Optimum Reception of Binary Sure
and Gaussian Signals
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(Manusecript received May 25, 1965)

The problem of optimum reception of binary sure and Gaussian signals
is to specify, in terms of the received waveform, a scheme for deciding be-
tween two alternative mean and covariance functions with minimum error
probability. In the context of a general treatment of the problem, this article
presenis a solution which is both mathematically rigorous and convenient
for physical application. The optimum decision scheme obtained consists
in comparing, with a predetermined threshold ¢, the sum of a linear and a
quadratic form in the received waveform xz(t); namely, choose my(l) and

ro(s,0) #f
2[a@ot) e+ [ [la(s) — m(s0le(t) — m(n) ds dt < e,

choose m,(t) and r,(s,l) if otherwise, where my(t), mi(t), ro(s,t) and r,(s,t)
are the two mean and covariance functions, and g(t) is the square-iniegrable
solution of

fro(s,t)g(s) ds = my(t) — me(t),
while h(s,t) is the symmelric and square-integrable solution of
ff?‘o(s,u)h(u,v)rl(v,t) du dv = r1(st) — rols,t).

Note that under the assumption of zero mean functions, i.e., mo(l) =
mi(t) = 0, the above result is reduced lo the one in a previous article by
this author, while with the assumption of identical covariance functions, i.e.,
ro(s,l) = ni(s,1), it is reduced to the classical result essentially obtained by
Grenander.

Sections I and I1 introduce the problem and summarize the main results
with certain pertinent remarks, while a detailed mathematical ireatment 1s
gwen in Section I11. Although Appendices A—D are not directly required
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for solution of the problem, they are added to provide a tutorial background
for the results on equivalence and singularity of two Gaussian measures ob-
lained by Grenander, Rool and Piicher as well as some generalization of
their resulls.

I. INTRODUCTION

Suppose the received waveform z(#) observed during the interval
0 < t < 1is the sample function of a Gaussian process, whose mean and
covariance functions are either mq(f) and ro(s,t) or m,(f) and ri(s,f). We
assume that m(f) and m,(f) are continuous while r4(s,t) and r(s,f) are
positive-definite as well as continuous. Denote by Hy, k = 0,1, the
hypothesis that m(f) and ri(s,f) are the mean and covariance functions
of the Gaussian process {z.,0 < ¢ < 1}. Suppose further that «, 0 < &
< 1, and 1 — a are the a priori probabilities associated with the two
hypotheses H, and H, respectively. Then, reception of binary sure and
Gaussian signals may be regarded as a problem of deciding between two
hypotheses Hand H, upon observation of the sample function 2(1). Thus,
the problem of optimum reception of binary sure and Gaussian
signals is to specify a decision scheme in terms of z(f) such that its error
probability is minimum.*

In the previous article,’ a general treatment of the problem was made
under the assumption that mq() = m,(f) = 0, and several forms of the
optimum decision schemes were given under additional conditions with
varying degrees of restriction. The following is most restrictive but most
convenient for physical application:

1 1
choose H, if _/;L:c(s)h(s,t)x(t) dsdt < k, 0

choose H,; if otherwise,

where h(s,) is the solution of the integral equation.{

1 1
f f ro( s,u)h(uw)ri(v,t) du dv = ri(s,t) — ro(s,t) (2)

0 0

satisfying
1 1
[ [ W dsat < w, (3)
0 0
and k is a positive constant (the predetermined threshold); provided the
* A more somplete motivation of the problem is given in Ref. 1.

t Existence of such a solution is a part of the condition for (1) to be the opti-
mum decision scheme.
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following additional conditions are satisfied for all 7,7 = 1,2, ---.

= - 2K, (4)

k=1
where X\;, 7 = 1,2, .-+, are the eigenvalues of the covariance kernel
ro(s,t) and a;j; 7,7 = 1,2, - -+, are defined by

1 1
a;; = j; j; ll/f(s)i‘l(&,ﬂ)%(t) ds dt:

with ¥;(t), 7 = 1,2, -+ -, being the orthonormalized eigenfunctions cor-
responding to A;, 7 = 1,2, ---, and K is a constant independent of ¢
and 7, and the prime above the summation sign signifies omission of the
term j = 7 or k = j, whichever the case may be.

