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A telephone connecling metwork is given, and with full information
at all times about its state, routing policies are sought which minimaize
the expected number of attempted calls dented service in some finite interval.
In this paper, the search is pursued as a mathematical problem in the con-
text of a standard traffic model in terms of optimal control theory and dy-
namic programming. Certain combinatorial properties of the network, earlier
found to be the key to minimizing the loss, also turn out to be relevant
here: they lead to policies which differ from optimal policies only in
accepting all unblocked call attempts, and provide a ‘“‘practical’
solution of the problem posed. In many cases, the policies found vindicale
heuristic policies earlier conjectured to be optimal.

I. INTRODUCTION AND SUMMARY

We study the problem of optimally routing calls in a telephone
connecting network during a finite time interval [0, ¢] over which the
traffic intensity need not be constant. The present work reports on
extensions of earlier results' on routing in telephone networks with
constant traffic intensity; the principal novelty lies in the fact that
whereas previously we minimized the probability of blocking* here
we seek to minimize simply the expected total number of call attempts
denied service in a given fixed time interval [0, {] on which the traffic
intensity may vary.

A traffic model, the same as that used in Ref. 1, is desecribed (Sec-
tions II to IV), and the problem is formulated mathematically in the
manner of optimal control theory (Section V). The associated Hamilton—
Jacobi equation is written and it is noted that this equation has a
solution constructible in terms of functions satisfying nonlinear integral

* Defined asymptotically as the stochastic limit, as ¢ becomes large, of the
fraction of attempted calls blocked or rejected in [0, ¢].
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equations derived from the principle of optimality, (Section VI). An
isotony theorem, based on the same combinatorial properties as were
used in Ref. 1 to minimize the loss fraction, then exposes the optimal
policies to within rejection of unblocked attempted calls. That i,
policies are arrived at which differ from optimal policies only in that
the latter might reject some unblocked calls at some times (Sections
VII and VIII); these policies are the same as those that were arrived
at in minimizing the loss.

II. STATES, EVENTS, AND ASSIGNMENTS

The mathematical model of Ref. 1 will be used. The elements of
this model separate naturally into combinatorial ones and probabilistic.
The former arise from the structure of the connecting network and
from the ways in which calls can be put up in it; the latter represent
assumptions about the random traffic the network is to carry. The
combinatorial and structural aspects are discussed in this section;
terminology and notation for them are introduced. The probabilistic
aspects are considered in a later section.

A connecting network » is a quadruple » = (G, I, @, S), where ¢
is a graph depicting network structure, I is the set of nodes of G which
are inlets, @ is the set of nodes of @ that are outlets, and S is the set
of permitted states. Variables z, y, z at the end of the alphabet denote
states, while » and v (respectively) denote a typical inlet and a typical
outlet. A state z can be thought of as a set of disjoint chains on G, each
chain joining I to 2. Not every such set of chains represents a state:
sets with wastefully circuitous chains may be excluded from S. It is
possible that 7 = @, that 7 M @ = 6 = null set, or that some inter-
mediate condition obtain, depending on the ‘“‘community of interest”
aspects of the network ».

The set S of states is partially ordered by inclusion =<, wherez = y
means that state z can be obtained from state y by removing zero
or more calls. If z and y satisfy the same assignment of inlets to outlets,
i.e., are such that all and only those inlets u & I are connected in =
to outlets » £ © which are connected to the same v in ¥ (though possibly
by different routes), then we say that z and y are equivalent, written
T~

The set S of states determines another set & of events, either hangups
(terminations of calls), successes (successful call attempts), or blocked
or rejected calls (unsuccessful call attempts). The occurrence of an
event in a state may lead to a new state obtained by adding or removing
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a call in progress, or it may, if it is a blocked call or one that is rejected,
lead to no change of state. Not every event can occur in every state:
naturally, only those calls can hang up in a state which are in progress
in that state, and only those inlet-outlet pairs can ask for a connection
between them in a state that are idle in that state. The notation e
is used for a (general) event, h for a hangup, and ¢ for an attempted
call. If e can occur in x we write e £ . A call ¢ e  is blocked in a state
« if there is no y ¢ S which covers z in the sense of the partial ordering
= and in which ¢ is in progress. For & ¢ x, x — & is the state obtained
from « by performing the hangup h.

