equation only if n = [.

If the unperturbed ground state wave function is ¥, the first -order
correction ¢, due to V satisfies

(H, — EJ¥ + (V = E) = 0.

Since T is an odd moment we need only consider odd terms in V' (in
fact only I = 1 and [ = 3) and for these £, vanishes since ¥, has definite
parity.

We let

‘l’l = f\l/n (7"})
and then
(Hll - Igﬂ)f\l’n = - V\bn

but, since

Ho= -1 v 4.,
2m
this leads to
. 2m o, -
Vi + 2Vf-V log \I/(.=-ﬁTl. (7hH
Now ¢, is a function of r alone and so we can write
f= 2 Vie.OP(8, o), (75)
nim
where a,;(r), which does not depend on m, satisfies
La soa W(I+D | ofedlegdy  2m , -
Zar’ ar P2 “ + 2 or ar T (76)

The perturbed ground state is therefore,

¥ o= {14 2 Vi (P70, @) ul) (77)

nlm

and in this new ground state we can easily evaluate expectation values
such as

P = 2 ViaBm (78)
where

By = f " PanOAO dr. (79)
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In evaluating T';;. we shall need (), {x3), and (z.x;x,). The even
moments are unchanged by V and we obtain the odd moments by ex-
panding z; and z.z;2, in terms of Legendre polynomials and powers
of r.

We omit most of the gruesome details of the calculation, and further
restrict 7 to contain only terms of the type

I/ = I’?,-,-kx,-:l‘-,-.‘lj_ X ’t?, Z: 1 3';?‘3Pm Slr:’Piﬂ + I/ er (80)

The term in V,} which does not satisfy Laplace’s equation is necessary
to obtain the most general form of the cubic part of the potential
Viiwix;2, . This contains 10 independent parameters while P has only
7. The missing 3 are supplied by P7.

If this term is absent, we have

ViV =0 (81)
and then

Si=V.i+Vii+ Vi =0. (82)

With all the terms present we obtain
(@) = 3BSi + 38X, (83)
() = %BssViei + 3{2%Ban — 195833} Si + #60.X, (84)
(xai) = 3'%5Bua Vi + {95601 — 1958} Si + 581 X, (83)
(v, = 55850V (86)

where it is to be understood that 7 # j # k.
If we let

y = (@), (87)

then since (v;z;) = 0, 7 # j, and (v;){(x;){r;) is third order in V7, we
obtain

Tiii = 3%5Baaa Vi + 315%Bus — 1585 — 2¥Bun | S:

+ 358 — B X (88)
Tiii = 95853 Viis + (9%Bsn — 1168ma — FvBin}S:

+ (%8s — 38 }X. (89
Tise = 9583 Vije - (90)
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For a harmonic oscillator

6 i 1)
Bazz = _35%' Baz1 = _855‘; ) Ban = —15 }E:“’_olt
_at _at 2 91
Biaz = _Dhc:o_,, ’ B = —1d fzc,, y Bin = —3 hf‘('u,, { ( )
vy=d J

and it is easy to check that the coefficients of S; and X vanish, so that
we recover (70).

If V satisfies Laplace's equation S; = 0 and in the absence of an
internal field X, every component is given by

Tiik = '54'5»6333 Vmc . (92)

Thus, in this case T';;; and the reduced Miller tensor A;;; have the same
symmetry as V;;, . Therefore, since S; = 0 we have

Agii + Aij; + A = 0. (93)

If 7 is an axis of 3-fold or higher symmetry, A;;; = A and so, for ex-
ample,

Azas = —244y, . (94)
This relation is rather well obeyed by the coefficients for the 6-mm

crystals listed in the Table I. Signs are available only for the electro-optic

TasLE I

Material | Wavelength g Azaz X 10° esu ‘ A X 108 esu Ratio

Linear Electro-optic

Zn0 optical 1.5 —0.8 —-2.1
ZnS optical 0.9 —0.45 —2.0
Cds optical 1.2 ‘ —0.55 —2.2
Second Harmonie
Zn0 ] 3.3 1.1 +3.0
ZnS 10.6 4.9 2.45 +2.0
Cds 1.06 3.2 1.6 +2.0
CdSs 10.6 5.4 3.3 +1.6
CdSe 10.6 4.8 2.4 +2.0
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coefficients and so the s.h.g. results represent moduli only. References
to the experimental data are given in conjunction with later tables.
In the case of the electro-optic data, the experimental figure is for A,
and we have assumed that Kleinman’s rule (Kleinman®) holds and that
this is equal to A, . Except for s.h.g. in ZnO the ratio is —2 within
the experimental error.

If, on the other hand, the sole perturbation in V is the field X, , we
have

T = 3T.-,-,- = %{.Bsu - 5713111} (95)

and the expected ratio is 4+3. In erystals where both terms occur in
V with arbitrary strength, any value of the ratio is possible. This is
observed in the ferro-clectric erystals BaTiQ, ratio +4% and LiNbO,
where it is +1.7 for the electro-optic effect and =11 for s.h.g. It is
perhaps somewhat surprising that the ratio is so exactly —2 in the
6-mm crystals since this is a polar point group and an internal field
X, is not forbidden by symmetry.

