On the Optimality of the Regular
Simplex Code

By H. J. LANDAU and DAVID SLEPIAN
(Manuscript received May 25, 1966)

We prove here the long conjectured fact that the regular simplex is the code
of minimal error probability for transmission over the infinite-band Gaussian
channel. The code is actually optimal for a rather wide class of assumed
channel noises. We also establish the optimality of several other codes for
the band-limited Gaussian channel.

I. INTRODUCTION

Since its introduction by Shannon' and Kotel'nikov? nearly 20 years
ago, the geometric representation of signals has played an important
role in communication theory.* By this scheme, a variety of physically
different time-continuous communication systems can all be reduced to
the same geometric model. The problem of finding optimal signals for
transmission then becomes a geometric one. This paper solves one such
problem.

In the model in question, signals to be transmitted are represented as
points, or vectors from the origin, in a suitable finite dimensional Euclid-
ean signal space &, . The energy of any signal in &, is proportional to the
length of its representative vector; the bandwidth of the communication
system is proportional to the dimension n of the signal space. Received
signals are also represented by vectors in &, and the difference Z =
Y — X between a transmitted signal X and the corresponding received
signal Y is a vector random variable representative of the noise en-
countered during transmission. In a model commonly considered, the
probability density of Z depends only on its magnitude, i.e.,

'P(zl,z‘zn"'»zn)=f(|zl)y (1)

_ *A detailed description of this viewpoint along with some references to the
intervening literature can be found in Chapters 4 and 5 of the recent book® by
Wozencraft and Jacobs.
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and f(-) is an integrable nonnegative monotone decreasing function of
its argument. We shall consider only this case in all that follows.

Suppose the transmitter has a list of M signals, X; , Xy, --- , Xy
from which it selects the successive signals to be transmitted. We sup-
pose these choices are made independently with equal probabilities and
that the code, or list of possible sent signals, is known to the receiver.
The receiver partitions &, into M disjoint regions ®;, R, -+ -, Ru
called decision regions. When the received signal lies in ®;, the receiver
asserts that X; was transmitted. With this scheme, the probability of
correct decoding is

M
Q=ni4_2f S X = Xi|) durdas - - dz, (2)
i=1 “®i
where X = (21,22, -+, ) I8 a generic point in &, .
With M and n given, how large can @ be made by proper choice of the
code and decision regions? For a given code it is well known (see Ref. 3,
Section 4.2, for example) that @ is maximized by choosing

o= (X||X-X|<|X-X;|, Jj#d, (3)

i=1,2,---, M. That is, the ith decision region consists of all points of
&, closer to X; than to any other code word. Decision regions determined
by (3) are known as maximume-likelihood regions.

The maximization of @ over the code is more complicated. To obtain
a meaningful problem it is necessary to put some restriction on the
length of the code vectors, for without this, @ can be made arbitrarily
close to unity by ehoosing large enough vectors in distinet directions.
Several different energy restrictions have been studied in the literature
(see Ref. 4). Although optimal codes under these restrictions have not
been found in general for fixed M and n, much detail is known in the
Gaussian case

2 2
f(z) = M, (4)
27a?

about the asymptotic form of @ for such optimal codes, as n — o with
(1/n) log M — R. These results are usually described in the channel
capacity and reliability formulae terms of information theory.”**

In this paper we restrict our attention to the case in which all code
vectors are the same length. For convenience, we take

|X;| =1, 1=1,2,---,M. (5)

Such codes are called “equal energy codes”.® The code optimization
problem can then be stated as follows. Find M points X,%, -, Xy
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on the unit sphere® in &, such that @ as given by (2) and (3) attains
its maximum value.

To our knowledge, the first investigation of particular codes from this
geometric point of view was carried out in 1948 by L. A. MacColl” who
investigated codes corresponding to the vertices of the three regular
polytopes® in n-space. These are the regular simplex for which M =
n + 1, the hypercube for which M = 2" and the cross-polytope or
biorthogonal code for which M = 2n. MacColl wrote explicit expressions
for Q for these codes and evaluated them numerieally for the Gaussian
case (4) for a variety of values of n and ¢. Gilbert’ continued this work
and made comparisons with a variety of other point configurations.
Balakrishnan'® established a new expression for @ in the Gaussian case,
which permitted him to show that the regular simplex code is locally
optimal (yields a larger @ than nearby equal energy codes with M =
n + 1). Later ! he showed that as ¢ — « and as ¢ — 0 the optimal
code of m + 1 points approached the regular simplex. Weber” used
Balakrishnan’s form for @ to show that for n = 2 the (globally) optimal
code of M points, M = 3,4, - - -, is the regular M-gon. Forn = 2,3, - - -,
he also showed the biorthogonal code to be a local optimum among equal
energy codes with M = 2n, and described a family of locally optimal
codesfor M =n+1,n+ 2, ---,2n.

In this paper, we at last lay to rest the longstanding conjecture that
the regular simplex is optimal for M = n + 1 in the Gaussian case.}
Specifically, we show that @ as given by (2)-(3) is greater for the regular
simplex than for any other equal energy code of M = n + 1 points in
& ,n = 3,4, 5, -+ . This result is true for any monotone decreasing f.
The method of proof is based on a generalization to higher dimensions of
a theorem of Fejes-TGth" concerning expressions related to the form
(2) in 3 dimensions.} Our methods also establish that the optimal equal
energy codes with parameters M/ = 6, n = 3, and M = 12, n = 3 are,
respectively, the biorthogonal code and the code consisting of the mid-
points of the faces of the regular dodecahedron. We conclude with some
comments about the biorthogonal code and about the reliability of the
infinite-band Gaussian channel.