We denote by A, the set of states that are immediately above x
in the partial ordering =<, and by B, the set of those that are immediately
below. Thus,

AI
Bl

{states accessible from z by adding a call}

I

{states accessible from z by a hangup}.

For an event e & 2, the set A,, is to consist of those states y # z to
which the network might pass upon the occurrence of e in z. Thus,
if e is a blocked call, A,, = 8; also

U 4,.. = B.

hex

U A, = A, .

cer
e not blocked in z

The number of calls in progress in state z is denoted by [z| . The
number of call attempts ¢ ¢  which are not blocked in x is denoted
by s(z), for “successes in z.”” The functions |-| and s(-) defined on
S play important roles in the stochastic process to be used for studying
routing. In addition, we use

B. = number of idle inlet-outlet pairs blocked in state x
a, = number of idle inlet-outlet pairs in state =z,

and note that « = 8 + s.

It can be seen, further, that the set S of states is not merely partially
ordered by =, but also forms a semilattice, or a partially ordered
system with intersections, with M » defined to be the state consisting
of those calls and their respective routes which are common to both
x and .

An assignment is a specification of what inlets should be connected
to what outlets. The set A of assignments can be represented as the
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set of all fixed-point-free correspondences from I to ©. The set A is
partially ordered by inclusion, and there is a natural map y(-):S— A
which takes each state z ¢ S into the assignment it realizes; the map v(-)
is a semilattice homomorphism of § into A, since

x 2y implies y(z) = v(y),
Yz Ny = v Ny
We denote by I, the set of ealls that are free or idle in 2, i.e.,
F, = [c:cisidleimna} = {y(y — 2):ye A.},

where y — z is the state obtained from y by removing all the calls
ofx = y.

III. PROBABILISTIC ASSUMPTIONS

A Markov stochastic process z, taking values on S is used as a
mathematical description of an operating connecting network subject
to random traffic. Specifically, the Markov process of Ref. 1 will be
used, with the modification that the calling-rate per idle inlet-outlet
pair can depend on time. This model can be paraphrased in the informal
terminology of “rates” by two simple assumptions:

(7) The hang-up rate per call in progress is unity.
(#3) The calling-rate between an inlet and a distinct outlet, both
idle at time u, is AM(u) = 0.

The transition probabilities of z, will be described after a discussion
of system operation and routing.

IV. ROUTING POLICIES

It will be assumed here, as in Ref. 1, that attempted calls to busy
terminals are rejected, and have no effect on the state of the network;
similarly, blocked attempts to call an idle terminal are refused, with
no change of state. Attempts to place a call are completed instantly
with some choice of route, or are rejected, in accordance with some
routing policy.

A routing policy over [0, ¢] will be described by a measurable matrix-
valued function of time, denoted by R(u) = (r.,(w)), 2z, yeS,0=u = {,
having the following properties and interpretation: for each z ¢ 5,
let II, be the partition of A, induced by the relation ~ of “having the
same calls up,” or satisfying the same assignment of inlets to outlets;
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it can be seen that II. consists of exactly the sets 4., for ¢ £ x, ¢ not
blocked in x; for each w e [0, {], Y e II, , r,,(u) for y ¢ ¥ is a possibly
improper probability distribution over ¥, (that is, it may not sum
to unity over Y),
rea() = s(@¥) — 2,00,
yedx
and r,,(u) = 0 in all other cases.

