Generalized Optimum Receivers of
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Optimum reception of two zero-mean Gaussian signals is accomplished
by comparing a quadratic form [[ x(s)H(s,t)z(t) ds dt in the observable
waveform xz(t) with a predetermined threshold, if the symmetric kernel
H(s,t) can be given as a square-integrable solution of

[[ RisaH@iRG) dudo = Rolsy = R0,

where R,(s,t) and R.(s,t} are the covariances of the two signals. In this
paper, we generalize this result so that 2., [{ &' (s)H 1, (s,t)x™ (t) ds dt
is the quadratic form to be used and {H,,(s,t)} is given as a formal solu-
tion of

g ff %Rl(s,u)Hzm(u,v) %M;Rg(v,i) du dv = R.(s,) — Ri(s,1).

In other words, the generalized quadratic form 1is in the derivatives of x(t)
as well as x(l) ilself and the kernels H,,(s,t) consist of two-dimensional
6-functions in addition to square-integrable functions. This resull is ex-
tended lo the case of two nonzero-mean signals and then lo the case of M
Gausstan signals in noise.

I. INTRODUCTION

Consider the problem of discriminating between two zero-mean
Gaussian signals by observing the sample function z(f), 0 = ¢ = 1.
We assume that their covariances R, (s,t) and R.(s,t) are continuous
and positive-definite on [0,1] X [0,1]. According to previous results,” "
if the integral equation

f f Ri(s ) Hu R 1) dudv = Ru(s,f) — Ri(s,t), 0 =st=1, (1)

577
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has a symmetric and square-integrable solution H(s,), then the fol-
lowing decision scheme minimizes the error probability:

choose R,(s,t) if fl f] x(s)H(s,D)x(f) ds dt < c, (2)

choose R,(s,t) otherwise,

where

¢ =2log™ — > log )\, (3)

22 i=0
in which «, and a, are the a priori probabilities associated with the
two signals, and A; > 0,7 = 0, 1, 2, --- , are the eigenvalues of an
operator RyIR,R;1.*

Unfortunately, existence of a square-integrable solution of (1) is
too restrictive a condition. Thus, relaxation of the condition, which
amounts to generalization of the quadratic form of (2), is desirable.
In this paper, we accomplish this in two ways: one is to allow H(s,t)
to contain &-functions as well as square-integrable functions, resulting
in the generalization of the structure of the quadratic form; the other
is to consider the derivatives of z(¢) as well as x(¢) itself, thus generalizing
the elements of the quadratic form. The result is extended to the case
where the means of the two signals are nonzero, and is further extended
to the case of M Gaussian signals in noise.

II. GENERALIZED OPTIMUM RECEIVER OF TWO ZERO-MEAN GAUSSIAN
SIGNALS

Consider the following generalization of the quadratic form of (2):
L 1 1
W = 3 [ [ 2P@Huneoe"0 ds s, @)
I,m=0 Y0 0
where z'" () is the Ith derivative of z(¢), and

Hinol) = 3 @i 8 — 8) 30t — 5)

* More precisely, As, ¢ = 0,1,2,..., are the eigenvalues of the extension
of By R.R7 4 to the whole of £;, where R, and R, denote the integral operators with
the kernels Ri(s,t) and Rs(s,t), and £ the space of all square-integrable functions on
[0,1]. We recall that existence of a symmetric, square-integrable solution of (1)
implies that E73R,R7* has a unique bounded extension to the whole of £; having
eigenvalues [A;} such that 0 < II7_ g A < .
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+ HZ:; [6(s — £)h;m(l) + E,—;,,.(S) o(t — )]
+ hin(s) 8(s — ) + Hin(s\0), )

in which a@;.;,, are real constants, and 0<s; , t; =<1, and h;;,,(), h;1.(f) and
hi(t) are square-integrable functions on [0, 1] Whlle H,..(s, t) are square-
integrable functions on [0, 1] X [0, 1]. In writing (4), we have assumed
that almost all sample functions of both signals have rth derivatives.*
Note that the nonsquare-integrable part of H,,(s,t) consists of three
types of two-dimensional é-functions: (¢) those at points and their
mirror images with respect to the diagonal s = ¢, (¢f) those along
horizontal lines (¢ = constant) and their mirror images (s = constant),
and (7#7) those along the diagonal. By formally substituting (5) into (4),
we obtain an explicit form of @(z), namely,

