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A procedure is presented for evaluating the performance of a general
class of digital detectors which square or multiply signal waves contaminated
by gaussian noise. In addition to simplifying and unifying the treatment
of a number of previously solved problems and some hitherto unsolved ones,
the method achieves a considerable ad»ance toward a complete evaluation
of postdetection filtering. In contrast to most of the earlier related work,
which is typically restricted lo filters described as accepting low-frequency
difference products and rejecting high-frequency sum products, the present
analysis offers a tractable inclusion of filters which do significant selective
processing of the detected low-frequency signal and noise components.

A principal goal sought is the asymptotic form approached by the error
probability expressed as a function of the signal-to-noise ratio when the
latter is large. This is a primary region of inierest in digital data trans-
mission over the telephone network, and the applicable results give a basis
for comparing performance of different systems. The mathematical problem
is one of calculating the probability that a quadratic form in a set of gauss-
ian variables with arbitrary means and variances will assume values
eritically far removed from that obtained when each variable is at its mean.
The mean values represent signal contributions unperturbed by noise and
for good performance should dominate over the noise except at the lails of
the distribution. Concenlration of attention on the infrequent large noise
peaks calls for an approach inherently different from the conventional
series expansions appropriate near the center of the distribution. The
resulls are of importance not only in detection theory but also in general
statistical analysis of rare events.

I. INTRODUCTION

A general class of data receivers have decision logic based on observing
at the output the sign of a quadratic form
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Examples of such quadratic detectors and the reduction of their output
to the form (1) are given in Sections IV and V, and a schematic repre-
sentation in Fig. 1. Let it suffice for the present to say that the real
symmetric matrix @ is determined by the system filters, while the real
N-dimensional vector w and its transpose w™ are related to the received

signal plus noise.
During a considerable portion of this paper we shall be concerned
with the asymptotic evaluation of the probability of error for such
receivers when the noise is additive gaussian. To develop the tools

Fy
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Fig. 1 — Model of the quadratic detector.

for this end, and also partly for general mathematical interest, Sections
II and IIT are devoted to the following general problem: Given that
the real gaussian vector w whose components have means 10; and a
positive definite” covariance matrix M,

Mi; = {((wi — ®;) (wj — @;)) = M, (2)

is such that the quadratic form %@ is positive, what is the probability
P, that for small noise (i.e., that the w; have small variances) the quad-
ratic form (1) is negative? We refer to P, as the asymptotic probability
of error.f Various special cases of this problem have been treated in
the literature; some references may be found in Section IV where we
reproduce and generalize some of these special results.

* Without any real loss of generality striet positive definiteness is assumed.

t As pointed out later our techniques may also be used to obtain the distribu-
tion function in certain regions, not only the probability of error.
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A systematic treatment of the general problem has hitherto been
lacking. Progress has been inhibited due to the fact that the exact
probability distribution of arbitrary gaussian quadratic forms is too
complicated to be useful. Experience has shown that the curves for the
probability of error vs signal-to-noise ratio tend to be roughly parallel
for different data receivers and to be characterized sufficiently well by
their asymptotic slopes. We, therefore, do not strive to obtain exact
error rates but rather deal with asymptotie forms for large signal-to-
noise ratios. In other words, we will be concerned with the behavior of
the distribution on the tails of the density functions of our quadratic
forms. For high error rates or low signal-to-noise ratios, other approxi-
mations may be obtained by using various well-known moment series
such as the Edgeworth and Gram-Charlier expansions.

We show in Section V how our results may be used to attack the
problem of the distribution of the filtered response of a product detector.
It is primarily this consideration of postdetection filtering that has been
absent from earlier discussions. Finally in Section VI, a simple model
of a fairly representative class of quadratic detectors is analyzed in
some detail by means of a rapidly convergent expansion in prolate
spheroidal wave functions.