The interpretation of the routing matrix R(u) is to be this: any
Y ¢ 10, represents all the ways in which a particular call ¢ (free and not
blocked in z) could be completed when the network is in state z; for
y e Y, r.,(u) is the chance that if eall ¢ is attempted in state x at time
u, it will be completed by being routed through the network so as
to take the system to state y. That is, we assume that if ¢ is attempted
in x at u, then with probability

1= 2 @ (1
vedes
it is rejected (even though it is not blocked), and with probability
r.,(w) it is assigned the route which would change the state z to y,
for y ¢ 4., . The possibly improper distribution of probability

{ra), ye Y}

indicates how the calling-rate A(u) due to ¢ at time u is to be spread over
the possible ways of putting up the call ¢, while the improper part (1)
is just the chance that it is rejected outright.

It is to be noted that, as in Ref. 1, routing is carried out with perfect
information about the current state of the network. The problem of
optimal routing with only partial information is much more difficult
(than the problem to be considered here), and it is not taken up.

Alternatively, we may define the convex set €' of all (routing) matrices
Rk = (r.,) such that r,, = 0, r,, = O unless y £ A, , and

Z Ty =1,

vedes

for ¢ & x not blocked in =z,

Tez = 'S(‘T) - ETIH »
vedg
and describe the routing policies as measurable functions on [0, {]
taking values in C.
A routing policy R(-) with r,,(x) = 0 or 1 is called a fized policy.
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V. FORMULATION OF THE PROBLEM

For the purpose of defining a Markov stochastic process it is con-
venient and customary to collect the probabilistic and operational
agsumptions made above in a time-dependent matrix Q(-) of iransition
rates. Indeed, each routing policy R(:) determines such a matrix func-
tion, and so a process, according to the relationship @ = Q(R) given
in detail by

1’ ye .B_.|=
q”(u) — R(u)?’l:c:c'("'-"") ) Yye A,
l_l r] - NG — ), Y=z

0, otherwise.

If the routing policy R(:) is used, the transition probability matrix
Pu, £) = (p.,(u, t)), with

P, 8) = Priz, =y | 2. = 2},
will develop according to the backward Kolmogorov equation

P, =1 Q=QR)
aiup(u, ) = —QWP@, ), 0=uc=t

In particular, if the system starts at 0 with an initial probability
distribution given by the column vector p(0), then its distribution p(u)
at time w is [p(0)’P(0, »)]’, which satisfies the equation p(u) = Q(u)'p(u).
If the network is in state x at time u, the rate at which blocked or
rejected calls are being generated is A(w)[r..(u) + B.. Thus, with
r(u) = r(R(u)) the vector function {r..(u), z e S}, the total expected
number of calls denied service during [0, t] is just

D = D), 1) = fo " p0) 6 + BN du. )

We may, therefore, state our routing problem thus: Minimize D
subject to the conditions p(0) given, p(u) = Qu)'p(u), @ = Q(R),
R(u) e C, for u £ [0, t].

Let us now view the | § |-dimensional probability vector p = p(u)
as a “state-variable” whose “motion” is governed by the linear dif-
ferential equation p(u) = Q(u)"p(u). The criterion D is linear in p(-)
and the matrix entries of the control R(-) appear as coeflicients in
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the equation and in the criterion. The problem of minimizing D can be
approached and solved by the now classical methods of the theory
of optimal control,

VI. THE HAMILTON-JACOBI EQUATION

Let p, ¢ be | S [|-dimensional vector variables, and introduce the
Hamiltonian function

H(p,u, q,R) = Nwp'(8 + 1)
+ 2 20+ M) Xrg, — M@ + |2 Dad.

velBig yeAg

Let H* be the minimum of H for R ¢ C, i.e.,
H*(p,w, @) = min \wp'Hg + Mep'Rg — X p.Nwr. + | = [la.},

where H = (h,,) is the “hangup matrix”’ such that h,, = 1 or 0 ac-
cording as y ¢ B, or not. The Hamilton-Jacobi equation associated
with the minimization of D above is just

. .
%%;—I—H*(p,u,%)zo. 0=uz=t, p=0.

Vip, &) = 0.

It follows from a known theorem® of the theory of optimal control
that if we can find a continuously differentiable solution V(p, u) of the
Hamilton-Jacobi equation (3), then a control policy R(:) = (r,(+))
such that by components

av . av
,u) = min R
ap 0 ReC ap

®3)

R(w) (p,w, O0=u=t

is optimal.