If V does not satisfy Laplace’s equation, (it need only satisfy Poisson’s
equation) there is no direct relation between the components of T',,,
and those of V;; even in the absence of a field X, , although, since
tyz is a spherical harmonic, we still have

T2 = 35Bs3 Vios . (96)

However, since the coefficients of S; vanish for the harmonic oscillator
we may expect them to be small in other cases. We gain some support
for this view by considering the hydrogen atom for which

8. = _(&) a; 35385 a, _ 1485 a;
S 8 / hw ' T 256 he, T T 64 e,
1305 a 315 al 81 a , (97)
Bras - 128 frwt ' l‘jlﬂ! = = 16 hw, ) )dlll - ‘“'.;2 h&h
v =a,

where as usual @, = 1*/me’ and hw, = 3/8(e*/a,) is the first allowed
transition (18 — 2P) energy.

The coefficient of V,,, in each term of 7';;, is then —315/16(a’/hw,)
while the coefficient of S; in 7',,, is a factor 23/200 smaller. In T',; it
is 23/600 smaller. Thus, in the absence of X, the non-Laplacean terms
in 17 cause no more than an 11 percent departure from the relation

315 al

16 e,

Tﬁk = V

ik o (98)
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Since we expect the dominant terms in V to satisfy Laplace’s equation
it appears that T,,., A, and the model potential V7, will be very
nearly proportional to the corresponding terms in V.

The potential V' required in the model is related to the crystal
potential by

.8(:;;2 V;ik = Baas V.‘;‘r: . (99)

For a hydrogen atom this gives V%, = 5V, thus, insofar as real atoms
behave like hydrogen atoms, a model with the same spatial extent
a ~ a, and the same first allowed transition w, ~ w, will require a
potential roughly five times as strong as the actual potential. This
reflects the obvious fact that a harmonic oscillator is a stiffer system
with more sharply localized (¢ =~ ¢"') wave functions than an atom
(f~e).

We have now shown that, with an appropriate choice of parameters
a classical anharmonic oscillator model is a very good approximation
to the intrinsic electronic nonlinearities of real systems.

In the next section, we use the model to consider the effect of lattice
polarizability which we have so far neglected.

V. LOCAL FIELDS AND LATTICE POLARIZATION

We have already remarked in the introduction that the seat of the
nonlinearities resides in the electronic motion. It is, however, consider-
ably modified by local field corrections and in the case of optical rectifica-
tion and the linear electro-optie effect by lattice polarization.

Miller’s rule states that d25 is proportional to the product of the
observed linear susceptibilities X2 , etc. at the appropriate frequencies.
If one of these is de we are to take the actual dc susceptibility and not
the extrapolated long wavelength limit of the optical susceptibility.

At first sight, it seems plausible that this is simply the effect of in-
ternal fields, which cause the local field experienced by an atom to be
greater than the applied field. We now examine this hypothesis and
show that it is inadequate.

Microscopic caleulations yield the polarization of single atoms due to
local fields. In the linear case, if we have N atoms per unit volume of
polarizability «

and the local field is related to the applied field £ by
E,=FE+ TP. (101)
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In some cases the Lorentz value of I' = 47/3 is applicable and we then
obtain the well-known relation between the refractive index =, or the
dielectric constant e = n® and a.

=1  4r R

2+‘)=?Na:?, (102)

where V' is the molar volume and R is the molar refractivity.
In general,

P = Na(E + TP) = I':\%VE E (103)
and the observed susceptibility is
while
By = (1 + Ik = —Z . (105)
1 — I'Na

In nonlinear optics the two driving fields E? and E? are obviously
modified according to (105) but, as Armstrong, Bloembergen, Ducuing
and Pershan '® have shown, there is a further factor in P. This arises
because the nonlinear polarization

:';i‘t(b‘ﬂ) lounl(E k)lnrn] ' (106)

produced directly on the atoms, further polarizes the surrounding
medium.
We have

P! = p! + I'NaP?, (107)
80 that
Pr = —Pi = (1 4 Tt (108)
71— TNa R
Thus, if d*? is the (calculated) intrinsic coefficient, the observed
coefficient is
DIy = (1 + Txi)(1 + Txi)(A + Dxddsfy. (109)

Therefore, even if d does not vary with x, D will do so. This is, however,
not enough to explain the observed variation of D with x. For example,
in semiconductors it is very likely that T is small if not zero and yet
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the measured values of D appear to obey Miller’s rule and be propor-
tional to x°. Thus, the intrinsic coefficient d itself must have a similar
dependence on X,

If we write

o = XeoG Xt (110)
in terms of the measured susceptibilities (i.e., »* — 1), which is the con-
tent of Miller’s rule, and then use (104) to express D in terms of the
atomic polarizabilities we obtain

DY = (1 4 x&(1 + I + Dxt)Nafiadalidie  (111)
so that from (109)
d®® = Nal;Nal;NajiA - (112)

Thus, the reduced tensor is the same whether or not we apply local
field corrections as long as we do it consistently. To obtain a more or
less constant value of A we must have d varying as o’.