II. AN INEQUALITY FOR Q

For an equal energy code, the maximum-likelihood region ®: given by
(3) can be determined as follows. Let 3C;; denote the hyperplane that

* We shall hereafter use the caret ~ to denote unit vectors.

+ It is incorrectly stated in Ref. 3, pp. 260, 364 that this result has been previ-
ously shown in the literature.

1 We are indebted to E. N . Gilbert for calling Fejes-Téth’s work to our attention.
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bisects perpendicularly the line segment joining X: to X,. This plane
passes through the origin and divides &, into two half-spaces. We denote
by U;; the half-space containing X, . It consists of all points of &, closer
to X; than to ﬁ,-. The region ®; is the intersection of M-1 such half-
spaces,

®R; = Usj.

iDk

It is, therefore, a convex region bounded by a certain number of hyper-
plane faces that pass through the origin — a kind of flat-sided cone with
vertex at the origin. We note that the various maximum-likelihood
regions, ®;, ®Rz, -+, Ry, are disjoint and that together with their
boundaries they exhaust &, .

Let us now call any convex region of &, bounded by & = n hyperplanes
through the origin a “flat-sided cone”. We shall establish an upper bound
for @ as given by (2) when the M decision regions ®; are any set of
disjoint flat-sided cones (not necessarily maximume-likelihood regions of
any code) that together with their boundaries exhaust &,. For our
purposes it suffices to consider only the case in which X, lies in the in-
teriorof ®;,z2=1,2, ---, M.

We denote by S the surface of the unit sphere in &, with center at the
origin. We denote by R; the intersection of ®; with S. The regions R;
are ‘“‘spherical polygons’ that reticulate S into a map or net. We shall
evaluate @ by first integrating over this net on S and by then performing
a radial integration.

Let X be a generic point in &, distant r from the origin (see Fig. 1)

Fig. 1— Reduection to unit sphere.

and let X be a unit vector in the direction of X, i.e., the terminus of X
is the radial projection of the generic point onto S. Then

|X; — X =14+ —2rcosy
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and
|X; — X" = 2 — 2cosy
so that
X, - X[ = Q=) +r|X—-X

We can thus write f( | X; — X |) = ¢,(| X: — X | ) where for each fixed
r the function g,(-) is nonnegative and is monotone decreasing in its
argument. The expression (2) in these terms becomes

Q= [ arum (6)
0
1 & o ”
U =22 [ ol1% = X s (7)
i=1 YRy
where ds is the differential surface- or (n — 1)-content of S at the

point X. Note that U = 0. We proceed to find an upper bound for U.
By (6) this will provide the desired bound for Q.

Let the terminus of the unit vector ¥ determine a point P on S (see
Fig. 2). The set of all points X on S such X-¥ = cos ¢ = 0 will be called
“the spherical cap of S of angle ¢ about P”. Now let 3 be a hyperplane
through the origin but not containing P that intersects this spherical
cap. That is 0 < A-¥ < sin ¢ where i is the unit normal to 3¢ directed
positively toward the side on which P lies. 3¢ divides the spherical cap
into two parts. We denote by W the part of the cap not containing P,
and we denote by w the content of W.

In what follows, the function

mw) = [ 007 % s (8)

will be of great importance to us. The notation suppresses the dependence
of h on ¢, the angle of the spherical cap, and points out that with the

--CAP

I

Fig. 2— Cap cut by hyperplane.
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geometry as described this integral is a function only of

w=Lm (9)

the content of W. We shall suppose ¢ fixed in all that follows.

Two speecial properties of k. (w) are of particular concern. First, as
shown in Appendix B, this function is increasing and convex. That is, if
wy > wy, then k. (ws) > b, (wi) where h,’ (w) = dh,/dw. This, of course,
implies that

> pihe (wi) = ke (2 pavs), (10)

where the p; are nonnegative weight factors summing to unity. Equality
holds only when the w; are all equal.

The second property of k., (w) is somewhat more complicated to state,
though in three dimensions it is intuitively obvious. Again let 3 be a
hyperplane through the origin but not through P that cuts off a piece W

of the spherical cap about P. Let 31, 3C;, « -+ , 3¢; be hyperplanes that
each contain the origin and P. We denote by V the portion of W lying
on the positive side of 3¢;,7 = 1,2, - -+ , 7, and we denote the content of

V by v. It is established in Appendix C that
[ 0¥ = %Dds = (o), (11)
v

where as before ¥ is the vector from the origin to P and X is a generic
point of V. Equality holds only if 3¢ is the sole hyperplane boundary of V'
(i.e., if none of 3¢, 3C;, - - - , 7, form a part of the boundary of V).

With these two properties of ,(w) we can now establish the desired
inequality for U (r). We first “triangulate” each of the polygonal regions
R, into “spherical pyramids’”’ R.; having boundaries of E; as bases and
X as a vertex. More accurately described, the regions R;; are found as
follows. The flat-sided cone ®; is bounded by pieces of k; (say) hyper-
planes 36,7, - -+, :IC,#‘.(") through the origin. We denote by ®;; the portion
of 3¢, that bounds ®; . Now ®,; is itself bounded by a certain number
I;;0f (n — 2)-flats through the origin. Through each of these (n — 2)-flats
we pass a hyperplane 3¢, k = 1,2, -+, l;;, that contains X. . These
hyperplanes, along with ®,;, determine a new flat-sided cone ®;; having
®;; as one face and the line containing K. as a one-dimensional boundary.
The interiors of the k; flat-sided cones ®ia, Riz, -+ -, Ry, are disjoint.
Together with their boundaries they exhaust G;. The line through X;
is common to the boundaries of all k; of these flat-sided cones. The
spherical pyramid R;; is the intersection of ;; with S.

