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Cascaded structures play a major role in many signal processing and
signal propagating systems. The universality of such structures is particu-
larly evident when the signals are of a wave nature, i.e., the components of
the structure are representable by transmission lines rather than lumped
elements. Transmission media with discontinuities are examples of such
structures. Other examples include integrated, microwave, and optical circuits.

Theory of distributed structures has, so far, been successfully developed
only for structures whose components are lossless (or RC) transmission lines
of equal electrical lengths. It 1s the purpose of this paper to present a theory
of cascaded structures when the component elements are lossless transmission
lines of arbitrary electrical lengths. Extensions of the theory developed here
lo other structures will be discussed in a subsequent paper.

I. INTRODUCTION

1.1 Purpose

A large class of signal processing and signal propagating systems
takes the form of a cascade of elementary two-port, linear transducers.
For example, in the classical filter theory cascades of constant-k, m-
derived sections, ete. and in the modern network synthesis cascades of
transmission-zero sections form the conceptual basis. Integrated circuits
utilize RC' transmission lines in cascade. In microwave filter theory, the
structure takes the form of a cascade of quarter-wave transformers.
Optical filters incorporate the same idea in multilayer dielectric thin-film
structures. In propagation problems, one typically encounters waves
(electromagnetic, acoustic, ete.) travelling in cascades of transmission
media and discontinuities. These are but a few examples to indicate the
importance and universality of such structures.

It is the purpose of this paper to present a theory of such structures
when the component two-ports are representable by uniform lossless
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transmission lines of arbitrary electrical lengths. Extensions of the
theory to include other structures as well as lumped network elements
will be discussed in a subsequent paper. A secondary aim of this paper is
to incorporate into the theory those algorithms for analysis and synthesis
that are most appropriate for computing purposes.

The distinguishing feature of this study is the novel formulation for
the transmission matrix specifying each transmission line. The total
signal quantities at input and output of the line are related to each other
in terms of the forward and backward travelling waves in the line. In the
past, results have been obtained only for those structures in which the
component transmission lines are of equal electrical length. The new
formulation presented here leads to a complete theory of lossless lines in
cascade. The analysis and synthesis algorithms obtained here are par-
ticularly simple and straightforward. They appear to be quite promising
for computation.

1.2 Background

In the theory of lumped networks, extensive literature exists on cas-
caded (lumped) structures. The difficulty arises when some or all of the
component two-ports consist of distributed elements. In the case of
lumped elements, the system functions are defined by rational functions
of the complex frequency variable for which there exist many well-
known mathematical results. When distributed elements are present,
the system functions involve transcedental functions of the complex
variable with a consequent increase in complexity. It has been possible
in the past to obtain significant results only for certain classes of trans-
mission line structures by applications of Richards’ transformation.
In particular, Richards' showed that distributed structures consisting
only of uniform, lossless transmission lines of equal electrical lengths are
equivalent, under a change of variable, to lumped networks. Many
techniques and results of the lumped network theory can thus be carried
over to such a class of distributed structures. Ozaki and Ishii? applied
such a transformation to obtain physical realizability conditions for
such (i.e., uniform, lossless, and equal electrical lengths) transmission
lines in cascade. The same results have been better formulated and
extended by Riblet.®? An interesting root-locus approach has been used
by Seidel* to derive the realizability of insertion loss functions. Finally,
Shih® has recently used the same idea to obtain some results in the time
domain. All of these results are obviously directly applicable to cascades
of RC transmission lines of equal electrical lengths again by a simple
change of variable.
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1.3 [Results

An entirely new formulation in terms of the forward and backward
waves in the component transmission lines of arbitrary lengths is de-
veloped in this paper. Such a formulation is then used to obtain several
significant results. Specifically, these results include:

(7) A method of analysis which allows one to write down, by inspection,
the system functions of the cascaded structures. The expressions for
these functions are obtained explicitly in terms of the physical parameters
(characteristic impedances, propagation constants, etc.) of the com-
ponent, lines.

(72) Physical realizability conditions for system functions of cascaded
transmission lines.

(74%) A synthesis method which is simple and appears to have the
distinction of minimizing computational errors.