II. GENERAL ANALYSIS FOR QUADRATIC FORM

In the introduction we defined the problem of obtaining the prob-
ability of error for the quadratic form ¢g. We approach this problem via
the characteristic function €' (w) of (1), which is well known to be given
by'
exp 3 M = 2ieMQ) " — w" M)

Vet (I — 2iMQ '

The symbol {-), denotes the average with respect to g; ‘‘det” means
determinant and 7 is the identity matrix. Since M is the inverse of a
real symmetric and positive definite matrix, it itself has all of these
properties. We now note the following theorem # Let A and B be real
symmetric matrices, and further let A be positive definite. Then there
exists a real matrix S such that

STAS =1 1)

a

S*BS = o'D, (5)

Clw) = (), = (3)

where D is some diagonal matrix and ¢” is a positive parameter intro-
duced for later convenience.
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Equation (4) implies, in particular, that S~ exists. If we identify A
with M, and B with @, (4) and (5) tell us that we may write
M = 88" (4a)
Q = (ST %’DS. (5a)

If we substitute (4a) and (5a) into (3), and further introduce a new
real gaussian vector y by the linear transformation

Yy = S_lw, (6 )

we arrive at a simpler expression for the characteristic function, namely,

Clw) = &P BT — 2id’D)g — 47791

Vdet (I — 2iwe?D)

The principal simplification is now that D is a diagonal matrix. We note
that

(7)

wtQuw = ¢y Dy (8)
and
o Qw = o Dj. (9)

We find it more convenient to deal with ¢ when it is expressed in terms
of the variables y, .

The probability of error defined earlier may be expressed in terms of
the characteristic function by the formula

1 [7 Cl) dw (10)

P"{Q<O}EP“:_%_w+ie .

The e (¢ > 0) appearing in the denominator of the integrand and in
(10) is used to signify that in the complex w-plane, the contour of in-
tegration implied in (10) goes above the singularity at w = 0. Making
use of (7), we write (10) in more detail”

1 ° dw 1

T o L ; L
e w + e /‘/H (1 _ 2’iwa'2dj)
=1
N , 2
o 2]

=11 — 2iwed,

* Henceforth, we will not use bars to denote the mean of a random variable.

P, =

(11)
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=1
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where d; is the jth element of the real diagonal matrix D. Equation (12)
follows from (11) by a simple change of variable. We observe in (12)
that the quantity 1/¢° appears only in the exponent, and therefore we
may obtain an asymptotic expansion of P, valid for small ¢’ by con-
sidering only the exponent. One will see in later sections that this
asymptotic result for small ¢* corresponds to the asymptotic result for
large signal-to-noise ratios.

Proceeding with the analysis of (12), we remark that the integrand
obviously falls off sufficiently rapidly at infinity to allow one to close or
distort the contour at infinity without changing the value of the in-
tegral. We further note the singularities of the integrand of (12). There
is a simple pole at @ = 0 which has already been discussed. In addition
to the simple pole at w = 0, the exponent has simple poles at w = —i/d, ;
these all lie along the imaginary axis. Also at these points the denomina-
tor of the integrand has, in general, branch points due to the square
root. For doubly degenerate eigenvalues, the branch points become
simple poles.

We now concentrate our attention on performing the integration in
(12) for small ¢* by the saddle point method.”* To locate the saddle
points, let @ = 2, and consider the solutions to

N 2
_dl o, (13)
dn =1 1
1 + =
di
or
2
Vi
af d;
F(u) = — Z—z_., = 0- (14:)

Consider F (n) defined by (14) and let » be real. We shall show that
there always exists a saddle point for positive » (w positive imaginary ),
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which occurs before the first singularity of the exponent on the positive
. . P .
imaginary axis.” We separate the sum (14) into two parts

2 2
Yi Yi

O L L (15)
d;pos (1 + £) d(neg( + }_
I d,j n d,j

We note that when o« &~ — (1/d;), F(x) is large and positive for d; < 0
and F(n) 1s large and negative for d; > 0. Also note that
F) = —>dwy® = 0by (9) and our assumption that the noise-free
signal is positive. Hence by continuity, there must be at least one n >
0 for which F'(x) = 0, which locates a saddle point for us. Clearly by
the monotonicity of the two parts of expression (15) there can be only
one such saddle point between the origin and the first singularity of the
exponent on the positive imaginary axis.