As remarked in the previous article, the conditions (4) are not essen-
tial to the nature of the problem but are imposed for the sake of mathe-
matical proof. Moreover, they are undesirable from the application
viewpoint since they not only are restrictive but also require the explicit
knowledge of the eigenvalues and eigenfunctions of the kernel ry(s,t).
Recently, Rao and Varadarajan?* and Pitcher® have obtained certain
general results (on the expression of Radon-Nikodym derivatives), which
indicate that such conditions are unnecessary and can be replaced by
more meaningful ones, In fact, Rao and Varadarajan extend to the gen-
eral case where the assumption my(f) = m.(f) = 0is no longer made. The
purpose of this article is to generalize the previous results! by removing
the assumption mo(f) = m,(f) = 0 and replacing the conditions (4) with
more appropriate ones. The first half of the development is a direct gen-
eralization of the former Solution — I (the “sampling’” approach), while
the second half is the application of the results of Grenander® and Pitcher
to the problem of optimum reception.f

II. SUMMARY AND DISCUSSION OF MAIN RESULTS

As previously stated,! the foundation for solution of the problem of
optimum reception consists of the following (measure theoretical) facts:

* This article appeared even before the author’s previous one.! although the
current result as well as the previous one were obtained independently.

t The results of Grenander and Pitcher are better suited for this problem than
those of Rao and Varadarajan since the former readily yield a concrete specifica-
tion of the optimum decision scheme comparable to (1)-(3). Although the problem
stated at the beginning is solved by a particular combination of Grenander’s and
Pitcher’s result, we have added in appendices an extension of Pitcher’s results on
equivalence and singularity of two Gaussian measures to the general case where
mo(t) # 0 #= m,(¢) for its own interest.
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(1.) Two Gaussian probability measures P, and P,, corresponding
respectively to mg(t) and ro(s,) and to ma(f) and ri(s,), can be either
“equivalent” or ‘“singular”.

(2.) If Pyand P, are equivalent, then there is a certain random variable
dP,/dP, called the Radon-Nikodym derivative of P, with respect to Py,
which is a function of the sample function x(t), and the following decision
scheme yields the minimum non-zero error probability:

o dPy @
H, i =
choose Hy if aP. (z) < I —a’ (5)

choose H; if otherwise.

On the other hand, if Py and P, are singular, then there is a set N of
sample functions such that Py(N) = 0 and P,(N) = 1, thus the error
probability of the following decision scheme:

choose H, if (i) does not belong to N, ©)
6

choose H, if otherwise,

is exactly zero, regardless of the a priori probabilities, thus resulting in
the case of “perfect reception”.

Hence, the problem of specifying the optimum decision scheme be-
comes the problem of finding such a random variable dP,/dP, and a set
N as well as a criterion to tell whether Py and P, are equivalent or

singular.

2.1 Solutions — I

Suppose z(t), <++, 2(ta), 0 =t < -+ < tn = 1, are the values of
the sample function (the received waveform) sampled at &, ---, &,
where each sampling interval is to become infinitesimal as n — . Like-
wise, let mo(ty), - -+, mo(t.) be the sampled values of mo(t). Then, the
joint probability density functions for x(t) — mo(h), - -+, x(tn) —
mo(t,) under the two hypotheses H, and H, are obtained by using the
mean and ovariance functions mo(f) and 7o(s,) (under Hy) and my(f)
and 7, (s,t) (under H,).* Then, by forming the ratio of the two density
functions, the likelihood ratio I, of x(t;) — ma(t), -~ -, x(tx) — mo(ts)
is obtained as follows:

* A rather artificial choice of z(&) — mo(t), instead of z(&),7 =1, --- , n, is
purely for a notational convenience later, and other choices are equally accepta-
ble at this point.
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n

L(z) = | R™(R™)™"|' exp l:l > [, — me(ts)]

2 5=
X [(R™)™ — (R, [z:; — mo(t;)]
n _ . (7)
+ il}zul (ﬂlg‘- _ mﬂ(ta) -2I_ ml(tl)) [(thn))—ll‘_j