1.4 Organization

We begin with a statement of the problem in complete generality but
we end up with restricting it to the case of interest here (i.e., cascades
of uniform, lossless transmission lines). A summary of results for the
equal length case follows. We then proceed to introduce our new formu-
lation and discuss the lossless case in detail. The ideas developed for the
lossless case will be extended to other structures in a subsequent paper.

II. STATEMENT OF PROBLEM

In its completely general form, a cascade of linear two-ports may be
represented as in Fig. 1. Each component two-port may be characterized
by any one of numerous relationships between the various signal param-
eters at the two ports. The most convenient one for a casecade strueture
relates all the signal parameters at one port to those at the other. The
signal parameters that we shall use are the voltages and the currents at
the several ports. Other parameters (such as forward and backward
waves and many others) can also be used; but, these are not so con-
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Fig. 1 — The cascaded structure.
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venient. The conventions of positive directions for voltages and currents
are also shown in the figure.

The input and output signal parameters for each two-port are then
related by a transmission matrix for that two-port. Thus,

Sk—l = Tka,- (1)

where S is the signal vector whose elements are {V}, I} and T is the
transmission matrix for the kth two-port. It follows that

Se=1T7T,---T,8, =TS8, (2)
and
T':Tsz"'Tn- (3)

Equation (3) allows us to study the properties of the composite trans-
mission matrix T in terms of those of the component matrices 7' . Our
interest is in the methods of analysis and synthesis of such structures.
These are carried out conveniently in terms of some scalar system func-
tion of the complex frequency variable s = ¢ + jw. The system func-
tions that we shall be concerned with are the impedance function

_ Vols)
Zn(s) - Tq;(—S)_ ’ (4)
and the transmission (or insertion) loss function
_ Val(s) . E
06 =57,V Re 8

where Vg is the voltage of the source and appropriate resistive source
and load terminations (R and R.) are assumed. The above functions
are simply related to the elements ¢;;(s) of the matrix 7.

_ B + b
Z08) = LRy ¥ (6
and
0(s) = tuly + te + tnfleRy + tnRe )

2v/ReR.,

In this paper, our interest is limited primarily to those structures
that are representable as cascades of uniform lossless transmission lines.
The component two-ports are thus lossless transmission lines whose
ends are the ports (Fig. 2). The component matrix T can now be ob-
tained from the transmission line equations which, under zero initial
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Tig. 2 — A single section of lossless transmission line.

conditions and Laplace transformation with respect to the time variable,

are:’

V(s) 0 —sLi | [V(s)

I(s) —sC 0 I(s)
where V and I are the derivatives with respect to the distance variable
z. For the kth line, it follows that

Vial(s) cosh s7; Rp sinh sri | [ Vi(s) ©
Ii(s) R, sinh sr; cosh s7; I.(s) :
where L, and () are the inductance and capacitance per unit length of
the line,
. = V/ LiCrry, = electrical length,
Ry = A/L/C), = characteristic impedance,
and x; = physical length of the kth line. We thus have
cosh s Ry sinh s
Ty = . . (10)
R, sinh sty cosh sty

We shall use (10) to derive most of our results.

11I. EQUAL ELECTRICAL LENGTHS (LOSSLESS)

In this section, we briefly summarize the known results that have been
obtained for the case of transmission lines of equal electrical lengths, i.e.,

=T for all . (11)

Actually, = has the dimension of time and it is the time of propagation in
each line. It is commonly expressed as a fraction of the wavelength,
hence it is called the electrical length.*

*In the sequel, it will simply be called “the length”; when physical length is
meant, it will be so specified.
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The transmission matrix 7', is now dependent only on the parameter
R: . Now, it is clear from (6) that any factor common to all ¢;; cancels
out in the expression for Z, . If we make all matrices T’ rational in some
variable, except for a scalar multiplier, then the function Z, will also be
rational. From (10) and (11), it is apparent that either the hyperbolic
cosine or sine is the sealar multiplier if we use the transformation

p = tanh s7,

or
= coth sr. (12)

The matrices T’ are then all rational in p (except, of course, for the scalar
multipliers) and so, Z, will also be a rational function in p.