Since A for NH,H,PO, derived from the purely optical s.h.g. effect
agrees with A from the quasi-static electro-optic effect to within 10 per-
cent, although the values of d differ by a factor of 12 and in BaTiO,
the two values of As,, are within a factor 2 while the d’s differ by 300
it is clear that lattice polarization has a direct effect in d not described
by local field terms.

We repeat that optical nonlinearities have an electronic origin.
Electrons in atoms do not move in a harmonic potential. Second har-
monic generation, which can only involve electronic motion, is much
the same in covalent organic materials, ionic crystals and ferro-electries.
Large values of d*“ are associated exclusively with large refractive in-
dices. Thus, nonlinearities in the ionic motion play a secondary role
in nonlinear optics; however important they may be in determining
the ferro-electric properties.

We shall attempt to construct a model, just sufficiently general to
exhibit the gross features of ferro-electric behavior, and show that it
modifies the nonlinear optical behavior exactly as predicted by Miller’s
rule. The model is not put forward as an explanation of ferro-clectricity
although it has a venerable past in that connection, but as a demonstra-
tion that a simple system with singular dielectric properties behaves
in a way consistent with Miller’s rule.

In Fig. 1, we illustrate a moderately realistic one-dimensional model
in which electrons of mass m are coupled to ions of mass M in a lattice.
Forces act between like and unlike particles and of these by far the
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Fig. 1— A realistic one-dimensional model.

strongest is K,,,, which is responsible for the electronic optical spectrum.
The remaining forces determine the lattice spectrum. The important
nonlinearities are associated with K, . The linear behavior of this
model is formidably complicated and we therefore assume that its
salient features are already evident in the much simpler model of Fig. 2.

The electron of mass m, = m is coupled to the ion of mass m, = M
by the force constant &,. which replaces K,,» . It is anharmonic. The
electron and the ion are also coupled to rigid supports representing the
rest of the crystal by forces k, and k. . It is as though we had gone di-
rectly from the Born-Von Karman theory of specific heats to the Ein-
stein theory without mentioning Debye.

Let a, be the displacement of the electron of charge e, and @, that of
the ion of charge e, . We shall assume that the potential energy is

v = %klmf + %kz-'vg + %k;z(-l'l - -t-z)g + v]g(-’C; — .1‘:2)3 (113)

so that the anharmonic term is exclusively associated with the “‘atomic”
binding of the electron to its parent ion. It will be convenient to define
vy = —uy5 . The equation of motion in a field E%*** is then

muE; 4+ ks + ke(e; — 1) + 30,0 — 1) = e, Efe™ (114)

and the linear response neglecting v,; is

S (l‘f,- - m;‘ls-l)f’v‘ + ]“!"((Jl + 932_ 8Bt =
= (fy + byo — mlBg)U"z + b = ?"262) - J\?z e (115)

With N units in unit volume, the polarization is

P = Nx" + e.as")
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ARSI AL,

Fig. 2— A simplified one-dimensional model.

and so

3'12(]‘32 - ”3252) + 32("’1 - ??1152) + kiole, 4 5’2)2 . (116)
(ks + ko — m1ﬂ2)(k2 + ko — ‘mzﬁ2) - k?z

At an optical frequency « well above (ka/m,)* the ionic resonance

x=N

¢ Nei
X~ By A ke — M’ (117)

while at de

ket + kies + kia(e, + e2)’
]flke + klzkl + klgkz (118)

x'=N
To obtain the sum frequency polarization due to two fields Ee"
and E'¢'"* we substitute the linear responses back into the nonlinear
term in (114). The result is a nonlinear coefficient

d*?" = —=30.f(@f(B) (), (119)
where
— ek, — 'mzag) — eolk, — m,a’
fle) = o F s — 100Dy T oy — maad) — Ko ete.  (120)

If we express d**" as x“x"x”A we have
A= =20 )g(B)g), (121)
N7e

where
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3 € 2
ks — Mo — ; (ky — mya)
1

a(e) = ; -, ete. (122)
ks — maa” + (‘53) (ky — ma®) + l.'”(l + Q)

(’; el
We note first that if, as seems most reasonable, e, = —e, then g(e) =
g(B) = g(y) = 1. In any case at optical frequencies g(w) ~ 1 for all
reasonable values of e,/e, and at de

ey — E—A
9(0) = Y : N (123)
k. + (_2) ko + k:z(l + _2)
€ €;
which is also near unity if e, = —e, . Thus, to all intents
30,4 .
Ax -1 (124)

which is exactly the result obtained by neglecting the ionic motion.

Thus, A is an intrinsic electronic property and the effect of ionic
motion is entirely contained in its effect on x. We note, however, that
in some ferro-electrics, where the departure from inversion symmetry
is both small and temperature dependent, A will also be temperature
dependent.