X [ma(t;) — mo(tj)]],

where R.'™, k = 0, 1, are n X n covariance matrices defined by
(R™)iy = me(ti, ), k=0,1;  dj=1--,n

Next, through the use of martingale theory, the following facts can
be established:
Py and P, are equivalent (the case of non-perfect reception), if and only if

llm Itr[Ro(n!(le))fl _ 21— + Rl(n)(Ru(n))*l + (Rotn))~1 M(n}

n-+>o0 (8)

+ (R™)T M7 < e,
where (M™);; = mmy;dj =1, ---,n andm;, i =1, ---, n, are
given by

m; = My (t.) - Tn[)(t").

In this case

. . dPy
lim £,(z) = ap, (z) (9)
for almost all sample functions under both hypotheses Ho and H, .

Py and P, are singular (the case of perfect reception) if and only if (8)
is not satisfied.t In this case, for almost all sample functions,

0 under H,,
lim l,(z) =

n->o0

« under H, .

That is, (8) is a necessary and sufficient condition for the perfect recep-
tion to be impossible. The crucial random variable dP,/dP,, by which
the optimum decision scheme is specified in this case, can be expressed
as the limit of the likelihood ratio I, (x) for almost all sample functions

* “tr" denotes “‘trace’’, and I is the n X n identity matrix.
t In this case, the left-hand side of (8) becomes 4 = necessarily.
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z(t). Likewise, negation of (8) is a necessary and sufficient condition for
the perfect reception to be possible, and the critical set N can be speci-
fied as the set of all sample functions for which the limit of the likelihood
ratio is not smaller than any positive constant, say a/(1 — a). Therefore,
we conclude, in conjunction with (5) and (6), that irrespective of
whether or not the condition (8) is satisfied, the optimum decision
scheme can be specified as follows:

23

choose Hp if liml,(z) <

’
n—>0 l—a

(10)

choose H; if otherwise.

We note in (8) that, if mo(t) = m:(t) = 0, the trace of the last two
terms in the bracket vanishes, thus the necessary and sufficient condition
for equivalence of Py and P; is reduced to

lim tr[Re™ (R1™)™" — 2T + R (R™)7] < o, (11)
which agrees with the previous result.' Similarly, if ro(st) = 71 (s,t) =
r(s,t), the trace of the first three terms vanishes and the necessary and
sufficient condition is reduced to

lim tr[(R™)™ M™] = lim (m™, (R™)7'm™) < o,

n-»0 n—>o0

(n

where m'™ = (mqi, --+, Mma).

Now, since the trace of the last two terms in the bracket of (8) is al-
ways positive as indicated above, (11) is a necessary condition for (8).
Also, since the left-hand side of (11) is known to be either finite or + o,
the conditions

lim t[(Ry"™) ™ M™] < », k=0, (12)

n->w

are necessary for (8). Thus, we conclude that a necessary and sufficient
condition for equivalence of Py and P, is that Py and P, be equivalent in
the following three special cases:

(i) mo(t) = mui(t) = 0,

(ii) ro(s,t) is substitued for ry(s,t),

(iii) 7, (s,t) is substituted for ro (s,8).*

* It can easily be shown that the cases (ii) and (iii) can be combined to the
case (iv) where 7o(s,t) + ri(s,t) is substituted for both 7.(s,t) and r,(s,t). Thus,
the necessary and sufficient condition for equivalence of Py and P, becomes that
they be equivalent in the special cases (i) and (iv). This condition has already been
reported elsewhere.?# Furthermore, as it turns out, either the case (ii) or the case

(iii) is redundant. That is, Pq and P, are equivalent in general if they are so either
in the special cases (i) and (i) or in (i) and (iii), as shown in Appendix D.
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It may be illuminating to rephrase this in terms of the perfect reception
of binary (sure and Gaussian ) signals, though the use of terms is slightly
inconsistent with the remainder of this article. Suppose we consider
mo(t) and my(t) as binary sure signals and ro(s,t) and ri(s,t) as the
covariance functions of binary Gaussian signals or noise whichever the
case may be. Then, the perfect reception of the binary sure and Gaussian
signals is possible if any one of the following three conditions is satisfied
by the constituent signals and noise:

(i') the perfect reception is possible between the two Gaussian signals
alone,

(ii') the perfect reception of the binary sure signals is possible in the
presence of the Gaussian noise with the covariance function ro(s,t).