It should be observed that (12) maps the real and imaginary axes into
the real and imaginary axes, respectively, and the right half-plane into
the right half-plane. It is this fact together with the rational Z, that al-
lows us to draw upon the theory of lumped networks. We summarize
some of the important conclusions. First, we choose p = coth s7 and
observe that

Zi(p) + R
Zia(p) = PEEP) T M 12 13
k 1(P) Rk_lzk(p) T n ( )
where Z(p) is the impedance
_ Vi(s)
Zk(s) = m‘ (14)

under the above change of variables.
A basic theorem for the physical realizability of cascaded lossless equal
length lines is as follows.

Theorem:>* The necessary and sufficient conditions that Z, , a real rational
function of p of degree n be the input tmpedance of cascaded lossless equal-
length lines terminated in a resistor are: (1) Z, is a positive-real function
of p, and (i1) even part of Z, has only the n-fold zeros at p = =+1.

The necessity of condition (z) follows from (13) by observing that the
real part of Z.; is non-negative for all values of p with non-negative
real parts whenever the real part of Z is also non-negative for those
values of p. By iteration of (13) the first condition is seen to follow. The
second condition follows from the determinant of T which is (p* — 1)
if we neglect the scalar multiplier sinh sr; . From (3), the determinant
of T'is (p* — 1)", neglecting the scalar multiplier again. But the deter-
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minant of (10), is given by the difference of products of the even and
the odd polynomials in the numerator and the denominator of the im-
pedance funetion Z, . This difference is also the numerator of the even
part of Z, and the second condition is seen to be necessary. Sufficiency
of these conditions can be shown by an actual constructive synthesis
procedure using the inverse relationship of (13), viz.,

pzk—l — Ry

Z = p— Bi'Zia )

(15)
Trom (15), one can show that if Z,_, satisfies the above conditions, then
so does Z; and it is of a lower degree. The process ultimately terminates
yielding the load resistance.

Other results in the p-domain include explicit expressions for the
coefficients of the input impedance in terms of the characteristic im-
pedances of the lines and vice versa.® There is also some discussion on the
realizability of the transmission loss functions.! These results follow
from the basic theorem above.

An interesting departure from the above is the time domain investiga-
tion of the same structure.” No physical realizability conditions are
available in the time domain; however, the synthesis procedure is con-
ceptually quite simple. The system function used is the (impulse) reflec-
tion function in the time domain which takes the form of an infinite
series of equally spaced impulses. The first impulse at ¢ = 0 can only result
from the first discontinuity thereby yielding Ry . The second impulse
(t = 27) results from the second discontinuity and yields R, (since we
know ). The third impulse (¢ = 4r) results from the third discontinuity
as well as multiple reflections encountering the first and second discon-
tinuities. Since the only unknown in all these discontinuities is the third
one, it is uniquely determined and yields R; . The process continues and
every new impulse determines the next characteristic impedance until
all the junctions are specified. The rest of the impulses are then sums of
the multiple reflections from all the junctions and the synthesis is com-
plete.

The major drawback of the time domain approach is that there are
no concise physieal realizability conditions available.

IV. LOSSLESS CASE (GENERAL)

In this section, we consider the general case of lossless transmission
lines of arbitrary lengths in cascade. The transformation (12) no longer
reduces the system functions into rational functions. In faet, it is no
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longer possible to think in terms of rational functions. We must, there-
fore, abandon the previous approach and start fresh.

We begin with some physical observations. The structure is certainly
passive and so the impedance function Z, must be a positive-real func-
tion of s. The component two-ports as well as the cascade of them repre-
sent reciprocal structures and so the determinant of T'; as well as that of
T must be unity. This follows from the reciprocal property in general
and can be verified from (3) and (10) directly. The next observation
stems from the time delay property of transmission lines. As mentioned
earlier, the length of the transmission line 7, represents in reality a time
delay of 7 seconds between the input and output signals for the kth
line. The cascade structure, of course, distorts the signal but we can still
speak of the time delay as the time interval between the start of the
input signal and that of the output signal. This is the time delay that an
impulse will undergo, viz.,

T= 2 1. (16)

In this same cascade structure, however, each component line may be
viewed as a delay line of length 7, . To bring the parameter r in promi-
nence, we can look upon the line with its discontinuities at the two ends
as a spatial resonator for an impulse. If we can make these elementary
resonators r; explicitly apparent in the system functions, we would be
able to identify the several lines, It is this fact that motivates the formu-
lation that we shall pursue.