If k,, k2, and k, are all positive, the de susceptibility is greater
than the low frequency limit of x“ but not dramatically so. There is,
however, no reason why one of these constants should not be negative.
Negative compliances are familiar in classical mechanies, a well-known
example is the common automatic door stop which exhibits a positive
compliance as the door is first opened but a negative compliance when
the door is almost fully open. The force between atoms as a whole in a
lattice exhibits a positive compliance but if we separate this force into
nuclear-nuclear and electron-electron repulsion and nuclear-electron
attraction, it is quite reasonable to assume that at the equilibrium
distance the latter component has a negative compliance.

It is immaterial which term in (113) we take as negative although
on physical grounds it seems most suitable to take k, and this is also
a convenient choice.

Provided that

Isky 4 Eyokey 4 Iyoke >0 (125)
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or
ko + kis
- -} = 2 )
7 k. ko < 1 (126)
the system remains in stable equilibrium at z, = x, = 0.
The natural resonance w, and w, of the system satisfy
mlmﬂfﬁ’g = kks + kb + kokeys (127)

and so as 7 — 1 one of these frequencies —0. At the same time the dc

susceptibility (for simplicity we take —e, = e, = ¢)

ki

21— . N
XU — Ne n"lw +£ (128)
ks 1—n9

becomes infinite, while the low-frequency limit of the optical suscepti-
bility remains finite.

If 5 exceeds unity there is a spontaneous polarization limited only
by terms such as wz} which we have failed to include in .

All this is reminiscent of ferro-electric behavior if n is temperature
dependent and the Curie point corresponds to 7 = 1.

The inclusion of a term wzi in ¢ will, in fact, make n temperature
dependent, for the effect of this term is to replace k, by an effective value
for low-frequency displacements

ki~ ks + Gwat = ka(1 + AT, (129)

where 22 is the mean square thermal displacement. As a result if », is
the value at T = 0 we have

_ (i — _1_6_) ,
n = 1]'”(1 N T + e (130)
and so
ks ( kys )
L —2 T T!
0=Nﬁik12+A rlﬂw"f"‘bflr ’ (131)
X klz h(T - Tu) '

if we define 7', as the temperature at which n = 1. This is of course a
crude approximation to a Curie-Weiss Law.

By ascribing all the temperature dependence to changes in k,, it
is obvious from (117) that X“ is temperature independent. For » to
be equal to unity, it is not necessary for —k, to be of the same magnitude
as ks , all we require [see (126)] is that —k, be near k. . Thus, from (117),
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we do not expect any very anomalous values of x“ in ferro-electrics,
except in so far as materials with a high electronie polarizability are
more likely to be ferro-electric.

We have now shown that it is possible to incorporate in our model
features which lead to quite different behavior for the optical and de
dielectric constants without either invalidating Miller’s rule or even
changing the value of A which is essentially a purely electronic property.

We should, therefore, expect the temperature variation of DY to
correspond to that of x,%x?,x.; and this is well borne out by the measure-
ments of Zwicker and Scherrer”® of the electro-optic coefficients and
Bass, Franken, and Ward* of the optical rectification coefficients in
the dihydrogen phosphates. Both coefficients are directly proportional
to the de dielectric constant which obeys a Curie Weiss Law.

In KDP there is almost no change of the s.h.g. coefficient (Van de
Ziel and Bloembergen®”) with temperature above or below the Curie
point, in accord with our expectations, but at the Curie point there is
a small discontinuous change. In an orthorhombic coordinate system
d;s and dos are equal above T, but below T, , d;$ increases and d,»
decreases while at the same time x,, — x;; decreases and xz» — Xas
increases. With a constant A this is not compatible with Miller’s rule.

However, at the transition there is a change in crystal class in which
a, increases and a, decreases, Jona and Shirane.*® Tt is not unreasonable
to assume that this increases T3, and decreases T3, by more than
enough to compensate for the changes in x,; and ., .

VI. MILLER'S RULE

The classical anharmonic oscillator model, which we have shown to
be a good approximation to the behavior of a real system, leads directly
to that part of Miller’s rule which refers to the geometric properties
and frequency dependence of the nonlinear coefficients in a single
material. We have also in (51) advanced a crude argument to show that
A will not vary much from material to material.

When we examine the experimental data we shall see that the allowed
components of A are between 1 X 107" and 6 X 10™° esu for most mate-
rials but that there are a few materials with significantly higher values
and a number with values as low as 0.1 X 107° esu.

In most cases, these exceptional values have a rather simple explana-
tion and we have therefore to explain a constancy of A to within a
factor of about 10.

Neglecting the effects of lattice polarization and local field corrections,
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which we have shown are irrelevant, the results for the classical an-
harmonie oseillator model are, from (50) and (56),
Tl':'k .

Py (132)

A = 3

This is also the result from the static perturbation treatment of Section
II.