We denote by C; the spherical cap of S of angle ¢ about X; (see Fig. 3).
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Fig. 3— Cap and triangulated decision region.

Let T'; be the portion of C; exterior to R; and let S; be the portion of R;
exterior to C'; . A typical term of the sum (7) can then be written

Lﬂ“ﬁ“‘ﬁpﬁ=(ﬁj+Lj‘L)%UK—XD“-

Now T'; can be broken up into pieces T';; corresponding to the spherical
pyramids ;; . To accomplish this, we extend the sides of the pyramid
beyond its base. Thus, if ®;; is on the positive side of 3¢; and 3¢,"*?,

k=1,2,--- 1Ly, then T;;is the part of the spherical cap on the nega-
tive side of 3¢;” and the positive side of 3¢,"?, &k = 1,2, ---, ;. We
now have

_/);I_ g.ds = ‘/;‘.- g.ds + _[8._ g.ds — i j;ﬁ g.ds. (12)

=1

Some of the regions S;, T';; can, of course, be void.
We now sum (12) over the M regions R; . We write

lM
k:EEh

for the total number of (n — 2)-boundaries in the net on 8. (Each
boundary of R; is shared with one other spherical polygon.) There results

MUG) =Y [ (1% = XDds = M [ g.(1% — X |)ds
1? Ri ) :..1 (13)

=1 7
We next use (11) for the regions T,; .
M M kg
MUG) s M [ 01% - XDas + 2 [ gds = 3 3 bl
1 1= 1 =1 7=

where £;; is the content of T';; . The convexity (10) of & now gives
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MU(r) < Mf g-(| Xy — X |)ds
o (14)

M

+ Zl f grds — 2kh, (QkEZt,,)

8; i=1 j=1

Now denote by s, ¢, and s; , respectively, the content of S, C;, and S; .
A division of S analogous to (13) (set g = 1 there) gives

M k

s=Mc+;Sf—ZZiﬁﬁ

=1 j=1

M ki (15)
=Mc+s — 22t

i=1 j=1
where we write s = Y, s; for the sum of the contents of all of the pieces
of the polygons R; that fall outside their respective spherical caps. We
then have from (14) and (15)

Mc—s+ 5
MU(r) = M f g-ds + Z‘, f g,ds — 2kh, (—ﬁ—“)

i=1

=M f g.ds — 2kh, (M) (16)
o 2%

.=1f g.ds — 2Icf g.(1¥ — X|)ds

where K is the region (see Fig. 4) of the spherical cap about P that lies
between hyperplanes through the origin that cut from the cap regions of
content (Me — s + s')/2k and (Mc — s)/2k. This latter quantity will
henceforth be assumed to be nonnegative. The normals to the two hyper-
planes and the vector ¥ from the origin to P are chosen coplanar.

Note now that the sum of the last two terms in (16) cannot be posi-
tive, for we have

Fig. 4 — The region K.
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X ~ M
S0k -tnasse@} [ a-o@s  an)

H i=1 ¥8;

and

\%

2 [ 6.(1% — XDds = g2 [ ds = g’ (18)

where d = 4/2 — 2 cos ¢ is the distance from the center of the cap to the
edge. Here we have used the fact that g, is monotone decreasing. Equality
holds in (17) and (18) only when " = 0.

In view of the above, the inequality in (16) can be continued by
omitting the last two terms there and we then obtain our desired in-
equality

MU < M j; (| — X|)ds — 2%, (M‘;k‘ "’) (19)
where C is the spherical cap of angle ¢ about the terminus of ¥ and we
require Mc¢ — s = 0. Retracing all the inequalities used to derive (19),
we see that the equality sign holds there if and only if s = 0, all the
regions T';; have equal content and each T';; is a region cut off from the
spherical cap by a single hyperplane.

In closing this section we note one further fact. From the convexity of
he(z) it follows that xh.(e/z) is monotone decreasing in x. For given M
and ¢, then, the right side of (19) is monotone increasing in k.

III. OPTIMALITY OF THE REGULAR SIMPLEX AND CERTAIN OTHER CODES

Let a code of M unit vectors in &, have maximum-likelihood regions ®&;
that reticulate the surface of the unit sphere into a net havingk (n — 2)-
dimensional boundaries. We designate such a code by the symbol
{n,M,k}. For certain values of the parameters n, M and k, there may
exist codes for which a spherical cap angle ¢ can be found such that the
conditions for equality hold in (19). We call such a code a symmetric
{n,M k}. By choosing C so that (19) is an equality for such a symmetric
code, we see that the probability @ of no error for a symmetric {n,Mk}
is greater than the no-error probability of any nonsymmetric {n,M k}.
Indeed, the concluding remark of Section II shows that the no-error
probability of a symmetric {n,Mk} is greater than the no-error proba-
bility of every {n, Mk} if & < k.