Let
z2=¢ (17
so that
2= "k, (18)
This maps the left half s-plane into the unit disc whose boundary
| 2| = 1 corresponds to the imaginary axis of the s-plane. Then
Te = A 2™ 4+ A2, (19)
where
1 +R,
Ak:t = -1 . (20)
+ R, 1

Equation (19) expressed T’ directly in terms of the forward and back-
ward wave delays z ™ and z""*. It would be more meaningful to express
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(19) in terms of the delay terms, z ™, and the terms, 2™, corresponding
to the elementary resonator. However, we shall find positive exponents
of z more convenient to use and when necessary it is always possible to
revert to the negative exponents. Hence, we shall have occasion to use

1

= 5 A2 + A7), (21)

Ty

V. LOSSLESS CASE — ANALYSIS

It is desirable in many eases to study the behavior of system functions
for different values of physical parameters of the system. In such cases,
it is necessary to bring out explicitly the dependence of these functions
on the system parameters. We proceed to do so by first expressing 7' in
terms of these parameters. From (3) and (19)

n

T =11 % [A:F2" + A 2™, (22)
k=1
or
T = 2—11 ZAlulAEuz .. -Anu,,zu111+u2'rg+-'-+u“rn (23)
and w. = +1 when a coefficient (24)

1

+ when a superseript.

The summation above is over all possible combinations (u; , us, - - -,
at, ). Thus, there are 2" terms in all. Each of these terms needs to be ex-
amined further to make (23) meaningful. First, however, let us observe
that the matrix T as well as the functions Z, and © can be all obtained
very simply from

y = Ty, (25)

where y = (m) and v = (UI). For example,
Y2 vz

zZ, =" (26)
Yo
and
24/ReR.0 = 1 + Rays, (27)

where, in (25),

v = (I‘;L). (28)
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The elements of matrix T' are obtained by letting the vector » have ele-
ments {1,0} and {0,1}. Our interest will, therefore, be in obtaining y in
terms of v. It follows from (23) that we need merely obtain

'U' = AIHIAE“E e Aﬂu“!). (29)

We show below that 4,"* is singular and so »" is obtained by successive
projections of a vector onto the appropriate eigenvector. Let

g 1 ukRk
S PSR | (50

It is obvious that the above matrix is singular (u® = +1). Its nonzero
eigenvalue is at A = 2 with the eigenvector

e.;u: — (ukle) ; (31)

et = (‘TRE) . (32)

It should be clear that A;** operating on any vector v results in two times
the projection of v onto e;"*. Or,

its other eigenvector is

A = weRy (0 + vaeRi) et (33)
Then, from (29)
141 =~ Hk+1Rk
T +1
v = e (Uz - uan) kI=11 (1 + R ) (34)

Finally, we obtain

n—1
y = 9" Zzulr1+---+unrn |:‘EI=I1 (1 + Ek_;:g_:ﬁ-l):l (Uz + u:;gn) e, (35)
where the summation is again over combinations (u;, Uz, + -, Un).
Equation (35) expresses the system functions as well as the composite
matrix explicitly in terms of the system parameters 7, and R, . Further
simplifications in (35) are possible for special situations. However, the
important thing to be emphasized here is that we have an explicit ex-
pression in scalar form for the elements y; and y» and therefore for all
system functions of interest. For computational purposes, (35) can be
expressed in terms of hyperbolic cosine and sine terms. For discussing
physical realizability, it would be more convenient to eliminate all nega-




THEORY OF CASCADED STRUCTURES 641

tive exponents of z in (35). This is accomplished by using (21) or, equiva-
lently, by considering 2"y since the highest negative exponent in (35) is
7. The impedance function Z, will be now a ratio of functions involving
only positive exponents of z.