If we use
o @ 0 :
X = -l'N a, = FN a, 3 (133)
we arrive at
24 Tiix
43 a, 1 ik, (134)

Ay = Tﬁ"’(:]\;rz(rz>q

Now the volume occupied by the oscillator is both 1/N and 8 () and
S0
st Lii -
A & 10°7) (7? esu (135)
where we have inserted numerical values for a, and e. This expresses
A, as the product of a scale factor (™)} and a dimensionless shape
factor 7'/r’. Whether we assign to each oscillator the volume per valence
electron, per atom or per group of atoms, ()} is likely to be between
0.75 and 3 ﬁ; so that A will be sensibly constant near 3 X 107° esu, if
the shape factor is of the order of 0.01 to 0.05. We have from Turner,
Saturno, Hank and Parr's' results for CH, a shape factor of 0.05,
and so this range of shape factors is not unreasonable. It corresponds
to a linear distortion 0.02! &~ 25 percent. It is also not unreasonable
that the distortion should be of this general order, wherever it is al-
lowed by symmetry. We may speculate that much smaller values of T/r*
would imply very weak interatomic forees and much larger values would
lead to a structure unstable relative to a more symmetric arrangement.
Thus, qualitatively, the relative constancy of A reflects relatively
constant shape factors, although we can hardly claim that this is more
than a sophisticated form of dimensional analysis. It does, however,
suggest that A is determined primarily by the geometric properties of
the molecular and crystal structure.
Large values of A will occur only when the molecules themselves
depart considerably from inversion symmetry and are arranged in the
erystal in such a way that the effects of individual parts of the molecule
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are additive. Small values of A will oceur when sections of the molecule
have local near inversion symmetry or when their disposition in the
crystal favors the cancellation of effects from different atomie groupings.
However the molecules are arranged in the lattice, A will be small if
the molecules themselves have near inversion symmetry, or consist
of uncoupled parts with the same property.

In Tables II, III, and IV, we present 50 values of A derived from

TABLE IT—SEconp Harmoxic COEFFICIENTS

Units of d 107° esu Units of A 107¢ esu

Material Class Ay dizg A Ref.
HMT = N, (Cll,), 43m | 1.06 30 |17 1
ZnS 43m | 1.06 153 3.5 3
ZnS 43m (10.6 146 4.5 2
ZnSe 43m | 1.06 200 2.5 3
ZnSe 43m |10.6 370 6.6 2
ZnTe 43m | 1.06 660 2.9 3
ZnTe 43m |10.6 440 | 3.6 2
CdTe | 43m |10.6 800 7 2
GaP 43m | 1.06 525 1.3 4
GaP 43m | 1.06 255 0.6 3
GaAs 43m | 1.06 | 1,500 1 4
GaAs 43m |10.6 1,760 3.7 2
InAs 43m (10, 2,000 3.2 2

day A
KH,PO, | 22m | 1.00 3 [3.6| 336 5
KD.PO, - 42m | 1.06 2.73.2 | 2.73.2 5
KH,As0, [ 32m | 1.06 3.42.6 | 3.22.5 4
NH,H,PO, ‘ 42m | 1.06 2.93.15 3. (3.15 5
daas A da A dua A
Zn0O | 6mm | 1.06 43 3.3 (13 |1.1 14| 1.1 4
ZnS 6mm | 1.06 84 1.9 3
ZnS ‘ 6mm [10.6 180 4.9 | 90 (2.45] 102| 2.7 2
CdSs 6mm | 1.06 186 (3.2 |96 [1.6 | 105 1.8 2
Cds | 6mm [10.6 210 [5.4 (126 3.3 | 138| 3.6 2
CdSe 6mm | 1.06 500 3.4 3
CdSe 6mm [10.6 260 4.8 [136 (2.4 | 148 2.6 2
BaTiO; C4mm | 1.06 42 1.0 |111 |2.45 105 2.35| 5
tlana A
LiNbO, 3m 1.06 250 |9 36 1.1 19/ 0.55 | 6
LiNbO, 3m 1.152 32 [1.05| 15/ 0.45 | 6
[I]]: A

Si0, 32 1.06 2.5(1.9 4
AlIPO, 32 1.06 2.512.2 4
Se 32 10.6 380 2.1 2
Te 32 |10.6 |25,400 4.3 7
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TasrLe III—OpricaL REcTiFicATiON COEFFICIENTS

Units of d 1072 esu Units of A 1077 esu

Material Class - Ay din A - Ref.
ZnTe 43m 0.694 3650 | 14 8
1.06 1040 5 8
dan A I '
KH.PO, 12m 0.694 50 | 3.2 8
KD,PO, 42m 0.694 105 | 2.9 S
NH,H-.PO, 42m 0.694 132 | 3.0 0
lf:aa A (Ia 11 A
Cds Gmm 0.694 700 7 900 | 9 ' b

published s.h.g. data, 7 values from optical rectification data and 50
from electro-optic data. Definitions and conventions are discussed in
the appendix and a separate list of references is given for the data in
the appendix. Probable errors vary from measurement to measurement.
It is probably safe to say that no measurement has an accuracy better
than 410 percent and in many cases the probable error is greater. That
for the s.h.g. data at 10.6 u is 30 percent and except for ADP the rectifica-
tion data is only good to a factor of 3. In addition, a few materials have
discordant results reported by different groups and this suggests that,
especially in the case of crystals which are difficult to grow, the data
should be regarded rather critically. In the case of CuCl, Sterzer,
Blattner and Miniter*® have constructed a modulator whose behavior
is consistent with the higher value of the electro-optic coefficient. This
casts some doubt on the low value for CuBr reported in conjunction
with CuClL In the case of the linear e-o coefficient in HMT, Heilmeyer’s'™
value dias = 32 X 107° esu is the most recent and reliable.