(iii') the condition identical to (ii’) except for ro(s,t) being replaced
by 71 (s,t).

Examination of the form of the likelihood ratio Z, in (7) in conjunc-
tion with the decision scheme (10) indicates that, if the exponent and the
factor before the exponential converge separately, (10) can be rewritten
in terms of their limits. Namely, if there exist a positive constant 8 and
a random variable 6 such that

8 = lim | R\ (R"™)7 |, (13)

n-—>0

and

g(z) = lim [i [e, — molts)] (R™)™ — (R™) ™y

n>o | i, =1

X e, — mo(t)] + 2_ﬁzl(mn __E@(“lﬁg_ﬁﬂﬁﬁz) (14)

X 1R My Doalty) — mu(t,»)]],

for almost all sample functions under both hypotheses H, and H, , then
(10) is reduced to the following:

e 1 @ :
I Hy if 6(z) <1 [— (——) ]
choose o 1 (x) og s\T == (15)

choose H; if otherwise.
It can be shown that such 8 and § exist if and only if

lim | telRe™ (R ™ = T + (R M™]| < o,

n-»w0

lim | tr[R ™ (Re™) ™ — T + (R™) ™ M™]| < .

n-—=o

(16)
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Note that the above implies the condition (8) as it should. In fact the
condition (16) requires not only that the sum of two traces should con-
verge but also that the two traces should converge individually. As we
have observed earlier, the condition (8) is equivalent to those of (11)
and (12). Hence, the portion of the condition (16) which is additional to
(8) is

lim | tr[Re™ (R:™) ™ — I1| < o,

lim | tr[R™(R™) ™ = 11| < . ()
But, according to the previous result,' (17) is the necessary and sufficient
condition for existence of 8 and § when mq(t) = my (t) = 0. This is no
surprise. For, according to (9), [.(x) converges for almost all sample
functions under both hypotheses when the condition (8) is satisfied.
Hence, if in addition the factor before the exponential converges, the
exponential must also converge (for almost all sample functions). Thus,
the additional condition required is the convergence condition of the
factor before the exponential alone. But this factor is obviously inde-
pendent of my(t) and m,(z). In summary therefore, if and only if the
conditions (12) and (17) are satisfied, there exist such g and 4 as defined
by (13) and (14) and the optimum decision scheme can be specified by
(15).

Although the decision scheme (15) is certainly simpler than (10), it
is still inconvenient for physical application since it requires the limit
operation for each received waveform. What is highly desirable is to
express 8 of (14) not in terms of the infinite sum but in terms of integrals
involving z (¢) explicitly. It is completely possible to achieve this ob-
jective through a straightforward generalization of Solutions — II of
the previous article' by removing the assumption mo(t) = m,(t) = 0.
But, as we have remarked in the Introduction, this method ecannot avoid
the undesirable accompanying conditions analogous to (4). Hence, in
the next subsection, we shall obtain the expression of dP:/dP, directly
through a particular combination of the results of Grenander and
Pitcher.

2.2 Solutions — I

Let us introduce a third Gaussian probability measure Py, correspond-
ing to my(¢) and ro(s,t). Then, just as equivalence of P, and P, implies
existence of a random variable dP,/dP, (the Radon-Nikodym deriva-

_ * This generalization has been carried out in detail and the result is contained
in an unpublished article by this author.
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tive of P, with respect to Py) as stated at the beginning of Section II,
equivalence of Py and Py and equivalence of Py and P; imply existence
of dPy/dPy and dP,/dPy, respectively. Now recall that the key to the
solution is to find an expression of dP?,/dP, in terms of x(t), in the case
where the condition (8) is satisfied. Note that the term, Radon-Nikodym
derivative, and its symbol immediately suggest the following formalism
which is analogous to the chain rule in calculus:

dPy _ dPy dPy
dPy ~ dPydP, ’

According to measure theory, Py and P, are equivalent and (18) is valld
for almost all sample functions under the hypotheses Ho, Hyo and H,,
if Py and Py as well as Py and P, are equivalent. Thus, the task of find-
ing an expression for dP,/dP, in terms of x(t) is equivalent to that of
finding such expressions for dPi/dPy and dP,/dPy together with the
conditions for equivalence.

