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improvements in the system; and A. R. Lingenfelter, who was responsible
for recording and reducing the data.
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A Note on a Type of Optimization Problem
that Arises in Communication Theory

By 1. W. SANDBERG
(Manuscript received March 16, 1966)

A problem that has arisen' in connection with the use of transversal
filters to reduce the effect of intersymbol interference in digital com-

munication systems is to determine a real N-vectore £ (¢i, ¢z, -+, ex)
such that, withnp e & & {1,2, ---, N},
n;w ”ZE €iTn—j (1)
n#Fng
is minimized subject to the constraint
1= 2 ¢ (2)

1&F
Here {2.}_= denotes a set of real constants such that | 2o | > 3.z |z, | .
Lucky' has proved the interesting theorem that the optimal choice of ¢
coincides with the unique solution® of the equations

1= E Cilng—j

jeF

3

0= ctuy, ned — {nd. ®)
i

The proof of Ref. 1 consists of establishing a contradiction to the asser-
tion that (1), with ¢,, eliminated with the aid of (2), is minimized for
some ¢ for which (3) is not satisfied. The reader is referred to Ref. 1
for the details.

The purpose of this note is to show that Lucky’s result, and far more
general results of similar type, can be directly deduced from the follow-
ing proposition.
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Proposition: Let f* and & (f*), respectively, denote an abstract element
and a set such that f* £ ®(f*). Let 8 & {f*} U ®(f*), and let @ denote
a mapping of § into the set of nonnegative numbers. Let 8 denote a
normed linear space with norm || - ||, and let R denote a mapping of
Sinto 8 . Let

a(f) 2 Qf + | RS

for all f ¢ 8. Suppose that
(i) Qff =0
(#i) for all g £ @ (f¥),

Qg = || Rg — Rf*|. (4)
Then for all f ¢ §,

a(f) = o(f) (5)
and, if (4) holds with strict inequality for all g £ ®( %), then (5) holds
with strict inequality for all f ¢ § except f = f™.

Proaf: Let f e ®(f*). Then
o(f) — () = QF + | Rf | — @ — | Bf* ||
= Q + | RfIl = | B |
= Qf — | BRf — BRI,

from which the validity of the proposition is evident.

An Application of the Proposition

Foreachje & & (1,2, ---, N}, let {z,,} —= denote a set of real num-
bers such that | z;;| > 2. |z.;|. Let ¥ denote a proper subset of &
n#=Ey

containing at least one element, and let {a, |n & '} be a set of real
numbers. Consider the problem of determining a real N-vector c 4
(Cl yCo2y * "y C.v) such that

oa

ac) & X

n=——on
niF'

E €jlnj

16§

is minimized subject to the constraints

An = chxnjs ned. (6)
jeF

Our assumption that | z;; | > D | 2., | for j ¢ § implies® that there
n#&=j
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exists a unique solution ¢* to the set of equations

!
a, = Zc,—m,,,-, nesF
JeF g

0 = Dewj,ne(F—F).
jeF

We shall prove that if ¢ # ¢* and ¢ satisfies the constraints of (6),
then 8(c) > 5(c*). For the special case in which F contains a single
element, this result can be proved’ with a modification of Lucky’s
technique.

Let ®(c*) denote the set of all real N-vectors g, except the vector
¢*, such that

a, = Zg,-a‘,, iy neg.
JEF

Let Q be the mapping of 8 2 {¢*} U @(c*) into the set of nonnegative

numbers defined by

Qv = E Ujlnj
ne(F—F') | ieF
for all v £ 8.
Let 8, denote the linear space of vectors ©w = (--+, U1, %o, Uns1,
Unq2, """ ) with norm

e [ = 22w,

ieF
and let R denote the mapping of § into 8 defined by
(Rv)n = ;5”"”” iy mnegF
for all v ¢ 8. Then we have
i(c) = Q¢+ || Re
for all ¢ ¢ 8. Since Qc* = 0, if
Qg > || Rg — Re* |
for all g £ ®(c*), that is, if

2 Z Gi%nj

P N
ng(F—F") | 7¢F

- Z |Z (gi - Cj*)xnj >0 (7)

ngF | 7¢F

for all g £ ®(c*), then, by the proposition, §(c) > 5(c*). To show that
(7) is satisfied, observe that
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2 |Z gin; 2 |2 (g — cj*)xnj‘
ne(F—F') | ieF

ne(F—F') | jeF

=2 |2 (g — Cj*)xnfl

nefF | jeF

for g € ®(c*), and that, with w; & (g; — ¢;*),

Z Z'w,-:c.,,- = QZIwnEnﬂl - E_Elwfl-lxﬂfl
neF jeF

(8)

neF | jeF nef
and

Z lzwjxn:‘ = EZ!lelanl

neF | 7eF ngF jeF
Therefore,

P; 225 lwn:vvxn] - kzz_mzﬂzlwnl'lxkn!
2 2wl (lam| = 2 1mal),
neF k#n

which completes our proof, since the right side of (8) is positive for all
ge@ (c*)
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