The regular simplex code consists of M = »n + 1 unit vectors
X, %, -, X.in & with X:-X, = — (1/n), ¢ # j. The maximum-
likelihood region ®; containing X; is bounded by n hyperplanes. It is
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readily verified that the regular simplex is a symmetric {n,n + 1,
n(n + 1)/2}. Now no code of » + 1 unit vectors in &, can have more
than &k = n(n 4+ 1)/2 (n-2)-boundaries in its maximum-likelihood net,
for, by the construction given in the first paragraph of Section II, each
maximum-likelihood region can be bounded by at most n hyperplanes.
The regular simplex code then must have a @ strictly greater than any
other equal energy code of n + 1 vectors in &, except possibly another
distinet symmetric {n, n 4+ 1, n(n + 1)/2}, should such exist. But this
latter eventuality cannot happen. That a symmetric {n, n + 1,
n{n 4+ 1)/2} must be the regular simplex can be seen as follows. Since
no ®; for a code of M = n + 1 points can have more than n hyperplane
boundaries, then to have k = n(n + 1)/2, every ®; must have exactly
n hyperplane boundaries. The n hyperplanes 5¢;,"”, 36, P, -+, 3¢, that
bound @®, bisect, respectively, the line segments from X, to X, , from X,
toX;, .-+, from X, to X, . Since the code is assumed symmetric, these
hyperplanes must be equidistant from X, . Thus, all the other code points
are equidistant from X; . But a similar argument holds for each of the

other regions ®;, ®3, - -+, ®Ray1 and so all distances between pairs of
code points are equal. But this property suffices to define the regular
simplex.

The optimality of two other codes in n = 3 dimensions can readily be
established by using (19). We note first that in 3 dimensions the condi-
tions for equality to hold in (19) are such that the maximum-likelihood
net on the sphere must be composed of congruent regular spherical
polygons. A symmetric {3,M %k} then must be the radial projection onto
the unit sphere of a regular three-dimensional polyhedron. The code
points are the centers of the faces of the polyhedron.

Consider now the code formed by the midpoints of the faces of a cube
of edge length 2. This is the three-dimensional biorthogonal code. The
maximum-likelihood net is given by the radial projection of the cube
edges onto the inscribed unit sphere. The code is a symmetric {3,6,12}.
There is no regular polyhedron with 6 faces other than the cube, so that
we will have shown the three-dimensional biorthogonal code to be opti-
mal if we establish that every {3,6,k} must have k = 12. To see this latter
fact, note that for three-dimensional codes, at least three edges of the
maximum-likelihood net must meet at each vertex of the net (since each
R; is convex). Thus 3v = 2k where » and & are, respectively, the total
number of vertices and edges for the net. Euler’s formula (Ref. 8, p. 9)
v — k + M = 2 holds for the net, and so

k=3(M - 2). (20)
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For the case at hand M = 6, and (20) gives k = 12, so that the proof
is completed.

Analogous reasoning shows that the centers of the faces of the dodeca-
hedron give the best code with M/ = 12 points. The code is a symmetric
(3,12,30}.

The regular octahedron in &; gives rise to a symmetric {3,8,12} whose
code points are the vertices of a cube. This is not the optimal configura-
tion of 8 points in & . By rotating one face of the cube 45 degrees about
an axis perpendicular to the face and through its center, one obtains a
{3,8,16}. By translating this face slightly toward the opposite face of the
cube, and by slightly expanding both faces, one obtains a {3,8,16} with
minimum distance between code points strictly larger than the minimum
for the cubic arrangement of points. There are then noise functions
f(|z])of (1) for which this new code has a larger @ than the cube-code.

It is not known whether the symmetric {3,20,30} obtained from the
regular icosahedron is an optimal code of 20 points.

IV. THE BIORTHOGONAL CODE

The biorthogonal code is a symmetric {2n,n,n(@2n — 2)}. The 2n
code points can be taken as the points on the coordinate axes unit dis-
tance from the origin. Alternatively, the code points can be described
as the centers of the (n — 1)-dimensional bounding cells of the unit
n-cube. The radial projection of the cube onto the unit sphere with center
at the center of the hypercube gives the maximum-likelihood net of the
code.

We have seen that for n = 3 the biorthogonal code is optimal among
codes of M = 2n = 6 points. It is natural to suspect that for all n the
biorthogonal code is optimal among codes of 2n points in &, . However,
the methods used in this paper, based as they are on (19), will not suffice
to settle this question, for, as will be shown below, when n = 4, there
exist {2n,n,n(2n — 1)} codes; i.e., codes with a larger & value than the
biorthogonal code.

It might be thought that this encumbering dependence of (19) on k
could be avoided — that an inequality for @ independent of & could be
found which is attainable for optimal codes. The example already treated
of the octahedron shows, however, that this dependence on k is essential.

To construct a {2n,n,n(2n — 1)} for n = 5, choose 2n distinet real
numbers v , ¥, - - -, v2s . The vectors of the code are given by

i" = (a.‘ y OV, a"l','g, Ty, ﬂ.’.'ll,'n_l) 3 (21)

where
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LY;'=[1+V|'2+y1'4+"'+1’|'2n_2]-§ i=1s21"'52n

has been chosen so that X; is a unit vector. The code is closely related to
the eyclic polytope described by Gale™.