To find a solution of the Hamilton-Jacobi equation (3) let us con-
sider the problem of starting the connecting system at a time u < ¢,
and operating it until ¢ so as to minimize the expected number of blocked
calls over (u, t). We define, with ¢ fixed, and u < ¢,

E_(u) = expected number of blocked calls in (u, )
using an optimal poliey, starting in state z.

To solve the problem we note that two possibilities arise: Either an
event oceurs in (u, {), or else none does. In the latter case, the system
stays in its initial state x throughout (u, {), and no calls are blocked
during the interval. In the former case the first event e to occur does so
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at some time epoch r ¢ (u, £) and can lead to one of the states in 4,, U
{z}. The minimum expected blocking to be suffered in the remaining

interval (r, t) is just
{mm (1+ E(), min B(r)} if e=c

Er—h(f) lf e = h.
With
c.w) = |z | + (),

0. = [ e,

the probability density that the first event to occur does so at 7, and
is e, equals
1

— e =h
o) exp (—C.() + C.a}- {7

M7) e — ¢

cx('r) ! .

Hence, applying the “principle of optimality,” we conclude that the
veetor function E(u), 0 £ u = t, satisfies the equation

B0 = [ e (—C.0) + C.0)
[T EM 430 Smin (1 + E(), min BG)ldr. @)

ey e vedes

We now observe that if E(-) satisfies (4), then the scalar function
V(p, u) = p'E(u) satisfies the Hamilton-Jacobi equation. This is of
course not surprising since the equation for E(-) was obtained from the
optimality principle. To see it we differentiate (4) with respect to u,

obtaining

(lz | + \wea)E.w) — ZE.,(u) — Mw)B.

velBe

— Mw) X min {1 + E.(u), mm L‘ L)}

err

d .
™ E.(w)

Il

[ 2| + Aws@]E.@) — 2 E,0) — Muw8.

veBsz

— A(w) > min {1 + E.(), min E,(u)}.

cex veAden
e not blocked in =
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Now note that
> min {1 + E,(u), min E,@))

cex vedee
enot blocked in z

= > min {1 — X r)E. + 1]+ Z 7By}

etr ReC vedeg vedes
¢ not blocked in z

= min | > 1 - 2 r)Ew+ 10+ 2 r kW)

ReC crx yedoo veAce
enot blocked inzx
= min {[s(x) — 2 r,)E.@) + 1] + 2 r,Ew)
ReC vedyg vedy

= min [r.[B.0) + 1] + IEW AN

veAas

Therefore,

(%E,(u) +min {—=(lz | + M) — r=DE.@)

+ DB AW + 7l + DB = 0.
Now with V = p’E and 0V /ap = E,r = v(R) = {r.,xe S}, p 2 0,

% + min Nwp'(B + 1) — Z (] 2 | + AN s(@) — r.])E. (W)

+ X2+ LB =
vilhe veds
This is the Hamilton—Jacobi equation. It follows that the minimum
of D is achieved by a fixed policy, as could be expected on intuitive
grounds.

VII. ISOTONY THEOREM

In Ref. 1 we introduced some combinatorial ‘“monotone’ properties
of the partial ordering (S, =) of states which (when present) provide
an intuitive and straightforward description of the routing choices
for accepted calls which minimize the loss probability. These properties
are also relevant to minimizing the criterion D of (2).