The relations in the complex w-plane described above are illustrated
in Fig. 2. The dotted line labeled L, is the original contour of integration,
and the small circle labeled ¢“S.P.” is the (unique) saddle point on the
positive imaginary axis lying before the nearest singularity o = —4/d;,
d; < 0, which has nonvanishing residue 2 in the exponent of the inte-
grand. Also drawn on the imaginary axis in Fig. 2 are the branch cuts
of the denominator, indicated by the hatched bars in the figure. We
assume in this section (and Fig. 2 is so drawn) that the saddle point

oceurs before the nearest singularity @ = — i/d on the positive imagi-
nary axis.T As discussed above, this is guaranteed to be the case if only
(') =01

If the saddle point is situated as shown in Fig. 2, the contour may
then be shifted from the real axis (line L, in Fig. 2) to a contour which
is a straight line parallel to the real axis and passing through the saddle
point (the line Ly in Fig. 2). The integrand drops off sufficiently rapidly
for large | w | so that the ends of the contour connecting L, and L. (in
accordance with Cauchy’s theorem) give no contribution. We will now,
for large signal-to-noise ratios (small a), approximate the integral
along the contour L, by the contribution in the immediate neighbor-
hood of the saddle point. It is shown in the appendix that the magnitude

* This assumes that at least one of the d; is negative with nonvanishing residue

y:%. We also, of course, are assuming that the quadratie form ¢ in the absence of
noise is positive.

i For definiteness we have based our analysis on the assumption that the noise-
less signal is positive. We emphasize that the role of upper and lower half planes
would be interchanged if one assumed that the noiseless signal were negative.

1 We have used d’ to denote that particular d; which corresponds to the nearest
singularity on the positive imaginary axis; y’ is the associated y: .
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Fig. 2 — Contours and singularities in the w-plane.

of the exponential term in the integrand of (12) is a monotenically
decreasing function of w as one recedes from the saddle point on the
contour Ls , and therefore this saddle point evaluation is asymptotically
correct.” One might also add that it can be shown that the contour L,
is in fact tangent to the path of steepest descent at the saddle point.

To obtain an explicit formula for our asymptotic evaluation of P.
under these conditions, write (12) as

__ 1 Pt
P, = — 5 o, g(z) exp [?:I dz, (16)
with
) 1 1
9 = VTG — iad) ()
and
N 2
OEEDY y’ﬁ.. (18)

2+E:
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Then, by a standard saddle point evaluation, we have

P 1 1 T T Z yi*
*~ Ve IVITA + 1) VG 0 | TR < P 4
d:

7

where, to repeat, I' is the smallest positive root of the equation
Ly — (20)
dz o

The notation f” (<I') in (19) means the second derivative of f(z) evalu-
ated at z = 4T.

We finally wish to note that although we have concentrated in this
section on the evaluation of P, , one could use entirely analogous tech-
niques to find an asymptotic expression for the probability Px that the
quadratic form ¢ is less than some number K as long as K is less than
the value of ¢ in the absence of noise. The analog of (10) is (for any
value of K)

Px - — _1_ C(W) efmxdw. (21)

271 Lo w + 1€

For a K satisfying the stated condition, the integrand in (21) possesses
a saddle point such that a discussion for asymptotically calculating Pg
may be given which is entirely analogous to that already given for P, .
For a given ¢°, the accuracy of such an approach will depend on K.

III. VANISHING OF CRITICAL RESIDUE IN UPPER HALF-PLANE

We wish, in this section, to review a particularly trivial example to
illustrate a violation of a condition necessary for the guaranteed ap-
plicability of our method, namely the nonvanishing of the residue as-
sociated with the nearest pole in the upper half-plane. In the example
we consider here, the exact answer can be obtained by a simple contour
integral. Consider the quadratic form

2 = 3312 - .'1322 + $32 - 1:42, (22)
where the a’s are independent gaussian variables, all with the same
variance ¢°. Further, assume that z: and z; have zero means, Then the
characteristic function of z is
2 + x4t
1 — 2iwe’

(1 — 2{we®) (1 + 2dwe?)’