An important property of this code can be derived by considering the
polynomials

4
Fid) = (0 — »)(h — v)* = Z=: AP\

(22)
2,7 =1,2,--+,2n
which are nonnegative. We define the (2n)* n-vectors
B;; = (Aij(m: AiJ'(l): Aij(2)3 Al'im: At’.‘imJ o, -, 0)
We then have
4
Bij'il = o Z At'j(p}vlp = Fl'j(”l‘.)
p=0
0, Il =1 (23)
= 0, l =3

a",'z>0, 1?51, l?f_]

where the positivity of the a,;; follows from the factored form (22) of
Fij(N).

To show that the points (21) determine a {2nnn(2n — 1)} we
note first that they span &, . Indeed every choice of n vectors X, from
(21) yields an independent set, as can be seen by forming the determinant
whose rows are the components of the vectors. These determinants are
proportional to Vandermonde determinants and do not vanish. To show
that & = n(2n — 1) for the code, consider the maximum likelihood
region ®; containing X.. By the construction described in the first
paragraph of Section II, ®; is the intersection of the half-spaces
i X) = Ri—X)Xz0 j=1,2--,2n; jEi (24)
We assert that each of the 2n — 1 hyperplanes 3{3,-“), =12 +-,2n
with j # 4, is indeed an (n — 1)-dimensional boundary of ®&;. It will
then follow that k& = 42n(2n — 1) since there are 2n maximum likeli-
hood regions. That 3¢;*” is an (n — 1)-boundary of ®; results from the
fact that there exists a point X, contained in ®; that lies in 3¢, but not
in a3, k=1,2 ---,2n with k # 7 and k # j. From (23) we can
choose X, = B;;since

3, (Bi;) =0
36 Byy) = @i >0, k#i, k.
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TFor n = 4, the configuration of eight points given by
fl
2
is a {4,8,28}. The proof is similar to that just given for the case n = 5

with the role of the polynomial F';;(\) being replaced here by the expres-
sion

Fi *¥(\) = [I — cos ()\ — ?';_:):I X I:l — cos ()\ —j%):l.

We omit the details.

We close this section by noting that although we cannot show that the
biorthogonal code has a largest @ value for codes of 2n points, it does
have largest nearest neighbor distance, 90° in angular terms. Indeed no
collection of more than n + 1 vectors in &, can have minimum angular
distance between points greater than 90°. For consider® Fig. 5. Without

1 T T T,
ﬁk=\/E(cosk4,51nk4,cosk2,smk ) k=12 ---,8

0o 0 o + -
Fig. 5 — Table of component signs.

loss of generality the positive x;-axis of a rectangular coordinate system
can be chosen to lie along the first vector. The first column of the figure
shows the sign of the components of this vector. The coordinate axes can
be oriented so that X, lies in the z; — 2. plane and the direction of the
a:-axis can be chosen so that the z,-component of X, is positive. The
second column of Fig. 5 shows the sign of the components of X, . The first
component must be negative since if the minimum distance is to be
greater than 90° we must have X;-X, < 0. Continuing in this manner we
are forced to choose the components of the %, , ﬁ,.“ as shown.
But now it is impossible to find an (n 4+ 2)nd vector having a negative
scalar product with these n 4 1 vectors, for if the nonzero components
of f(,,w are all negative, it has a positive scalar product with X, 1
whereas if the first positive component of X.,» is the jth, X; K..e is
positive.

* This elegant proof was suggested by J. H. van Lint.
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V. THE INFINITE-BAND GAUSSIAN CHANNEL

When M = n + 1 and f(z) is given by (4), the model discussed here
describes the transmission of M equally likely signals s;(f),7 = 1,2, - - - |
n =+ 1, of duration 7' in white Gaussian noise of spectral power density
N /2. Here the signals are constrained by

T
f s ()dt = PT.
1]

When these signals are transmitted, the probability of no error using the
best possible detection scheme is given by (2), where the X; must be
chosen so that

i."ij = % fnT Si(t)sj(t)dt,

the ®; are the maximum-likelihood regions (3), and

2 N
g = ﬁ .
See Ref. 3, Sections 4.2 and 4.3 or Ref. 15 for a more detailed description
of the correspondence between the geometric model and the physical one.
Our result that the simplex code is optimal means that in communicat-
g n infinite-band white Gaussian noise by means of M equally likely
equal-energy signals of duration T (no bandwidth restrictions imposed)
the error probability is minimized by choosing signals with normalized
cross-correlation
1" 1

—_— S,‘(t)Sj(t)df = — ﬁ,

77 /. 1] (25)

this being the value of X;-X; for the regular simplex.
The error probability with a best set of signals of form (25) is readily
determined to be

M
M—-1)’

P,=1-— f dz f(z)@™™" (a: +£ (26)

where f(z) is the Gaussian density (4) and ® the cumulative
v
(y) = L, f(z)dz.

When the transmission rate
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log M

R =25

is kept constant, along with N and P, (26) becomes for large T' (and
hence large M)

P.=exp [-ER)T + o(T)], (27)
where
¢ _ g, R = C/4
E(R) = {2 (28)

(v/C —+vR)’, Rz=C/4

and € = P/N is the capacity of the channel. That the minimal asymp-
totic error probability for this channel must have the form (27)-(28)
was first proved by Wyner."

APPENDIX A

A Lemma

The following lemma will be useful in establishing the main results of
Appendices B and C.

Lemma: Let wy(z) and wi(x) be integrable functions that satisfy
b b
f w(z)dx = f ws(z)dz. (29)

Further, suppose there exisls an «', a £ «’ = b, such that

!

IA

T =
b.