Now, through the application of the condition (8) to the case of two
Gaussian measures Py and Py, it is seen that Py and Py, are equivalent
if and only if (12) with k = 0 is satisfied. Note that this is the special
case (i) in the preceding subsection, namely, that perfect reception of
the binary sure signals mo(t) and m, (¢) is not possible in the presence of
Gaussian noise with the covariance function rq(s,t). Then, according to
Grenander,! if the integral equation

(18)

1
f ro(8,0)g()ds = mi(t) — mo(),0 =t £ 1, (19)

has a squm'e-integrable solution ¢(f), then dPy/dPy can be expressed as
1
dP 0 2

for almost all sample functions under the hypotheses Ho and Hyo. As
we may recall, it is through the substitution of (20) into (5) that the
well-known optimum receiver (decision scheme) of binary sure signals
in noise is obtained ; namely,

choose H, if

(21)

1 1
f 2()g(1) dt < %f [mo(t) + ma(D)]g(e) dt + logl f =

choose H, if otherwise.

* Hois the hypothesis that m(t) and r ( s,) are the mean and covariance func-
tions of the Gaussian process {&;,0 =t = }.
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Similarly, from the condition (8), two Gaussian measures Py, and P,
are equivalent if and only if (11) is satisfied. This is essentially equal to
the special case (i), namely, that the perfect reception is not possible
between two Gaussian signals with ry(s,t) and r, (s,t), where z () — m,; (t)
instead of a(¢) is to be regarded as the sample function in this case.
Then, according to the previous result,’ which is improved by Pitcher,®
if the integral equation (2) has a solution & (s,t) which is symmetric and
satisfies (3), dP/dPy can be expressed as

e —4 1 pl
P = (e) eofs [ [ 1o

(22)
— ma(8)h(s,t)[x(t) — ma(t)] ds dt}
for almost all sample functions under the hypotheses Hy, and H; , where
pi > 0,7 = 1,2, ---, are the eigenvalues of a certain operator defined in
terms of r4(s,t) and r,(s,t). As in the preceding case, it is seen that sub-
stitution of (22) into (5) yields the optimum decision scheme (1).

In summary, therefore, if the integral equations (19) and (2) have a
square-integrable solution g (¢) and a symmetric and square-integrable
(in the sense of (3)) solution A (s,t) respectively, then the erucial random
variable dP;/dP, can be expressed as the product of the right-hand sides
of (20) and (22) for almost all sample functions under H, and H, .
Thus, the desired optimum decision scheme becomes the following:

choose H, if

1 1 1
z[o 2()g(1) +f0 fu [e(s) — ma($)h(s)lz(t) — ma(t)] ds dt

< fn [mo(t) + mi(2)]g(¢)dt + log [é(ri—a) :I’

choose H, if otherwise,

(23)

where
o0
-1
(ﬁ = I-Il Pi-
1=

It should be remarked that the indices 0 and 1 can be consistently in-
terchanged throughout. This follows from the symmetry of the problem
with respect to the indices. Moreover, by virtue of the symmetry of
h(s,f) in s and ¢, the indices on the left-hand side of (2) can be inter-
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changed while the right-hand side remains unchanged. We also remark
that the solutions g(t) and h(s,t) of the integral equations (19) and (2)
respectively are unique under the constraints of square-integrability for
g(1) and symmetry and square-integrability in the sense of (3) for h(s,t).

Physical interpretation of the optimum decision scheme (23) is ob-
vious, at least, in principle. Given two alternative mean and covariance
functions mo(f) and ro(s,f), and m, () and ri(s,t), the optimum receiver
consists of a linear and a quadratic filter whose impulse responses are
g(t) and h(s,t), respectively, and whose inputs are 2z(t) and z(t) — m.(f)
respectively. The outputs of the two filters are sampled at the end of
the observation interval, and the decision is made by comparing the sum
of the two sampled outputs with the predetermined threshold ¢, namely,
the right-hand side of the inequality in (23).