exp iw

(23)

Cw) =
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The contour integral implied in (10) may be closed in the upper half-
plane to yield immediately by exact methods

: .1'12 + -"C32
P, = jexp [——462 ] (24)

The exponent in (24) is simply obtained by evaluating the exponent in
(23) at the singularity w = i/2¢" in the upper half-plane. Now consider
instead the expression

N N

2=z + 232.1'2;;4.12 - Z 1'2:42; (25)
where 2z, in the absence of noise is assumed positive, the additional
gaussian variables are assumed to have variances which are less than
o, and the variable 2, (n = 3) with smallest variance has nonvanishing
mean. The exponent [— f(iy)/c’] for the characteristic function of 2
as one travels up the positive imaginary axis appears as in Fig. 3, where
we have written w = #y. Two situations are clearly possible. First y, <
1/2¢"; in this case the contour of integration for (10) may be distorted
to pass through the saddle point, and the previous discussion then ap-
plies. Since a° + a4° = 0 this could not be guaranteed a priori. The
second ecase is yo > 1/2¢°; in order to distort the contour to pass through
the saddle point in this situation, one must first sweep the contour past
the singularity at o = 4/2¢°. Since this singularity is, for the present
case, only a simple pole, the result of pushing the contour past is simply
to pick up the residue of this pole. As an asymptotic answer one then
has this residue plus the saddle point contribution. However, it is clear
from Fig. 3 that the residue term (recall yo > 1/2¢”) has a less negative

-fly)—=

o

Fig. 3 — Behavior of exponent discussed in section III.
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exponent, and thus in the limit of large signal-to-noise ratio will be ex-
ponentially dominant over the saddle point. If, for this second case, one
has instead one or more branch points before the saddle point, the
analysis is not as simple, but realizing that one may distort up to the
first singularity (which, of course, has vanishing residue in the expo-
nent), and keeping in mind Fig. 3, one might argue that the exponential
behavior for this case is determined by the value of the exponent evalu-
ated at the nearest singularity in the upper half-plane.

1IV. SIMPLE COMMUNICATION APPLICATION

In this section we apply our saddle point technique to a number of
problems whose asymptotic forms have appeared previously in the
literature with derivations based on techniques different from ours.
The reproduction of previous results helps to establish confidence in
our methods, and arrives at these answers in a more straightforward
manner than previously.

The problems considered here may all be put into the form where

g=1u'+u — v — v = —. (26)

That is, ¢ is the difference of the squared lengths of two two-dimen-
sional gaussian vectors. We let the variance of both components of the
vector u be equal to o5° and of both those of v equal to oy’. Further, all
components are independent. We shall see later that analysis of binary or
multilevel FM using diserimination detection and differential detection
of FM® reduces to this case with, in general, &; # o2, while the analysis
for differential phase modulation is also of this form, with oy = o
The characteristic function for ¢ defined by (26) is simply

oD i [ o _ v ]
P e 1 + 2iwe? (27)
(1 — 2iwe:?) (1 4+ 2dwor?) ’

Clw) =

and the probability of error is

w ¥ u?
] eXI;"_Qar_I2 m—iA+A2(w+j)
n:—%; Ti , (28)
Tl v—oo W € ((_.J—?,A) (w_{_:;l)
where

A = o3fe. (29)
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Letting, again, @ = 7y, we find that the saddle point of interest is at
w4 AN — w1l + A)°

g = A i — A (30)
Using (19), we then obtain for the probability of error™
P 1 oy 1 (v — A%) (u + A%)
T N2V F+ AV [+ A — w1 4 A7) 31)

-exp I:ﬁ-——ﬁ(u - v)’:|
2a2(1 + A2)

We might note in passing that if one has two independent N-dimensional
gaussian vectors uy and vy and if all the components of uy (vy) are
independent and have the same variance oo’ (1"), then the probability
of error for the difference of the square of these vectors, uy® — vy’, will
have different multiplicative factors from these in (31) but the expo-
nent in (31) will still be correct when w and » are reinterpreted to be the
lengths of the vectors uy and vy, respectively. The result (31) and its
generalizations for higher dimensions may also be viewed as giving the
asymptotic form of the cumulative probability distribution for the
doubly noncentral F-distribution. Ixact, but not very transparent,
formulas for this problem have recently been published by Price.’”