Then, if m(z) 7s a nonnegative monotone increasing function,

we () = wi(x), ﬂ (30)

IA
1A

ws () = wi(a), T T

b b
f m{x)wi(x)dr = f m{x)w.z)da. (31)
I m(x) is @ nonnegative monotone decreasing function,
b b
f m(z)w(z)de = f m{x)wy(x)dz. (32)

FEquality holds in (31) and (32) only if wi(x) = wa(z) for almost all x.

Proaof: If m (z) is nonnegative and monotone increasing, then
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[ m@lun(a) — wile)lis

[

a

Il

m@)(z) — wi@de + [, m(@)oa(e) — wno)do

[\%

z! b
@) [ () — vz +m(@) [ lonle) - (o)l

m(z') [fb wy(z)dz — f wg(x)d;c:l — 0

If m(z) is nonnegative and monotone decreasing, the steps are the same
with the inequalities reversed.

APPENDIX B

Convexity of h-(w)

Let @1, a2, -+ , . be the rectangular coordinates of a point in &, .
The surface S of the unit sphere centered at the origin can be given
parametrically by

X = cos

2y = Sin 8, cos 6y

x; = sin 6 sin @y - - - sin 6 cos §;
(33)
Zn_y = sin @y sin @ - - - sin B,_s €0S O,y
Xn = Sin 6y 8in B + - - sin Gp_p 8N O,
0=6:<m, 2=1,2---,n—2
0=0,.<2r
and the element of surface content is
ds = sin™ ™ 6, 8in™ 6y - - - sin Op_odfrdbs - - dBay . (34)

We shall only be concerned with the case n = 3.
The spherical cap of angle ¢ about P, the end point of

? = (1:010: ?O)J
is given by 6; < ¢. A hyperplane 3¢ that intersects this spherical cap is
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2o = x; tan @ with 0 £ « < ¢ and the intersection of 3¢ with the spherical
cap is from (33)

cos f; = tan o cot 6, .

We then have from the definition (8)

@ »
h(w) = f db, f df, sin"* 6, sin" " fag,(V/2 — 2 cos 6;)
(] B

T F 25
f dey - - f d8,_s A0,y sin™ " @3 - - - sin B,_s
0 1] 0

where v = arccos (tan acot 6,) andu = —pifn =3 butp = 0ifn = 4.
In either event, we can write

h(w) = k, f: do, j: dy sin" * By sin” *629,(v/2 — 2 cos 6;)  (35)
while for the content of the piece of the cap cut off by 3C we have
w =k, f " o, fu " a6y sin" 6y sin™" 0, (36)
with k, > 0 and independent of .

Straightforward differentiation of (35) yields

% = — k, sec’ a f: df, sin 6, cos 6,
1 — sec” @ cos” 8] g,(A/2 = 2 cos 6y).
Now introduce
x = cos’ 6, a = cos’ ¢, b=cos’a
and

§(x) = 9,(v/2 — 2v/7).

We have 0 < @ < b £ 1. Note that §(x) > 0 is monotone increasing in
2. In these terms

dh kn [* z ",
da= T2 a“'x[l‘s] §z)
and
dw kn b .’.C (n—4)/2 k,. a (n—2)/2
R EEH BRI (R M
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Combining these results we find

dh.(w)  dh/da f" .
= = d.
T (dw/da) ) L(z)§(z)dz > 0, (37)
where
(n—8)/2
(1 - 5)
L(x) = % e ) a <z =D (38)
n — 2( B 5)
Note that

fb Liz)dr = 1. (39)

When n > 4, the convexity of h,(w) can be established from (37)-
(39) as follows. Consider two different w values, say w, > w; with cor-
responding parameters b, = cos’ ey and b = cos’ a; . We have

1§b2>b]>ﬂ.

From (38) one readily finds that there is a unique real root 2’ for which
by(@') = b (2'),a <2’ <b.Fora =z = &’ we have Iy, (x) = by, (¥).
If we now define I, (z) = 0 for x > b, we can also write I, (z) = b, (x)
forz = 2’. From (39) we have

f:z by (z)de = f:a b, (2)dz.

The conditions of the lemma of Appendix A hold and we conclude from
(37) that

dh, (ws) > dh,(wy)
dw dw

we > W1 =

which is the desired convexity.

When n = 4, (38) becomes l;(z) = (b — a)”'fora < z = b. As be-
fore, we define I;(x) = 0 for x > b. It is readily seen that the lemma
again applies with 2’ chosen as by . Convexity is then established in this
case as well.

Forn = 3, (37) and (38) give
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dh(w) [ g(z)dx

dw  Ja 2/b — aVb — z
q b b
=—2\/b——§2—\§(b—"%n+£ 1/g_zdé(x)

i@ + [ 4/ 02 4y,

on integrating by parts. However, since § is increasing in z, it follows
that the last integral is increasing in b and hence also in w. The convexity
proof is thus completed.

APPENDIX C

Proaof of Equation (11)

We shall be concerned here with two different regions, V and W, cut
off from the spherical cap of angle ¢ about the point P which we take as
the terminus of the unit vector ¥ in &, (see Fig. 6). The region V is the
intersection of the spherical cap with a convex cone U having the origin
as a vertex. It is assumed that U does not contain P. We denote by @ a
point of V closest to P. The second region, W, is cut off from the cap by
a single hyperplane £ through the origin but not through P. £ is chosen
so that W and V have the same content, w and », respectively, and for
purposes of our proof we restrict the normal to £ to lie in the 2-plane
through the origin, P and ¢. We wish to show that

[VELgr(fY—XDdsg stfwgr([Y —Xds  (40)

with equality holding only if V' is cut off from the cap by a single hyper-
plane. Here, as in (11), g, is nonnegative and monotone decreasing and
X is a generic unit vector in &, . In the applications made of (40) in the
main text, U is specialized to a type of flat-sided cone.