The average of all the s.h.g. data is A = 3.3 X 107° esu, and only
two coefficients dyz3 in HMT and dys in LiNDO; exceed 6 X 107° esu
by more than the probable error. One coefficient di,, in LiNbO; is
unambiguously less than 1 X 107° esu. The sole accurate rectification
coefficient, Ay in NHHPO,, is 3 X 107° esu which is remarkably
close to the values 3.15 and 3.2 X 107° esu for s.h.g. and the electro-
optic effect.

Whereas the s.h.g. data have a rather compact distribution about
3 % 107° esu the linear e-o data are more straggled. The mean value
is 2.3 X 107 esu but there are a considerable number of materials
with A < 1 X 107° esu. The difference between the averages A,,, and
A,, is not due to the different materials in the two lists, it persists if we
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TaBLE 1V — ELEcTRO-0PTIC COEFFICIENTS

947

Units of ¢ 1074 esu Units of A 107¢ esu

Material Class | A | dhzs A Ref.
HMT = Nu(CH2)o| T8m |0.5 | 32 14 10
HMT = Nu«(CHz)s| I3m 6 2.3 11
HMT = N4(CHa)s| T3m 55 21 12
Bis(GeO4)s d4m 22 0.8 assumed ¢ = 6 13
Sodalite 33m 9.5 1.8 14
CuCl I3m 28 0.75 16
CuCl 33m 110 3 15
CuBr 13m 22 0.4 assumed ¢ = 10 16
ZnS 3m |0.65 74 0.4 17
ZnSe d3m [0.55] 120 0.8 18
“nTe 13m [0.60| 440 1.5 i
GaP 43m |0.63| 150 0.3 20
GaAs T3m [1.02] 215 0.3 21
NaClOa 23 0.59 2.5 06 22
KoMg2(SOq)a 23 <.26| <0.1 assumed ¢ = 6 23
(NH4)2aMna(SO4)a 23 4.3 0.5 assumed e = 8 24
(NH4)2Cda(S804)a 23 5.7 06 24
NaVO:(CH3COO); 23 5.3 1.3 le=6 25
NasSbSy- 911:0 23 10 | g _jassumede =0 26
‘I'ren Chloride 23 45 27 27

i dasa | A j s A
“nu Gmm |0 63 50 | 1.5 26|08 Yy, 28
4ns G (V.63 67 04 A4 |0.45 ;5 neg 28
Cas G (063 110 12| 18 |05 de | 28

Material _3” dam A Ref.
KH2PO4 1.0 u-50 1.7 constant stress 29
IKH2POy 3.7 constant strain 30
KD2POy 10 | constant stress 31
IKH2A804 3.7 81 |1.7 constant stress 32
RbH:As04 3.5 constant stress 32
NHH:PO4 44| —146 |3 4 constant stress 32,29
NH:H:PO, 3.2 constant strain 24

o ‘ LUTE
aas ‘ A dan A dus O
| ' l d3az
BaTit); [ 4mm o d:'i|100(] T 320 | o3 + | 33
3.3 X104 1 .4 constant strain 34
‘ | 6.6 X1041/1.9 constant stress 35
- T | d]ll
dasa A | dan | A L dua | A dwn | A | —
| | | daaa
- P — |
LiNbU; | 3m |0 63 860 43| 840 [2.5 | 280 | 12| 110 0.3 + | 36
din A
32 los| 32| 09 22
20 32 10.55 1.4 | 0.4 11
8.8:06° H20 32 |0.55 0.65 0.15 ol e = 11
CsHiOsNaBr-H:0 | 32 |0.55 065 (.15 passumed e =G 1
CsCyH404 1 32 |0.55 7 1.4, 11
daz A T
C(CH.OH)4 | e ’ 37
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eliminate all materials not common to both lists and may therefore, be
either a real effect or a systematic error.

A few materials [e.g., SrS,0,-H,0, CH,,0,NaBr-H,0 and K,Mg,
(SO,)s] have very low values of A. The latter is especially interesting
since the isomorphous (NH,).Cd2(S0,)s and (NH,),Mn,(80,); salts
have somewhat larger values. The ammonium cadmium salt is known
to be ferro-electric at very low temperatures and the ammonium man-
ganese salt is also suspected of ferro-electricity (Jona and Shirane™).
More significant, perhaps, is the fact that the divalent ions have very
nearly regular octahedral coordination (Zemann and Zemann®’) and
so form a unit with near inversion symmetry and contribute little to d.
The main contribution comes from the monovalent ions and their
irregularly placed neighbors. The difference between the potassium and
ammonium salts would then be due to the difference in the polariza-
bility of the two ions. For K* the refractivity is 2.45 ccs and for NH}
it is 4.05 ces (see Le Fevre'®). If this enters d as a cube the expected
ratio of the d coefficients would be 4.5. The observed value is greater
than about 5. Note also that NHY itself lacks inversion symmetry.