Analysis of the error performance of binary FM and differential phase
modulation leads one to consider the probability that the inner product
q of two independent 2-dimensional gaussian vectors, « and §,

g = 2a3 (32)

is negative when the inner product of the means is positive.” ™ Here
again the components of each vector are independent, and those of e
have the same variance and those of § have possibly a different variance.
However, it is clear that multiplication of (32) by a positive constant
can adjust these two variances to be identical (with appropriate ad-
justment of the means) without affecting the probability of error.
Hence, it suffices to choose the variances to be equal to the same con-
stant ¢°. Further, introduce

u=(a+8)/42
(33)
v = (&_ @)/‘\@;

so that

* If we write (31) as P, = f(up,o1,02), then, if the noisefree form (26) is nega-
tive, the probability P,.’ that ¢ is positive is P’ = —f(u,t,01,02).
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g =u — . (34)

The conditions assumed in the derivation of (31) are satisfied by (34),
and in particular we have

0’]_2 = t’)’z2 = 0'2. (35)
Equation (31) for the probability of error then simplifies to
. g 1 u + (4 (u — 1))2]
D~y — Y
P 2T Vwu — v exp ': 44° (36)

By making extensive use of (33), it is readily verified that our expres-
sion (36) for the asymptotic (large S/N) probability of error for ¢
defined by (32) is identical with the expression given in Bennett and
Davey,’ (9-56). The considerably more complicated form of the Bennett-
Davey result is solely due to the fact that they express their answer in
terms of variables e and 8 instead of  and ».

We now consider another application of our formula (31), namely to
the analysis of errors in multilevel FM data transmission using dis-
crimination detection. In this application, one is concerned with the
probability that the instantaneous frequency ¢ is in error, where  is
given in terms of in-phase and quadrature components, x(f) and y (¢)
respectively, by the equation™"

vy — yi .
= ) 37
V-0 (37)

The quantities x, ¥, &, ¥ are gaussian variables with arbitrary means,
and with variances equal to ¢, o, ¢°, ¢° respectively. We also use the
notation

R = 2 + yz

RR = zi + yy.
Suppose for the noise-free situation > z. It is of interest in the multi-
level situation to know the probability P that ¢y < z in the presence of
gaussian noise. To put this problem into a form to which (31) is directly
applicable, we made use of the following chain of equalities:

P="Pry =2 =Pr[y —z=0

Priz(y — 2x) + y(—2 — 2zy) = 0]
Pr{za + yb = 0],

(38)

I

where
a

k(g — zx)

and k is any postlive constant.

(39)
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We define

m=x+ a

U2 = Y + b
(40)
W =T —a
vo =y — b
and further choose k& so that
1 .
K=, (41
Z+ p )
where
Y
p = —- (42)
a
Then we see that
P="Prw+u —u —n 20), (43)

where the set of variables (u;, t., v, v2) are all independent (due to
this choice of k) and further,
0u) = ouy = (1 — k2)* + k'6* = oo (44a)

o) =0, = o1+ k2)* + 6" = o’ (44b)

It is useful to write »* = w® + w.” and ¥* = " 4 »° in terms of the
original FM variables, Using (37) — (40), we find that

e fen )] o)
o (R R

A convenient simplification results if we restrict ourselves to constant
amplitude 'M waves, i.e., £ = 0. For this specialization we have

‘E-

-e..

=
II
w |

w=R[l + k@ — 2)] (46a)

_R{l—l\(xp——z) ifk(y —2) <1
v kG —z2) — 1  ifk@ —2) > 1

If we set z = 0, we immediately have that k = ¢/¢, 0" =a2" = 2¢°, and,
distinguishing the two cases in (46b), (46) and (31) reproduce exactly
(38) and (39) of Ref. (6).

(46b)
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Equations (46) and (31) together provide general formulas for the
asymptotic evaluation of multilevel FM.