Fig. 6 — Regions involved in proof of (11).
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Let us again adopt the spherical coordinates (33) with the pole
P of the cap located on the ay-axis so that Y = (1,00, ---,0). We sup-
pose the axes are oriented so that @ lies in the ai-v; plane. Then from
(33) and (34)

IV = f‘o dglgr( \% 2 - 2 coSs 91) U(BI) (41)

0

where

v(6,) = sin"* 6 f dfy - - fd.ﬁ,._l sin" @y - -+ sin 6,y
BV(BI)

(42)

is the (n — 2)-dimensional content of the intersection By (61) of V with
the hyperplane x; = cos 6, . Similarly,

Iy = f " g, (/2 =2 cos By) w(6y) (43)

where w (6;) is the (n — 2)-dimensional content of the intersection B w (61)
of W with the hyperplane ¥, = cos 6; . By hypothesis we have

) = f o (0)) = w = f d8yw(6,). (44)

Since g, (v/2 — 2 cos 6,) is a nonnegative monotone decreasing function
of 6, all the hypotheses of the lemma of Appendix A will hold if we can
show the existence of a ¢ such that

v(6) = w(6), 06
w () = v(6y), ¢ =6

The conclusion (32) of the lemma then is (40).

Our goal now, therefore, is to show that »(#) and w (8) cross only once
as indicated in (45). Let « = £ POQ. If Q" is the nearest point in W to
Pand 8 = ZPOQ* then 8 > a. For 0 £ 6 £ a, both v(8) and w(6)
are zero. Fora < 0 £ B, v(0) > w(8) = 0. From (44) it then follows
that there is a first point in (0,) where w(6) crosses up through »(8),
that is, where v(8) = w(#) and w' (8) > v’ (0) where the prime denotes
differentiation with respect to 6. If there were a second crossing, at that
point we would have w’ < v'. We prove that there is only one crossing
by demonstrating that

r

¢
0 (45)

IA TIA

dw(6y) - dv(6,)

[ ) (46)

v(6) = w(6) =

for 0 =6 = ©.
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Let w be such that v(w) = w(w), 0 £ @ = ¢. Consider now the spheri-
cal pyramid I'vy having Q as vertex and as base the set By (w) defined
below (42). T'y is the set of all points X of the form

i = Siﬂ + ﬂiﬂl
A g r.y
E g 0, n £ Ov XQ = OQJ XBGBV("J)

where, in order for (47) to be a unit vector, we have the additional re-
striction

(47)

[X|"=1=84 7 + 2t7X¢-%s. (48)

Note that since U is convex and since @ and By(w) are contained in 0,
it follows from (47) that I'y is contained in U and S, hence T'y is con-
tained also in V.

Now let #(6;) denote the (n — 2)-dimensional content of the inter-
section of I'y with the hyperplane 2; = cos 6, , where @ < 6, <w. We
have

I(w) = v(w) 49)
ilw — 8) = v(w — 8)

where this last follows from the fact that T' is contained in V. One has
then
v(w) — v(w — §) < w) — 9w — &)
) = é

so that

dv(61) < 5(6:)
d31 51=m= dgl Bl=a:-

(50)

Consider next the spherical pyramid T (Q) having Q as vertex and
as base the set By (w) defined below (43). We denote by w(6;) the
(n — 2)-dimensional content of the intersection of I'y with the hyper-
plane 2; = cos 6, . As before, let Q* be the nearest point in W to P. We
denote by %" (6,) the (n — 2)-dimensional content of the intersection
of the spherlcal pyramid T (Q*) with the hyperplane z; = cos 6, .
Since Q* is contained in Ty (Q), T w(Q*) is also contained in T w(Q) and

we have
W(w) = 0 (w)
. (51)
Wlw —8) =2 1 (w— &),

From this it follows that
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dw(8,) < dib*(6,)
dby o=~ db |p—e
However, since Q* lies in the hyperplane,
B (w) = w(w) (52)
for all w, hence
dw(6,) dw(&l)
dﬂl 01=w = dﬂ1 01=w (53)
In the remaining paragraphs of this appendix we shall show that
_ dl)(ol) < dw(6y)

which will establish (46) and complete our proof, for the hypothesis

of (46) follows from that of (54) by (49), (51), and (52) and the con-

clusion of (46) follows from the conclusion of (54) by (50) and (53).
Let the spherical coordinates of a point X in T'y be denoted by the

angles (o1, * - ,:p,._l) (see Fig. 7). We employ the angles (61, - -+, 8a-1)

to describe a point X5 in By(6). The content v(p) of the 1ntersect10n
J () of T'y with the hyperplane z; = cos p, « < p = w is given by

p(p) = sin"% u f dos sin™ s f dog sin™ " g -+ - f dow-i (55)