The tabulated values of A show that Miller’s rule is an excellent rough
guide to the probable value of d. If the component is allowed by sym-
metry

| deft | &~ 3 X 107°X 5 X7, X 7 esu. (136)

However, the rule by itself is not infallible. Occasionally, a value of
d much higher than that predicted by (136) will occur. In some cases,
(e.g., daaa in LiNbO;) this is accompanied by a very low value of another
coefficient and it is then plausible to assume that this is due to a partic-
ularly critical geometric configuration. In other cases, (e.g., HMT) it
is quite clearly due to the coincidence of a number of favorable factors.
The atoms, the molecule and the crystal all have the same symmetry
and moreover, as we saw in Section 1, all the separate contributions to
d have the same sign. Thus, it is likely that the value of A = 15 X 10°
esu for HMT represents something of an upper limit to what is possible.

More often (136) will overestimate d. This is especially likely to
oceur if the molecules themselves, or large sections of the molecule have
near inversion symmetry, but it may also occur if the crystal structure
itself departs only very slightly from a centro-symmetric structure.

VII. CONCLUSION

If reasonably good ground state wave functions are available, the
direct perturbation method of Section II seems most suitable as a
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basis for calculating the magnitudes of the coefficients. It gives the
intrinsic nonlinear coefficient
qu T ik

13, = —= —ti& 137

@it = e n (137)
in terms of the intrinsic low-frequency limit of the optical suscepti-
bility x" and a cubic moment in the ground state. If the electrons are
uncorrelated, this can be replaced by

1 3x"

= 1:
(I,,_,,( ae t”;» ( 38)

and [;;; can be obtained from the charge distribution. From (138) we
obtain the reduced tensor

3 i
a.e (x")*

Ay = (139)
and we can then incorporate this directly in Miller’s rule using the
observed susceptibilities x,% , ete. to obtain dff .

This continuation of the basie perturbation calculation with Miller's
rule appears to be the most straight-forward approach to the coefficients.
Apart from the cubic moment ¢, it involves only experimental
quantities.

The analogy with the elassical anharmonie oscillator established in
Section IV seems most likely to be fruitful in qualitative discussions
of the general behavior of the coefficients. It appears to have both
empirical and theoretical justification.

Obviously, on this basis further generalizations of Miller's rule are
possible. For example, we might expect the fourth rank tensor ¢/
which describes induced second harmonic generation, the Kerr effect,
ete. to satisfy a relation of the form

d?,iyri = X?.Xffx:kX?I-‘-\in-r . (]40)

A calculation based on fourth-order perturbation theory and a lavish
use of sum rules leads to

~ 1 = oy oy Qi
A = 1.5 X 10 & (? > (?‘2)2 ’ (]-”)

where (r*) is the mean square radius of the charge distribution and
Q:;1; 1s the semi-invariant

Qiine = Ty — 2 vr) (142)

if we assume that all odd moments vanish.
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If we take (") as 1 A this gives

A =~ 3 X 10""%;—;' esu. (143)
We have seen that in the lower-order processes 7'/r° is of the order of
9 % 1072, This does not imply that Q/r is of the order (2 X 107" ~
5 % 10~ for whereas 7 is nonzero only because of asymmetric molecular
and intermolecular forces, Q is nonzero even for free atoms or ions. For
example, in the hydrogen atom Q.::;/(r*)" = 5/18 and Q.:i;/ Y =
1/9 so that we expect A to be of the order of 3 X 107" to 107" esu.
For calcite with x.p0n = 0.1 and xa. = 0.55 this gives a value of d
between 3 X 10~ and 107" esu. Bjorkholm and Siegman®' have meas-
ured 3 X 107" esu.
We have seen that the reduced tensor A;,; is proportional to the cubic
moment,

Tm; = (ﬁfﬁijk->

and it is therefore clearly symmetric in all its indices. This is in agree-
ment with Kleinman’s® hypothesis and follows from the origin of the
nonlinear behavior in the electronic motion.

Finally, we remark that nothing increases d like large values of the
linear susceptibilities yet, although, the values of most allowed reduced
tensor components A,;;, are near 3 X 107 esu they can vary by a factor
100:1. The molecular geometry will often indicate which end of the
range is likely to apply to a particular material.
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APPENDIX

We have throughout adopted a notation, originally introduced by
Bloembergen'® and his colleagues, in which two fields with complex
time dependence T’ and E7¢'"" produce a polarization Pee’t at
the algebraic sum frequency a = 8 + v according to

Poe'®t = difT IR e T (144)
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If the actual fields vary as cos w,i and cos w.t there will be terms in
P at @, + @, and @, — w, obtained from (144) by letting 8 = «, , @, ,
ete. where @, = —w, .