Z,(2) = j—g (36)

VI. LOSSLESS CASE — PHYSICAL REALIZABILITY

The basic results will be derived for the realizability of the impedance
function Z,(z). It is then easy to carry over the results to determine the
realizability of other system functions. Let Z, be expressed in the form

2 mz

Zo(2) = 11\;8 = (37)
Z bkzm
=0

where N and D are finite sums as shown and have no common factors,
1, are nonnegative and increasing with k. The coefficients a, and by are
real and both are not zero for any k.
The necessary conditions that must be satisfied have been mentioned
before (see Section IV):
(2) Z, must be a positive-real function of s, or

Re Z,(z) = 0 for |z| = 1.
(#7) Determinant of 7' is one. Since we are considering (2’T')
det. (ZT) = 27 = 2*'m,

(see (23), (36), and (37)).
The second condition must be somehow expressed in terms of N and
D. To do this, observe that except for a constant positive multiplier,
Z'T is a product of matrices of the type

, (2™ + 1) Ru(2™ — 1) fif(2) £ (2)
Ty = —1, 2 2 = k k (38)
R (z™—1) (2*+41) g2 (2) g (2)
where for all &
fiz) = 271(1/2); q(z) = 2™q(1/2)

39
fo(2) = —=2™(1/2); g2(2) = —2"™ga(1/2) 49
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and
det. T = figr — foge . (40)
Observe that the product of T, will yield
F F
- =[ 1(2) 2(2)} (a1)
Ga(z)  Gi(z)

where Fy, Fa, Gy, and G, satisfy the same type of relations as fi, fs,
¢ , and g , respectively, vz,

Fi(2) = 2Fi(1/2)

(42)
Fa(z) = —2"F.(1/2), ete.
Also, if ¢ > 0 is a constant,
Z" = det. (Z'T) = cdet. (T") = ¢(F\Gy — FiGs). (43)
Then, if
N =N+ N, (44)
and
D =D+ Dy,
where
Ni(z) = 2""N.(1/2); Di(z) = 2Dy (1/2)
(45)

Ni(2) = —=2""Ny(1/2);  Da(z) = —2""Dy(1/2),
we can express, using (41),

7 _N+ N, _ FR,+ F, (46)
" De+ D GR.+ G

The condition (2) now can be expressed using (43) and (46) as

N\Dy — N2Dy = ¢2*'™ 47)

where ¢ is again a positive constant.

It is further possible to simplify the statement of the necessary con-
ditions. Z, is a positive-real function for | z| = 1. Consequently, it is
also an analytic function for all | z | = 1, hence one need verify the non-
negative property of Z, only on the boundary |z| = 1.* On the unit

*For a justification of all such statements, see the Appendix.
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circle,
Re Z, | z1-1 = 3[Zo(2) + Zo(1/2)] 121 - (48)
Define
EvZ,(z) = 3lZ.(z) + Z,(1/2)];
then, using (44)-(46),

7 _ l Nl(z) + Nz(Z) Nl(z) - Nz(z') :|
mize) = 5| G + S =), o
_ [{Nl(z)Dl(z) - Nz(z)Dz(z)}:I
B D(z)D(1/z)z%m :
Substituting (47) in (49), we have
¢
EvZ,(z) = m ’ (e = 0). (50)

Observe that the real part of Z, is always positive since ¢ is positive.
1t is zero only if ¢ is zero and this can happen only if R, = 0 or . The
two necessary conditions are thus equivalent to:

(1) D(z) is Hurwitz-type, i.e., all its zeros lie in the interior of the
unit cirele,

(i1) EvZ, = ¢[D()D(1/2)]"; cz 0.

These alternative conditions are easier to check. In any case, we now
state and prove the physical realizability conditions in the following
theorem.

Theorem: The necessary and sufficient conditions that Z,(z) be an im-
pedance function of a resistively terminated cascade of lossless, uniform
transmission lines are:

(1) Zo(2) is a positive real function for |z | = 1.