The properties in question can be paraphrased as follows: the relative
merit of states vis 4 vis blocking is consistent or continuous, i.e., if
a state z is “better’” than another y, then the neighbors of z in < are
in the same sense better than the corresponding neighbors of y. Spe-
cifically, we deal in detail only with the weakest property used in Ref. 1,
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and we say that a relation P on S has the weak monotone property
if 2Py implies
@ |z] =1yl
(#2) Ju: B, « B, and z £ B, implies 2Pz,
(¢6) 3v: F,— F.and (a) ce F,,ze A, imply Jw e A(,.,, with wPe,
(b)e, e F,,ve = v implyc = .
We now prove the following isotony result:

Theorem: If P is a relation on S having the weak monotone property,
then xPy implies

av < av.

dp- — dp,

Proof: Define recursively E.(0, u) = 0,
E.(1, u) = B[C.() — C.(u)] exp {C.(w) — C.(0)}
= Pr (first & only event in (u, £) is a blocked call | z, = 2},

Bt 1,0 = [ o (0.6 - C00)

u

' [ ZEw(nl T) + ,BZA(T)[E,(H, T) + 1]

veBe

+ A7) > min {1 + E.(n, v), min E,(n, r)}] dr.
cex vedeow
enot blocked inz

It follows easily that E(1, u) < E(u), and that E(n + 1, u) = E(n, u).
Furthermore, standard methods® using the inequality
| min y; — min (y; + &) | = max | ¢ |
15i=n lsisn Isisn
show that the functions E.(n, -) converge monotonely as n — o« to
the unique solution of (3).

If now zPy, then 8, < B, , c.(-) = ¢,(+), and so E,(1, w) £ E,(1, u).
Assume as a hypothesis of induction that xPy implies E.(n, u) = E,(n, u),
0 = u = t. Then with p and » as in the definition of the weak monotone
property

Em,u) < E,.(n,u) for zeB,

min {1 + E.(n,u), min E.(n,w)}

zed(rer e

< min {1 + E,(n, w), min E,(n, u)}

sedey
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2 E.m,w + BAWIE,(n, u) + 1]

zeBy

+ Auw) Z min {1 + E,(n, w), min E,(n, u)}

cey sedey
¢ not blocked in v

= 2 E.(n,w) + BANWI[E.(n, w) + 1] + A8, — BB, 0, u) + 1]

zeBe

— Aw[E,n, w) + 1] > 1

cExr
eyfrngy
enot blocked in z

+ AMw) > min {1 + E.(n, w), min E,(n, w)}.

ctz zeden
c¢mnot blocked in z

It can be seen that with | X | the cardinality of a set X,
B, — B = | {eex:c¢rngy, cnot blocked in z} |,

whence E.(n+41,u) = E,(n+ 1, u). Since dV/dp = F and E(n, u) T E(u),
the theorem follows.

VIII. THE NATURE OF THE OPTIMAL POLICIES

Where it is applicable, the isotony theorem allows us to infer the
optimal routes for accepted calls. Its relevance to the optimal policies
for networks for which there is a relation P with the weak monotone
property is this: Let ¢ ¢ 2 be a call that is not blocked in state x, so
that A.. # 6, and suppose that there is at least one y ¢ A.. such that
yPz for every z ¢ A.. . It follows from the isotony theorem that at any
time u, such a y is at least as good a way of routing ¢ (if ¢ is attempted
at u) as any other state of A.,. The only action which might con-
ceivably be better in this situation than accepting ¢ and routing it
so as to take the system to y is rejecting ¢ altogether. Such a rejection
would be optimal if and only if

ap. = ap,’
for w's close to ¢, clearly, this is false. In these circumstances a policy
that routes ¢ in x so as to take the system to y can differ (so far as x
and ¢ are concerned) from an optimal policy only in the respect that
the latter might reject ¢ in z.

In Ref. 1, the notation

’7 '['
LV v

sup 4.,
fl
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was used for the set
{y:ze A, implies yPz} M A.. ,
whenever this set was nonempty. The set sup A.. consists precisely
P

of the possible states to which an optimal policy takes the system
from state z if it accepts the attempted call c.

The preceding observations are summarized in the Corollary: If P
on S has the weak monotone property then there exists an optimal policy
R(-) such thatcez, y e A.r.,(u) > 0,0 < u < {imply

yesup 4. .
P

The theory of routing for minimal D constructed here can be de-
veloped in greater detail in the fashion of the optimal routing theorems
of Section XVIII of Ref. 1; however, the isotony theorem and corollary
embody the basic idea, and we shall leave the topic at this stage.
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