Q('E) = E I:E a‘er:r( )(S:)x(m,(s)

I,m=0 i k=1

+ 500 | [hyin(l) 4 Fon()™(0) di

+ f O DR () dE + fn l f e PO H s D™ () ds dt] (6)

As the corresponding generalization of the integral equation (1),
we consider the following:

f f — R\(s,wH,,.(u, v} = F.(v,0) du dv
I,m=0 du v

= Ro(s,t) — Ri(s,f), 0 s=st=1. )
Again, through formal substitution of (5), (7) becomes

Z {Z Giktm tR(S |- "'6 Ro(s,0)0ms + Ej:

1, m=0

m

I: —1 Ri(s,0)].- =t; :lm(u) 9 Rz(u f)

]du
- *A

simple sufficient condition for this is existence of (8r+2/asr+air+l) Ry(s,t),
=1,24

—|— P R 1(s, u)h,,,,,(u)




580 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

m

Y X 3 Lot g -
-l-j; 3t T Whim () o Rau ) du+f; j; ot T H 1(10)

-_-(%;Rz(vlt) du dv} = Rz(s,t) — R](S,f), 0=sf=1, (8)

where we have assumed that (9°/ds"9t")R.(s,t) and (8°7/3s"0t")R.(s,t)
exist and are continuous on [0,1] X [0,1].

Unlike H(s,t) of (2), which is uniquely given as the symmetric,
square-integrable solution of (1),* the defining elements of Q(zx) (i.e.,
{@isin)s {8}, () (i), (Raa(D1, {hun(®)}, (Hin(st)}) cannot be
uniquely determined by (8) in general for a given pair of covariances
R,(s,f) and R.(s,t). Nevertheless, we can establish the following:

If () Ri(s,t) and R.(s,t) are positive-definite,

(#1) (8% /8s"at" )R, (s,t) and (9°"/ds 9t ) R.(s,t) are continuous,

(#42) for almost all sample functions both signals have rth derivatives,
and

(7¢) there exist some set of finite sequences {@;un}, 18}, {{;}, {Ria(D)],
im®), b)) and {H,.(s,t)] which satisfy (8), then the decision
scheme (2) with [i[; x(s)H(s,t)x(f)dsdt replaced by Q(z) of (6) is
optimum.

The proof is based on two measure theoretical facts: (§) two prob-
ability measures P, and P, corresponding to two Gaussian signals are
either equivalent or singular,®® and () if they are equivalent then
there is a special random variable called the Radon-Nikodym derivative
(dP./dP,)(x), in terms of which the optimum decision scheme is
specified as follows:'

ap,

choose R,(s,f) if aP,

@) <2,
22}
choose R,(s,t) otherwise.

Hence, in the Appendix, we first prove tllat existence of {@;iim}, {81,
(61, 1him@® ), {Rim@® ], )} and {H,.(s,t) satisfying (8) implies
equivalence of P, and P, . Then, it follows that the eigenvalues X; , ¢ =

* The uniqueness of H(s,t) follows from positive-definiteness of R.(s,t), ¢ = 1,2,
and square integrability of H(s,t).

+ Continuity of (827/ds atr) Ri(s,t), 1 = 1, 2, and existence of x((¢) for almost all
2(t) may be replaced by a simpler but stronger condition that (82 +2/as™Tatm+)
Ri(s,t), © = 1, 2, exist.

I From the communication theoretical point of view, singularity corresponds to
the case of “perfect reception’” where error probability vanishes. For the mathe-
matical definition, see Ref. 7.
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0,1,2, -, exist.”* Next, we explicitly obtain A; from (S8) and show that
0<]]=, N\, <. Thus, the threshold ¢ of (3) is well defined. Lastly,
we prove that

@ \-}
:5_11% (x) = (H” )\.—) exp [LQ(x)] o)

for almost all x(f) of both signals. Then, by substituting (9) into the
above decision scheme and taking the logarithm of both sides, the
assertion is immediately proved.