(’l,’b) N1D1 - NzDz = szm, (C = 0, I > 0)*

Proof: The necessity of the conditions has already been shown. The
sufficiency will be shown by a constructive method of realization. In
fact, we shall show that given a Z, satisfying these conditions, it repre-
sents the impedance of a transmission line terminated in an impedance
Z, satisfying the same conditions and of lower order. Z, and Z, are re-

* A lossless structure will result if ¢ = 0.
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lated by
(M4 D2+ B2 — 1) )
Zo - (2271 — l)ZlRl—l _{_ (2271 _'_ 1) (Ol)
or
21y _ iy
Zl — (z + l)zo R1(Z ]_) (52)

- (21 — 1)ZRi™ + (22 + 1) .

To show that Z; is p-r and of lower order for some positive B, and
1 we first observe, from (44) through (46), that

Zy(w) = Ni(0) = N:(0) _ - Nx(0)
’ D:(0) — D:(0) D.(0)’

since by condition (2),

m _ D:(0) .
N:(0)  Dy(0)’

and
7.(0) = Na(0) + N:(0) _ Nx(0)
’ Di(0) + D:(0)  Di(0)
= —Z(). (53)
Next, we observe from (52) that
L, &,
pll — 1 — 1 2271 — porzh . (54)
Ly Loy
By Ry

In the above, both p," and p,’ are reflection coefficients. It is obvious
that if p,’ is analytic for | z| = 1 and bounded by one on the unit circle,
than Z, is p-r. It is also true that if p,’ is of lower order than po then
7' is of lower order than Z,'. We, therefore, let Ry = Z,(% ) and note
that the highest exponents of z in the numerator and the denominator
of py are 2im_; and 2i, , respectively. The denominator of po has no
constant term and has the lowest exponent of 24, . If we now choose 7,
equal to the lesser of 4 and (im — im-1), it is assured that g, is analytic
for | 2| = 1 and well behaved at infinity. This follows from the ana-
lyticity of py and the cancellation of 2™, Tt is also clear from (54) that
for |[2] = 1, || £ | p |. But since Zy is p-r, | po | < 1, hence
| o’ | is bounded by one. We thus have, Z; is p-r if Z, is p-r and the
order of Z, is, 2(i, — m1), when the order of Z, is 27, .
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Next, if we express
_N \ + N,
DY + DY
where Ny, No', D\, and D, are defined in a similar manner as N, , N,
Dy, and D in (45), except that
N/ (z) = 2N/ (1/2), ete. (56)
It then follows from (51) and (55) that
Ni(z) = (@ + DN (2) + Ri(Z™ — 1) Dy (2)
Ne(2) = (" 4+ DN (2) + Ri(@™ — 1) D' (2)
Di(z) = (" 4+ 1D/ ) + RTET — 1N (2)
D(z) = (@7 + 1) D) (2) + R — DNY (2).

Z (55)

(57)

From condition (2),

210

cz . = N1D1 - N2D2
= 42" (N, D) — NJ'DY) (from (57)).
Thus,

/ ’

P ! P ! a(i, —
N1D1 —'Nng 362“,"' Tl), c

v

0

and the second condition is satisfied, This proves the basic theorem,

VII. LOSSLESS CASE — SYNTHESIS

It is indeed possible to synthesize the cascaded structure using (52) to
(54) as discussed in the previous section. We present here an algorithm
for synthesis which is much more straightforward. In our discussion
here, we shall tacitly assume that the conditions of the realizability
theorem are satisfied. Given a Z,(z) satisfying the realizability condi-
tions there exist R; and r; such that it is the impedance function of a
transmission line of length =, and characteristic impedance R terminated
in a realizable impedance function Z; of order lower than that of Z, . Let

Z, =2
Y2
~and
yn’
Z, = *1,§
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then if y is a vector with components {y, , 2}, v: are some vectors, and
= Z vkzhka
i=0

we have

A 4 AT

HAMYHET 4+ F(ATY).