V. GENERAL QUADRATIC DETECTOR

In this section we consider the probability of error for the filtered
response of the product detector given in Fig. 1 when the noise input is
white gaussian. The signal s(¢) plus the added noise « (t) is divided into
two branches, each of which has a filter (denoted by F; and Fs for the
two branches). The outputs of these filters are multiplied and the
product is passed through the filter F; , whose output is the final system
output. This product detector is a generalization of the square-law
detector considered by Kac and Siegert,” and by Emerson.”” We first
parallel Emerson’s treatment and express the problem as in expression
(1), except now N = o=.

One familiar with Refs. 12 and 13 will not be surprised that the results
amount to solving an integral equation, one which there is little hope
of solving in practice. Therefore, we feel that an important point is
made when we show in the next section that for a particular model of
considerable practical interest, one can effectively approximate the
system function by a kernel of finite rank, expressible in terms of known
functions; the functions we have in mind for this purpose are the pro-
late spheroidal wave functions.! We wish to emphasize that although
the results of earlier sections are applied here, we regard the rapidly
converging approximations to the system function as important in the
treatment of this problem.

Following Emerson, let f;(t) be the impulse response of the ith filter.
Then the output at time ¢, £, (¢), may be written in terms of the input
wave

Eiw(t) = s(t) + n(t) (47)

as
Baw(t) = [: [: du do Bin(t — wg(up) Bl — v),  (48)

where the system function g(u,) is given by
sun) = [ fitu = DR — 2dz. (49)

One can immediately see from (49) that if the filters F, and F, are
not identical, then g(u,v) is not a symmetric funetion of u and ». How-
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ever, it is apparent from (48) that if we write the identity

g(up) = 3g(up) + gu)] + 3lg(wp) — glou)l, (50)

then when (50) is used in (48), the second term in (50) gives no con-
tribution, and we have

Hout(t) = f du dv B (t — w)G(up)Eiwn(t — v), (51)

where
G(up) = 3lgup) + g@u)l (52)

The kernel G (u,w) is now hermitian, and all its eigenvalues are guaran-
teed to be real; we also assume that @ is square integrable. If A, denotes
its nth eigenvalue and ¢, () its nth eigenfunction, then we may write
the well-known operator result”

G(Tl},v) = EAH@H (u)ﬂan (U). (53)

Thus,
Euui (t) = Ekﬂen?(t)s (54)

where
enl) = [ e Bt —v) dv. (55)

Upon using (47) and the fact that n(t) represents white gaussian noise
with correlation function

nOn")) = Nb(t — 1), (56)

and suppressing the t-dependence in (55), we see that the e, are in-
dependent gaussian variables with variances given by

var {e,} = Ny. (57)
The probability P, may now, in accordance with Section IT, be written
as
1 (% do 1
Pe= s lear el =,

) ) (58)
we,
P [_ 2N, ; w + i/?\,.} '

* We assume without loss of generality that the ¢.(¢) are real.
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or

1
PF - N /2_]\fol 1 exp [__” mf(yﬂ)} ‘ (59)
V2 V[ ) V)

In (59) we have written

yen' YAats’
y) = - 60
W= LR T 2T (60)

and ¥, is determined by
/) = 0. (61)

We will pay particular attention to the function f(y), since it is this
function which determines the exponential behavior for large S/N. We
note that in terms of the system operator G (60), which defines the
funetion f(y), may be written

fly) = (s, 7 iGyG s) (62)

where we use the usual notation (a,b) for the inner product of two vec-
tors in Hilbert space. In (62) we have used s to denote the vector
s(t — v), t fixed. If one knew explicitly the resolvent operator (1 + yG)~"
appearing in (62), one might perhaps calculate the required integrals in
(62) and search for the maximum of this function of y, thus determining
yo which is implicitly a functional of the signal s. In general, however,
approximation methods must be used.

Before mentioning some approximation schemes, we would like to
demonstrate an interesting result. The saddle point y, is determined by
(61), or, using (62), we have the implieit relationship

(vr5)

yl] = (s G s) .
(1 + yod)?