III. EXTENSION TO TWO NONZERO-MEAN GAUSSIAN SIGNALS

The preceding result can be extended to the case where the means
of the two Gaussian signals are no longer zero.* Let P,, and P,, be
two probability measures corresponding to two Gaussian signals with
means m,(f), ma(f), 0 = ¢t = 1, and covariances R,(s,t), Ra(s,t). m,(¢)
and m,({) are assumed square-integrable while the assumptions on
R (s,t) and R,(st) remain the same. Introduce a third measure P,,
corresponding to a Gaussian signal with mean m,(f) and covariance
R (s,t). Then, P,, and P,, are equivalent and

dP,, 22 21
ap, @ = ap,, @ ap,, @

for almost all 2(f) of all three signals, if and only if P,, is equivalent
to P.,, which in turn is equivalent to P,, . According to a previous
result,” if there exist finite sequences of real numbers {d;,}, and |{{;},
0 = {; = 1, and square-integrable functions {7} which satisfy

R YTy
= my(f) — m(t), O0=1¢t=1, (10)

"y

Z [Zj ;. ;, Ri(s,0)

for almost all z(f) of the two signals, then P,, and P,, are equivalent
and (dP,,/dP,,)(x) = exp [L(x)] for almost all x(¢) of the two signals,
where

+[ (li:'[ M]ﬁf(o dt}- (ant

* This extension follows the development in Ref. 3, pp. 1628-1629 and pp. 1636~
1637.

t This is the “sure signals-in-nvise” counterpart of the result in Section II,
namely, the generalized optimum receiver of two sure signals in Gaussian noise.
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The remaining half of showing the equivalence of P, and P, and
obtaining (dP;,/dPa,)(x) is accomplished simply by replacing x(¢) with
x(t) — ms(t) in the result in Section II. Thus, upon combination, we
conclude that, if there exist a set of finite sequences {d,,}, {{;}, {F:(1)}
satisfying (10) and another set of sequences {@unl, {8}, {4}, (Rim(D],
(Riim(@® ), (him(®)}, {Hia(s,t)} satisfying (8), then the optimum decision
scheme for this case is specified as follows:

choose m,(t), Ri(s,t) if 2L(z) 4+ Qx — ms) < ¢,

choose m.(t), R.(s,t) otherwise.

IV. EXTENSION TO M GAUSSIAN SIGNALS IN NOISE

The above result can be further extended to the problem of dis-
criminating among M Gaussian signals in Gaussian noise.* Let m(f),
Ri(sit) and a; ,7 = 1,2, --- , M, be the means, covariances and a prior
probabilities of the signals, and R,(s,) the noise covariance where
the noise mean is assumed zero. The assumptions concerning m;(t),
R.(s,t) and R,(s,t) are the same as in Section III.f Denote by P.; the
probability measure corresponding to the 7th signal plus the noise,
and by P, the measure corresponding to the noise alone. Then, according
to the theory of the generalized maximum likelihood test," if each
P, is equivalent to P, ,{ then the optimum decision is to choose that
mi(t) and R,(s,t) for which a,(dP;./dP,)(z) is maximum as a function
of ©.§ Observe that, if the ith signal plus the noise and the noise alone
are interpreted as the two Gaussian signals of Section III with means
mi(t) and zero, and covariances R,(s,t) + R.(st) and R,(s), then
the condition for equivalence of P;; and P, and the expression for
(dP,./dP,)(z) are obtained simply by the following changes: m.(¢) — 0,
ma(t) — mi(t), Ri(s,t) — R.(s,t), Ra(st) — R.(s,8) + Ri(st). Thus,
we conclude that, if for each ¢ there exist a set of finite sequences
{@::}, [£;;) and {§.. (1)} satisfying

> [E i o R Dlumtis + [ 37 Bals.070® ds] = m (),

=0

0

IIA

14

IIA

1,

* This extension follows the development in Ref. 10, pp. 2192-2194.

t Ri(s,t) need not be strictly positive-definite.

i Equivalence of P;; and P, corresponds to the condition that the ith Gaussian
signal cannot be detected perfectly in the presence of this noise.