The ratio of elements in the first term on the right is +£; and for the
second term it is (—R1). The lowest exponent of z in the first term is

27, . Finally, 5 is obtained by removing the multiplier z 1 in the first
term and adding the terms together since

JAT a0 = 1,

the identity matrix. We thus have a unique algorithm provided we have
a nondegenerate structure, i.e., the sum of the lengths of any subset of
the lines is not equal to the sum of the lengths of any other subset. This
assures us that there are no exponents equal in the two terms above. We
shall now specify the algorithm.

Given an impedance function.

w
Il

i kaE\'f,
(¢) Separate like and unlike signs of the coefficients ay , b

J _ Z alzzu + Z auzh,‘
TN S 4+ Y b
a; . &;
5> 0; b < 0.

(#2) Identify a;/b; = R, and the lowest 4, = 7.
(i77) Obtain

Y @Y+ Y el
1 Z b 2(13—71) + Z buz Ty

The algorithm is repeated until step (4i7) leads to a constant repre-
senting the terminating resistor R, . It must be observed that this al-
gorithm is valid for nondegenerate structures only (i.e., a;/b; = — (@u./bu)
for all [ and u).
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For degenerate structures, the first step in the algorithm has to be
modified. It is known, of course, from our discussion of (53) that

Im _ _ M0

b bo

So, if for any k, (ar/be) # =R, then we must split a; and b, such that

= R.

= gy + Qg

bk = bkl + bku
and
(177] aku
L =Ry,
b b
so that

ay = Ry = %(ak + Rib:)
Ay = — Ribiw = %((Idc - Rlbk)-

Using the above, we obtain the modified algorithm:
(7) Identify

(#7) Decompose

Z anz™™* + > @
a szz"‘-i-zb;mz

(#i) Identify the lowest 7, with nonzero ax; = 7, .
(7v) Obtain

_ 2 R N A
E b Iz“(ukffl) + Z b;mz i "

The synthesis method presented here minimizes algebraic operations
on the coefficients a; and b, , hence it is computationally advantageous.

VIII. CONCLUSION

We have presented a formulation which allows us to investigate
structures involving lossless transmission lines of arbitrary electrical
lengths. An analysis method is then developed which explicitly expresses
the system functions in terms of the physical parameters of the system.
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A basic theorem specifying the physical realizability conditions for such
structures has been presented together with a computationally simple
method of synthesis of impedance functions satisfying these conditions.
The significant characteristic of the results presented so far is the sim-
plicity of the algorithms involved both for analysis as well as synthesis.
These algorithms allow one to proceed by inspection in simple problems
and are most suitable for computer studies when the problems are more
complex.

Extensions of the theory to more general transmission lines and lumped
structures have been carried out. These results as well as design ap-
proaches to the cascade structures and questions of testing conditions,
approximations, etc., will be discussed elsewhere.

APPENDIX

Mazimum Modulus Theorem and Transcendential Functions

Throughout the text, the maximum modulus theorem’ has been
applied to functions which have either essential singularities or are
not single-valued in the domain concerned. Some justification for the
validity of the theorem for such functions is in order. The theorem has
been used to imply that the unit bound on the reflection coefficient (or
the positive reality of the impedance function) on the imaginary axis of
the s-plane is sufficient to ensure the same throughout the semi-infinite
right half s-plane. Consider the reflection function

E 4,
p(s) =22 b %0

Z b,.ez“."

n=0
where 7, are nonnegative and increasing with n. The above function is,
of course, assumed to be analytic in the right half-plane. The function
p(s) is a meromorphic function with infinite singularities, hence the
point at infinity is an essential singularity. This makes it difficult to
apply the maximum modulus theorem to the entire right half-plane. The
transformation z = €’ eliminates the essential singularity at infinity
but makes p(z) multi-valued since 7, are not necessarily integers. If the
i, are indeed integers, then p(z) is single-valued and the theorem can be
applied. If the 7, are not integers, they can be approximated arbitrarily
closely by rational numbers (dense in the field of real numbers) and the
transformation z* = e°, where ui, = integer, will yield a single-valued
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function to which the theorem can be applied. This discussion should
suffice to justify the use of the maximum modulus theorem for our pur-
poses. In fact, the theorem can be applied to the function in its original
s-domain or under any suitable transformation.
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