J(p)
zyx
~ _“-._‘—‘-“‘m
a” B TR
e P ~o N
& SO

x>

:e
T2

Fig. 7— The mapping from X to Xs.
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The relationships (47)-(48), however, serve to define a one-one trans-
formation between the coordinates (u, @2, -+ , ¢n_1) of a pointin J ()
and the coordinates (w, 62, -+, 8,1) of a point in By(w), so that 7(u)
can be expressed as an integration over By(w) as well. Taking compo-
nents of (47), we find successively

cosu = £cosa + 1 cosw
sin p cos ¢z = £sin a + 9 sin w cos G

Sin u Sin 2 COS @3 = 7 Sin w sin #, cos 6

sin psings + - 8in @j1 COS ¢; = psilwsings * -+ SiNgj;c0se; (56)
Sin p Sin @y -+ + SIN @, 2 SN @
= 7 8N w 8N @2+ + SiN@u_s 8N @1
j=3,4,---,n—1

Dividing the nth equation by the (n — 1)st yields ¢,—1 = 8, . Dividing
the (n — 1)st equation by the (n — 2)nd then yields ¢,2 = 6._s.
Proceeding in this manner, one finds ¢; = 0;,7 = 3,4, -+, n — 1.
The first two equations of (56) can be solved for £ and 5. By substituting
these expressions into (48) which now reads

£ + 4 + 2&n (cos a cos w 4+ sin « sin  cos 6;) = 1, (57)

we obtain a single relationship connecting ¢, and 6; which we suppose
solved in the form

o2 = @a2(b2, ). (58)

Equation (55) now becomes in the new variables

o(p) = sin" g f dazg#?siﬂ"73 @2 [ d; sin" " 85 - - - fdﬂn_.x
U2
By(w) (59)

=sin" ‘o f d0:,G (6, p)h(62)

with

Sin w dfs | sin 6,

G0, p) = [Sm “]H dez [Si“ “’ﬂ"_s (60)

and
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h(og) = Si]ln_s 92 f dﬂa Si]lﬂ74 93 e f dB,._,, (Gl)
BV("J)

where if n = 3 this latter expression is to be interpreted as unity. It is
convenient now to define h(f:) to be zero if 6, is not the second angle
coordinate of a point in By(w). In this notation, then, we have for
n=4

di(p)

.« n—2 r aG(92’“)
dﬂ . = Sin oJL dﬂgT o h(ﬁz) (62)
5w) = sin" " v _/;T dBah(62). (63)

If n = 3, the lower limits of integration here should be replaced by —.
It will be shown later that dG/du |.—. is & nonnegative monotone de-
creasing function of 6s .

We next seek to determine the nature of the set By (w) of given con-
tent 7 () that will maximize (62). We note first from (61) that forn = 4

h(6:) = a(6:) (64)

where o (6;) is the surface content of a sphere of radius sin 6; in &,
since ¢ is given by the integrals of '(61) with the integration variables
running through their maximum allowable range. Now let B*(w) be the
set of points defined by 6 = 0,0 = 6, = 6, where 6, is given by
s’
t')(w) = S.l[l'"_2 w dﬂgﬂ'(ﬁz).
0

For B*(w) we have

£,y _ Ja(6e), 0=<6 =6

B (8:) = {0, 6 < 6, (65)
so that

iw) = sin”—zwf dish*(0s). (66)
0

We also have

R*(82) = h(62), 0<6 =<6

h™(6:) = h(6), b S =7

from (64) and (65).
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The hypotheses of the lemma of Appendix A are thus met from (63),
(66), (67), and the monotonicity of aG/du. We conclude that among
sets of equal content, d7/du |, is a maximum for the set B*(w). The
set By (w), however, coincides with B* (w). Equation (54) then follows
for n = 4. The modification necessary to treat the case n = 3 is trivial.

There remains only the demonstration that 6G/du |u-. is nonnegative
monotone decreasing in 8, . Equation (57) and the first two equations
of (56) are identical with the equations that would hold for the three

3-vectors O_Q), X and X of Fig. 7 constrained to satisfy (47). The rela-
tionship (58) between ¢» and 6. can most easily be written down by con-
sulting this figure. The condition that the three points be coplanar with
the origin is ’

Tg Yo 20| =10 (68)

g YB ZB

where
T = sin u cos ¢a Yy = Sin u 8in @o 2= COS
To = Sin a g =0 Zq = COS (69)
Ty = SN w cos By Yp = Si0 w Sin s Zp = COS w

which serves to determine (58). Routine implicit differentiation of (68)
and (69) and evaluation at p = w, @2 = 6, yields

dipa =1 (70)
dbs |p=w
A _ Sin « sin @, (71)
O |lu=e  SIn w(cos @ sin w — sin « cos w cos ;)
a dps _ sin afcos « sin w cos 6, — sin a cos o] (72)
dp dfy e  SIn w[COS @ SIn w — SIN a COS w oS fa)?

The denominators of (71) and (72) are positive since w > a implies
tan w cot @ > 1 = cos 6, which is the same as

€OS a SiN w > Sin « cos w cos & .

The numerator of (72) is nonnegative for points X of interest to us
since we are concerned only with points in the portion of the cap cut off
by the hyperplane that passes through @ and through the origin O and
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has its normal lying in the plane POQ; i.e., points for which x» 2 z; tan a.
For points in this region on the sphere and in the hyperplane z; = cos w
this inequality is

sin w cos f; = cos w tan «
or
€0S @ Sin w cos f. — sin & cos w = 0.
Now from (60) and (70)

oG CoS w d idfg
a p=w sin w 6‘.! dﬂg p=w

) cos 0 6_¢2
Sin 02 a,u p=w

=(n—2) +(n—3

Using (71) and (72), it is readily seen that this expression is nonnegative
and monotone decreasing in 65 .
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