§ If ay(dP;;/dP,) (xr) becomes maximum at more than one value of i, choose the
lowest of such i-values. See Ref. 11.
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and anothex; set of finite sequences [@ijuim), {8:i}, {tii), {Riia(D)},
{ﬁmm(t)} {him(t)} and [ﬁilm(s 1} satisfying

1;0 { E a’-:klm lR (3 t)|f=l|r ds m [R (S t) + R (S t}]a-ﬂau

£ 3 [ DRl hinn) 2o (R + )

+ a" R.(s u)ﬁ,,,,,,(u) (R (6.0) 4 Ri(s,0) ] du
f — R,(s, u)fb,,,,,(u)

6‘9— [Ro(s.0) + Ri(s.0)] du + f f ,R () H i1m(te)

: Ruol) + Ru@.0)] du dv} — Ris), O0=<si=1,

then the optimum decision is to choose that signal (m;(t), R:(s)) for
which 2L,(z) 4+ Q:(x — m;) + ¢, is maximum as a function of 4, where
L:(z) and Q,(z) are defined by (11) and (6) with d,,, f;, §:(f), and
@ikim iy Ly Ritm(D), ,;,,,(t) le,,,(t}, I—I’;,,,(s,f) replaced by d;, 5, §a(8), and
@iirms Sisy Eiss Bisim(D)y Biiim() Rirm(D), Hiim(s,t), respectively, and

c; = 2loga; — 2 log AS?,
n=0
where A, n = 0, 1, 2, --- , are the eigenvalues of the extension of
I + RJAR.R;} to the whole of £, .

APPENDIX

Let P, and P; be two Gaussian measures associated with a separable
and measurable process {z(f), 0 = { = 1} with means zero and co-
variances R, (s,f) and R,(s,?).

Theorem: Suppose R,(s;t) and Ri(s\t) are (strictly) positive-definite,
(0 /8s"at )R\ (s,t) and (8°/3s'a)R,(st), 0 = r < o, exist and are
continuous on [0,1] X [0,1], and almest all sample functions have the
rth derivatives with respect to P, and P, . If there exist a set of finite se-
quences* {auim) (8}, (G} (hitn(®D)y (@) {un() and {Hin(s)}
which satisfy (8), then

* The definitions of these sequences are given after (5).
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() P, and P, are equivalent, t.e., P, = P,
(%2) (10) holds a.s., [Py, Ps).*

Proof: For simplicity, we introduce the following notations:

' "
Ria'(ult) = _a_STRI'(S,t)L:u ] Rv’t"‘(s!y) = WRl'(S)t)[i=n ]

l+m

Rivionup) = Ega-é-ﬁﬁ,-(s,;)[,ﬂ_.:“ =12

T ny

Kl(S,t) = Z Z aiku‘.let‘(’s,Si)Rzam(sk ] t)!

I,m=0 j, k=1

KQ(SJ) = i i: [Rlz*(s!ti)(Rm"‘hifm)(t) + (Rllzﬁilm)(s)Rh"‘(i’i 1 t)]‘

l,m=0 j=1

Ki(sl) = Xr: f: Ryyi(3,0) hpv() Roum(u,b) du,

I,m=0

Kl = 3 fo 1 fﬁ R0 H o) Raume.) dus do.

l,m=0
Note K(s,t), © = 1, 2, 3, 4, are square-integrable. Again, we delete
the arguments s and ¢ of the kernels to denote the corresponding integral
operators. Thus, (8) becomes

4
ZK.‘=R2_R1, (12}
i=1
hence,
RIR.RTY — T = Y RIUK.RTL. (13)
i=1

(¢) To establish P, = P, , it suffices to prove that R 1R,R;? is densely
defined on £, and R{*R.R7* — I is of Hilbert-Schmidt type, i.e.,
[|RTIR.RTY — I|| < «.**°f The principal tool to be used for this
proof is the following expansion:'

Riyn(sit) = 2 wfP@F7@), 0=l m=r, (14)

uniformly on [0,1] X [0,1], where u; > 0 and f,(f),? = 0, 1,2 ... |
are the eigenvalues and orthonormalized eigenfunctions of £, .
To prove that RT*R,R7Y is densely defined on £, , it sufficies to show

* tg.5 [Py, Pa)” is the abbreviation of “almost surely with respect to P, and P,".
7 ||4|] denotes the Hilbert-Schmidt norm of an operator 4.
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that R;*R. is bounded since R;? is densely defined. Now, by applying
the formula ||A||* = tr A*A = 3, (f., A*4f,) to the individual terms
of R71K, first, we obtain

r ny

HR("K. [| = :Z Z | @ikrm |

.m=0 j. k=1

[z ‘ [ @)@

r 1

Z Z Ia,-uml\Zu‘-

bom=0 j,k=1 T

2 1 i
f Roun(ss , 1) Raen(1t,50) du]