Thus, from (62) and (63),

2 G
f(yﬂ) = %o (S,m“GTZS), (64)

or
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(8,Ks)°
flyo) = (sK%s) (65)
where
G
K = TTsG (66)
Now clearly,
o) = (s,Ks)" < (s,5)(Ks,Ks) = (83 (67)

(s,K2%) = (Ks,Ks)

by hermiticity of K and Schwarz’s inequality. Thus, if the signal energy
E = (s,5) is fixed, the best performance would be achieved if (1/£)f (y0)
= 1, provided that this is possible. Certainly the equality in (67) is
satisfied if s is an eigenfunction of K, and hence of the system function
(7, and at first glance this would appear to be an optimizing solution.
However, such a solution violates the necessary condition that the
function f(y) have poles at the nearest eigenvalue for both positive and
negative y, and hence our basic relation (65) does not hold for such a
choice of s. In fact, under the assumptions for which (65) was derived,
no function s, subject to the constant energy constraint, will yield a
stationary value for the exponent (65)." In faet, it is not difficult to
convinee oneself that the best function s to take (for a positive output)
is the eigenfunction ¢, with the largest positive eigenvalue. Note that
(65) is not applicable here. However, the exponent may be estimated
according to the discussion of Section I1I to be

w
(o[-

N
)&
where A. (A_) is the positive (negative) eigenvalue of G' with largest
magnitude. If A, is large compared with | A_ |, the equality in (67) may

(68)
1+

be approached (note e = (s,s)) for positive pulses. However, for
negative pulses the factor in the exponent will be
7:
ed (69)
T+ |5

* Fven though the exponent is a function of y¢ which implicitly depends on s
this dependence can be ignored in a first-order variation because of (61).
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and will become arbitrarily bad. Thus, if one wants symmetry between
positive and negative pulses, one must take A, and A_ to have essen-
tially the same magnitude, leading to a result that is a factor of two
worse than suggested by the equality in (67). We might point out that
the value of the exponent that would be obtained if the equality in
(67) held, is the same as that for the probability of error for an ideal
correlator, the optimum detector for this binary situation. Since, as
just described, the optimum binary scheme here uses orthogonal sig-
nals, the factor of two worse than ideal binary correlation deteetion is
not surprising. Since the ideal binary system (again a correlator) for
orthogonal signals also gives an exponent worse by a factor of two, no
exponent could be better.

VI. EXAMPLE OF QUADRATIC DETECTOR

A particular specialization of the general quadratic detector given
schematically in Fig. 1 is a differential detector. By this term we shall
mean that the filters ¥, and F, in Fig. 1 are identical except that F.,
in addition to representing the channel as F; does, has a delay of one bit
interval. The filter F; is a low-pass filter. We treat the simplified base-
band case where F; is an ideal low-pass filter with cutoff © rad/s., and
F, is identical to ) except for a delay 7', and finally the postdetection
filter I3 is an ideal integrator with integration time 7' seconds. The
analysis is also relevant to the situation where F, and F, are bandpass
filters, symmetrical with respect to some carrier frequency, provided
one neglects the double carrier-frequency terms at the input to F .

We begin by considering first the alternative version of the output
(51), namely

Eow (t) = 3[(sa, §s) + (s,75a)], (70)

where in (70) we have for convenience included the delay 7' directly
in the signal rather than in the system function, and have denoted the
delayed version of s by s;. In (70), 7 denotes the system function for

two identical filters F; and F» . Equation (49) now reads
T/ 0 _ . _
Glup) = f sin @ (. — z)sin @ (v — 2) e (71)
rpr w(uw — 2) (v — z)

We would like to evaluate the integral for » and » on the entire real line.
We shall first present a formal evaluation for » and » both restricted to
the interval (—7/2, T/2), and shall then invoke analytic continuation
to claim that this restriction on the evaluation of (71) can be dropped.
Let ¢, (t) be the prolate spheroidal function normalized to unity in the
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infinite interval, and hence to A, on the interval (—7/2, T/2). Also
let ¢, (1) be the same function normalized to unity on the interval
(=T/2, T/2) and hence to 1/X, on the infinite interval. The functions
¥, (1) satisfy the equation!*