This notation has several advantages in theoretical calculations for
much the same reason that the use of complex numbers simplifies ac
circuit theory, and for much the same reason it has a number of dis-
advantages in calculating numerical values. For this reason, it has not
gained general acceptance by experimentalists who tend to use a number
of different notations, some of which, especially in electro-optics, are
of respectable antiquity. The difference between the two notations
introduces various factors of 2. These are independent of the general
reluctance of physicists to state unequivocally whether they are using
peak or rms fields. In particularly fertile ground, these various factors
can luxuriate and blossom as factors of 8 in the final answer. We use
peak fields in all our definitions.

If the applied field is

F(t) = (0, Iy coswl, Fy cos Qf), (145)
it has components K% = K% = iF, lf,‘,’ = E] = 1F, and the 1 com-
ponent of P(t) is

Pl(f) — %{(i{"-_,f,'lf'glﬁ‘ae"(”"' )t + CC] + {dlazr F28-'(u+ e + CC}
+ %{dﬁngzFﬂcl'(wfﬂ)l + CC} + :}_{dlféc;FSF2el'(w-ﬂH +CG}, (146)

where we have used di = d5; and suppressed the first superseript,
which is always the algebraic sum of the second and third superseripts.
We can also write (146) as

Pi(h) = $dvo + disa} FoF, cos (@ + @)t
+ Hdl + dBIFF, cos (0 — Q)L (147)
If @ = Q, this gives
P(t) = 3{dis” + di50 | FoFy cos 20t + 3{disd + di5° | FoF, . (148)
Now the usual experimental definition would be
Pi(t) = (disy + dis)FaFy cos 20t + (dVy + diy)FuF, (149)
and so we see that
i (150)

rectification o), = id:7. (151)

h g dnL
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If we let @ = 0, we have

Pi(t) = (dis” + diss)FoFy cos wl. (152)
The experimental definition reads
P(f) = di2aFsF, cos wl (153)
Le.,
0x12 = diaals | (154)

so that it is possible to contract the last two suffices according to the
scheme

11 -122-5233—53, 32=23—4, 31=13—5, 12=21—6.
(155)
Thus, d*% (i =1 --- 3, p = 1 -+ 6) represents d}s and, for example,
dos = dag, = doya -
P, cos 2wt = (dis, + dis)F.Fy cos 2wt
= 22E LI, cos 2wt = d¥i-2F,Fy cos 2wl. (156)
It is therefore common to define the “vector”
F=5,, 5., 5,5 ,5 = Fr,F3, Fy  2F.F, , 2F,F, , 2F\F, (157)
so that

L]
= Z d.-,,ff,, . (158)

With this notation @25 = d2¢ = d2s # dj; + diis but also d') = dy] .
In the electro-optic case, the subscripts referring to optical fields
can be contracted

2( ‘f)'u{n = d:“,“r = (l:k p = ]. L [), ib = 1.3. (159)

ijk
The alternative ordering (155) leads to d;; .
Note that in this case, since d operates on two distinet fields, one
optical the other de, there is no possibility of constructing a ‘‘vector”
such as §. The sum implied in the definition of d; is

bx, = Oxi; = Zd ¥ orel (160)

Electro-optic data are often presented as coefficients r,, in the sus-
ceptibility ellipsoid. If n is the refractive index (assumed isotropic),
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PR -0 . ¢ PR - | 161)
For = n ay = —114 ik = "‘nl iik s ( 0

The dimensions of d and r are those of an inverse field.

In the MKS system, the units are meters per volt, in the cgs system
they are centimeters per stat-volt. One MKS unit is 3 X 10* esu and
so numerical values of d in esu are the larger numbers.

We have not discussed the influence of a mixed use of rms and peak
fields but we note that if rms fields are used throughout the values of
the coefficients will all be v2 times larger than if peak fields are used
throughout. No one is, however, likely to use an rms de field.

Experimental values of the electro-optic coefficients are usually
expressed in absolute units and the only ambiguity that can occur is
associated with whether the measurements were made at constant stress
(unclamped) or constant strain (clamped). It is safe to assume that
constant stress is implied by the absence of any definite statement to
the contrary.

Second harmonic coefficients are sometimes given in absolute units
but more often relative to the coefficient d2% in KH,PO, . An absolute
measurement of this by Ashkin, Boyd, and Diedzic®* gave

dys, = 3dis““ = 3 X 107° esu,
but this is now believed to be too large. The most recent measurements,
Francois®, Bjorkholm,* give

2w 2w ww

a1 = 3dan* = 1.38 X 107° esu =+ 12 percent

for the coefficient in NH,H,PO, . Relative measurements show that it is
identical in KDP and ADP. We have used a rounded off, compromise
value

KDP @ = 325" = 1.5 X 107 esu (162)

in compiling the tables. It affects all values of d°* at optical frequencies
but not at 10.6 u.

It will be apparent that in comparing theory or experiment with
experiment, considerable care is needed to be sure that like definitions
are being compared with like.
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