12(9) * Riumen(se o 82) |*

r na

= E Z | @irim | |R1.r,i(8,-,8,-)Rg,m,m(Sk , 88) P,

L,m=0 j, k=1

where (14) is used for the last two equalities. Similarly,

H IB;‘I{E || _5_ 2 Z {[Rlslll(ti ' t:’)(h’ilm |R§c"’£"‘hl’1M)]%

t,m=0 1=1

+ [(himl rRh't'EHm)R;u"':"‘(ti ' t:)]!}1
|| RI.-QKS || g E l tl‘ (Rlall",m R;nmlm) |i:

I,m=0

T

|| RVK, || = ;Z:'n |t (Brorit m Raumen)
where Rll't‘.m(syt) = ﬁlm(s}Rhiti(S)t)ﬁlm(t); Rln‘i’.m = ﬁm&Rllf!‘Elm-
Hence, from (13), ||R¥R,|| < =.

To prove ||Rj}R,R;Y — I|| < e, we apply the formula [[A[|* =
37 ||Afi|[* to the individual terms of RT*K,R;* first. Thus, we obtain

1
7
L

IRPKED S 5 3 Lt || 1RO RenC 0l ) |11

m=0 j. k=

r ny

= Z Z |ﬂmm | lRls*H(S; ' S5)

L,m=0 j,k=1

1
3

RRoun(- 180 ||

where (14) is used twice, and R7*R.,(-,s,) denotes the result of Ry}
acting on an s-function R.,(s,s;). By differentiating both sides of (8)
with respect to ¢, we obtain

Ran(s,8) = Rin(s,s) + 12 Qixtmlly (8,5 Rumim (81 5 81)

4+ 3 3 Rt Revmemhiin) () + B Rasmin(ls 501

I,m=0 j=1
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f R (5,0 hum () Raumem(ut,52) s

f f R8s H (@, 0)Roym = (v,8:) du db.

Thus,

”R;%R'M"'(':Sk) ” = ,Rl-"'l"‘(sk .Sk) ll

Hence,

Similarly,

+ Z Z ] Aikim I IRh!(S,' ) 8i) I} Roymem(si ) S)

l,m=0 j, k=1

+ l;ﬂ E] {| Risteelts , £) ' | Rauminhiom) () |

+ (Eilm ] Rla’tlhjim)* IRZJ”‘S"‘('SJ' ] sk) H
-+ E (Bayemem(s: o +), Rl-’x' Rh"'l"‘('rsk))}

I.m=0

+ 120 Baumin(se y *)s Rl-‘:f.m Rypmyn(- ,s,‘))i

< @,

[| ROKRY || < w.

”R[ *I£2R1# “ = Z Z ” Rlx’t'(t: ’ f) Ii H R"iR“"'h’l"‘ ||
+ (me ,Ruf:f}rlnm)i ” Ry iRZ""("t") ”]

From (15),

I,m=0 j=1

|| RO Rymbsim || £ (Bitm s Riymenhiim)?
F 3 L anm | | Ruilss s 8) P ] Rovmemhyin)(ss) |

tom=0 j. k=1

+ Z Z ,R]a’l'(tr ] ’) |* i ilm ;Rzn"‘l"hi!m) I

L.m=0 j=1

+ (ﬁifm ] llrti'h.l‘.!m)i l (Rﬂa“l“hff"l (t!) ”
+ Z (hflm |R2a"‘l"‘R]|'¢'.m RZ«"‘:"“r?'iil'ﬂ)i

1, m=0

+ 12::0 (hilm ] RE."‘:"'E“'H.M RQun‘mh“m)i

< =,

(15)

(16)
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and, from (16)
| RV R (1) | < o0

Hence,
|| RUKRY || < .
Similarly,
Il R;*K;,R,‘* Il
A 2 i
< [Z.u Ry f Rore (- W0h1n (" () du ]
l,m= El i

Z {[ tr(Ru‘a R, "'1'")| + Z E Ia;u m’ l

I,m=0 r=0 § . k=1

'lRlu"J"(si ssi)(RZI""l"'(sk ] ')IRIIIII,"’I R?n"'l""(')sk) I*

1A

+ Z Z ” Rla el (tl 1 f)(Ran"' hr[ m' oy Rla‘l‘.m RZ:"‘!""hil'm') ll‘

=0 j=

+ ‘(hil'm' lRll"l"ﬁil’M' (REI’"""'(fl' ’ ')l Rll'l'.m Rz:"‘i""('rﬁi))i*]