T2 . )
.[ Wiﬁn’(z) dz = )\n'ib?!’(u)’ (72)
o w(u — 2)

where the eigenvalues A, are real and positive, and ¢, (z) satisfy the
identical equation. On the Hilbert space of square-integrable functions
on the interval (—7/2, T/2), it then follows that we may write

8T S @) (73)
Therefore,
Flup) = "i;a ﬂéﬂ Mdwtln (w)m (0) j_‘:: ¥ (2w (2) dz,
or
glup) = ,:Z" A () @), (74)
Reinterpreting (74) to hold on the infinite interval, we have finally
glup) = ":O Nl (1) (V). (75)

Rewriting (70) as
Eout = Jf[ (Sl ['”‘ (Tl )gS) + (S,g[] (Tl)'g)]? (76)

where U(T,) represents the unitary operator of time translation by
amount 7, and comparing (76) with (51), we see that the symme-
trized system function G'(u,w) is given hy

) = 3 2 Ml + T (v)

(77)
+ 3 2 M (Wl (0 + To).
Important simplifications in the result (77) obtain when one makes use
of the fact that the A, tend to zero rapidly after a few terms. Thus, one
would expeet that the infinite sum for the system function (77) may be
effectively truncated after a few terms, and the problem of finding the
resolvent kernel (1 4+ »G)™"in (62) is thereby reduced to inverting a
finite dimensional matrix. The rapidity with which the A, decrease
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depends on the parameter" ¢ = QT /2. Some fairly typical situations
correspond roughly to ¢ = 7= and Ty = T. The first six eigenvalues for
¢ = , which are 0.981, 0.749, 0.243, 0.025, 0.001, ~107°, illustrate this
behavior well. Furthermore, it usually happens that the shape of the
signal during the integration time of the filter, i.e., the pulse shape,
bears a great deal of resemblance to ¢y(f), which one may crudely
visualize as having a (sin ¢)/t shape. This tends to emphasize the n = 0
term in (77) even more. Hence we should not be far wrong if we simply
write (for Th = T)

Gup) = o + Tha(0) + Prabo (e + 1),  (78)

or equivalently if we define

T/2

<=L Yolulpo(u + T') du, (79)

we have that

Gluw) = Mol + ¢ [%(u) + Yolu + T)] [sbo(v) + (v + T)]
W =" V21 F e V2(1 + ¢)

80
(1 — ) |:\Po(u) — $o(u + T)] |:'lfo(?)‘) — (v + T)] (80)
2 V2(1 — ) V2(1 — ¢)

The latter form (80) explicitly exhibits the eigenvalues and eigenfunc-
tions to this approximation. For T, = T, e is quite small and in the
spirit of our approximation may be neglected. We note in closing that
we have found the representations (78) through (80) extremely useful
in evaluating the effects of an added external tone on differential phase
detection of a signal accompanied by gaussian noise. We emphasize that
the dependence of the degradation on the frequency of the tone in such
a problem is strongly influenced by the presence of the postdetection
filter and hence its inclusion (aside from its role of selecting only differ-
ence frequencies) was essential. This, in fact, motivated much of the
present work.

APPENDIX

Proof of Monotonicity of Exponent on the Contour

The function of interest is

exp [— f(w)/c’] = exp —-2—0,;22 Ys = |- (81)
’Elm + .

d;
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If we let @ = o + 4T with x real and with the saddle point occurring at
w = 1I', we have on the contour L,

| exp {—f@/aﬂll - J : ny [l o (F i ‘%)]1 (82)

exp ey - R I\
T+ F+3
i

Therefore, it is sufficient for us to prove for those j such that y;°# 0, that

2 , 1 1
frred) r(rd)

. N - 1\’ (83)
di(reg) (0 +d‘,)
which in turn amounts to showing
1
d; = > 0. (84)
It

7

Now, if we merely recall that T' > 0, then the inequality is obviously
true for d; > 0. If we also recall that if d; < 0 then (—1)/d; > T, (84)
obviously holds for d; < 0.
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