+ Z | tr (Rl,l'll'.m' Ryym imBiytet m Raument) Ii
',m’=0

+ i |t!' (Ehi"t".m’IB?;'"':"'RI-‘H,m RE-"‘I"") |“}

'm’=0
< oo,
Similarly,
|| RPK.R |

S 2 (X il B Ron aifi |17
= 2 {I tr (Rustetom Rumer) |+ Eﬂ, 2w |

| Rygrgee(s ) S (Raygmrem(Si s '):Rnf:*.mRza"'w'(':sk)) J&
+ E » ; [l Rl Pretr (t; ’ t)(hjl m’ _.m l"‘RIa't‘ RZ."!""h‘jl'm‘) il

+ | (Eii'm’ ,Rla"l"ﬁ“’m')(REI""l"‘(f‘i ’ ')s Rls*l’.m R2:"'l’"'('1!ﬁ)) P]

+ Z ltr (Rln"l".m' R2s""l"‘Rls‘1'.m R?s"‘l"") !i
1" ym' =0



588 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

+ E itl’ (Rla"ﬂ'.m’ RZ!”“I’"RINIII.TH R2a"‘t"") 'i}

1m0
< @,
Therefore, from (13),
[| RTVRR — || < .

(77) We have established in (i) that R*R.R;? is bounded and densely
defined on £,. Hence, it has a unique extension to the whole of £,,
which we denote by M. Since M — I is a Hilbert-Schmidt operator,
M has eigenvalues and orthonormal eigenfunctions, which we denote
by \; and ¢;({),7 = 0,1,2, --- . Note 0 < X\, = | M |, where | M | is
the norm of /. Then"

Rl,r,...(s,t) = ‘Z (Rf¢s)”J(S}(R?r‘o,»)(m’(t},
0<l,m=sr, (17
Rz.u-'-(s t) = z A (RL‘P )(”(3)(R q‘!;‘)(m)(i‘.)

uniformly on [0,1] X [0,1].
Let ¢} be sequences of funections in the domain of B! such that
= lim. ¢, for each 7. Multiply both sides of (12) by (Ri%e;.)(s)
and (R7%0..)(t), integrate with respect to s and ¢, and let n — oo,
Then, the four terms on the left-hand side become

(R , KiRTY01)

= E E @irrm(BY ‘P.n:Rn’( 3))(R°-'"(31 , ), Ry ED...)

1,m=0 5, k=1

T ny

= E Z Aikim 2 (‘P:n y P }(RI‘P )”)(SJ') 2”: }\,(R?(P,)(M)(Sk)(ﬁﬂ, ] Q’:‘n)v

l.m=0j,k=1

where (17) is used for the second equality. By virtue of (17) again,
we can define an s-function R}, (s,u) for any w € [0,1] by

Ri,(s,u) = L.im. Z . (8)(Rip,) " ().

n—oo r=

Then
Z (ﬁ"m ,@ (RI‘PD)(“(SJ') = (‘Pin ,IE?U(' 181'))1

Z N(Rie) () (en  @in) = (Rin(s , -), Mes),
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and
lim (o, RE(-8)) = (oo s Rlul-59) = (Rie) (59,
lim (Bl,e(ss , +), Men) = (Rlnlon s ), Me) = N(Rle) ™ (50)-
Hence,

llm (Rl._%‘pm ] KlRl—%‘pm )\A Z Z a’JHm(Rl‘p )“)(S,:)(R%(Pi)(M)(S*).

n—oo ym=0 j k=1
Similarly,
lim (Rl_%‘ﬁ’-'n ) K2Rl_%‘19|'n)

n—+o0

= lim E E [(Rl @in » Brot(- 1)) (Rogmbyym , Ry qﬂm)

n—w I, m=0 j=

+ (Rl_%ﬁam 3R1l’hNM)(R25’"(tf ’ ')! R: ‘pi'n)]

=\ Z Z(Rw DN RY) ™, hytm + Riim),

ym=0 j=

lim (Ri Y., , KsRTYe:)

=0

= lim 2 1 (R i s Rioi(c 0) him (@) (Roum(u, ), Ri¥os) du

n—w 1,m=0 J0

1 m=0 ,/; (R“D )m(u)hfm(u)(Rl%)(m)(u} du,

lim (Rr ©Cin KlRl_ ‘Pt‘n)

n—w@

—tim 3 [ [ B, R i) on) Ran o, ) Ri 00 ds o

n—w I, m=0

= h Z ((Rlﬁpa “)) H!m(Rgfroi)(M))'

On the other hand, the right-hand side becomes
lirn (Rl_%‘Pt‘u i (R.’ - RI)R;%‘FM) = lim (‘Pin + (BI - 1)&0.‘..) = )\l' - 1-

n—+ n—w

Hence, by equating both sides and dividing by A, ,

L= B 5 et )Ry 0

I, m=0 i.k=1
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+ Z (RI‘P )(”(t )((RI(PJ(M): hilm + E’ilm)

+ [ o) P dhenti Rl )""‘(u)du+((qua,)“’.H,,,(qua.-)‘"’)]v as)

Thus,

> (1 - %‘“) = Z [Z CirimB1aten(s; 5 5i)

1 l,m=0 i.k=1

+ ZlRl...m(h,-,,, + B () + f Ruvten(uu)hun(u) du+tr(Rl.umﬁm,)]

< o,
where (17) is used repeatedly. Hence,*

- () o[ B0~ D] e

where
2(x) = Lim. (z,Ri%.), [P, P)] i=0,1,2,---. (19

Now, z‘”(¢) has the following orthogonal expansion:™

zP(f) = Lim. Zn(x)(Rﬂa)‘“(t), P], 0=1

n—+a0 1=0

1A

T,

uniformly in ¢, Hence, there exists a subsequence of the partial sums
>y ni(x) (Rie,) P (t) which converges a.s. [Py] to z'”(f), uniformly
in t. Therefore, from (18) and (19),

> (1 - ;1;):1?@)

[ a,.k,mg;”’(s,.)x""’(sk) + E Im(fr')(x(m: hitm + Eum)
=0 i i=1

+ j; :v“)(u)alm(u)x('“)(u) du + (:Cﬂ)l ﬁtmxcﬂn)] , a8, [P:l]r

which completes the proof of (77).
* See Ref. 3, pp. 1653-1654.




GENERALIZED OPTIMUM RECEIVERS 591

REFERENCES

1.

Kadota, T. T., Optimum Reception of Binary Gaussian Signals, B.S.T.J., 43,
November, 1964, pp. 2767-2810.

2. Pitcher, T. S., An Integral Expression for the Log Likelihood Ratio of Two

© mN o G W

10.
11.
12.
13.

Gaussian Processes, SIAM J. on Applied Math., March, 1966, pp. 228-233.

. Kadota, T. T., Optimum Reception of Binary Sure and Gaussian Signals,

B.8.T.J., 44, October, 1965, pp. 1921-1658.

. Loeve, M., Probability Theory, 2nd ed., Van Nostrand, Princeton, 1960.
. Feldman, J., Equivalence and Perpendicularity of Gaussian Processes, Pacific

J. Math., 8, No. 4, 1958, pp. 699-708.

. Hajek, J., On a Property of Normal Distribution of any Stochastic Process,

zechoslovak Math. J., 83, 1958, pp. 610-618.
Halmos, P. R., Measure Theory, Van Nostrand, Princeton, 1950.

. Root, W. L., Singular Gaussian Measures in Detection Theory, Proc. of Symp.

on Time Series Analysis, John Wiley, New York, 1963, pp. 292-315.

. Kadota, T. T., Differentiation of Karhunen-Loéve Expansion and Application

tAo O‘]til’lglélm Reception of Sure Signals in Noise, IEEE Trans. Inform. Theor.,

ril, 1967.

Ka ots.', T. T., Optimum Reception of M-ary Gaussian Signals in Gaussian
Noise, B.S.T.J., 44, November, 1965, pp. 2187-2197.

Kadota, T. T., Generalized Maximum Likelihood Test and Minimum Error
Probability, IEEE Trans., IT-12, 1, January 1966, pp. 65-67.

Kadota, T. T., Term-by-term Differentiability of Mercer’s Expansion, to appear
in Proc. Am. Math. Soc.

Kadota, T. T., Simultaneous Diagonalization of Two Covariance Kernels and
Application to Second-Order Stochastic Processes, submitted for publication
in SIAM J. Appl. Math.