Finally, although somewhat redundant, it seems instructive to ex-
amine the optimum decision scheme in the two special cases which have
already been considered.

Case 1:
ro(s,l) = mi(s,t) = r(s,1),

namely, the case of reception of binary sure signals mo(f) and m,(t) in
the presence of Gaussian noise with the covariance function r(s,}. In
this case, the second integral in the inequality of the optimum decision
scheme (23) vanishes, since the right-hand side of the integral equation
(2) becomes identically zero, thus yielding the identically vanishing
function as the only solution satisfying the conditions of symmetry and
square-integrability (3), i.e., h(s,l) = 0. Moreover, 3 becomes unity
since all p; ,7 = 1,2, -+, are unity. Hence, the optimum decision scheme
(23) is reduced to that of (21) where g({) is the square-integrable solution
of (19) with ro(s,t) replaced by »(s,t).

Case 2:
mﬂ(t) = ml(t) = Or

namely, the case of reception of binary Gaussian signals with the covari-
ance funetions ro(s,t) and r.(s,t). In this case, the first and the third
integrals in the inequality of (23) vanish, since the right-hand side of
the integral equation (19) becomes identically zero, thus admitting the
trivial solution as the only square-integrable solution, i.e., g(f) = 0.
Hence, the optimum decision scheme (23) is reduced essentially to (1).
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III. MATHEMATICAL THEORY

3.1 Slatement of Problem

Definitions

Let Q be the space of all real-valued functions w(-) on [0,1], and let
#,(-) be a real-valued function defined on @ such that the value of
#,(-) at w is equal to w(¢). Let ® be the o-field generated by the class of
all sets of the form

{w: (i‘[(m)J R} i‘n(c’-’)) € A‘}} (24)

where n and t; € [0,1], 7 = 1, -+, n are arbitrary and 4 is any n-di-
mensional Borel set. Finally, let Py, Py and P, be Gaussian measures
induced on & respectively by mo and 7o, by m; and 7, and by m; and
r, where m; , k = 0,1, are real-valued, continuous functions on [0,1],
while 7, k& = 0,1, are real-valued, symmetric, positive-definite, con-
tinuous functions on [0,1] X [0,1].* Then, %, is obviously G-measurable
for every ¢ € [0,1], thus {Z;, 0 = ¢ £ 1} isa real Gaussian process whose
finite dimensional distributions are given by the values of Py, Py and
P on the set defined by (24). Since my and r, £ = 0,1, are continuous,
there always exists a separable (with respect to all By, Pyyand P,) and
measurable version of {#,, 0 < ¢ < 1}, which we denote by {z,, 0 =
t < 1}.1 Let ® be the minimal o-field with respect to which z, is measur-
able for every ¢ € [0,1], and let Py, Py and P; be the restrictions of By,
Pyg and P, respectively on ®.
Next, define a set function P,(A),0 < a < 1, A € ®, by

P,(A) = aPoy(A) + (1 — a)P1 (R — A).
Let A, be such a set that
P.(A,) £ P,(A) forall A€ @®&.

Problem
Given a, 0 < a < 1, specify such a set A, in terms of z,.

* See Ref. 5, pp. 609-610 and p. 72. L

t Let P be a probability measure on (B with res};ect to which all Py, P and
P, are absolutely continuous, e.g., P =1 (P, + Py +. P,). Now continuity of
my and r¢, k = 0,1, implies contmulty in probability of #. on [0,1] with respect to
Py, Py and P, , hence with respect. to P. Then, there exists a separable (with
respecL to P) and measurable version of {%;,0 < t = 1}, (see Ref. 5, pp. 54-59).
But, because Py, Py, P <« P, the same version is separable with respect to Py,
Py and P, also.
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3.2 Solution

Preliminaries

The foundation for solving the above problem consists of the following
two measure theoretical facts:

(a.) The Gaussian measures Py and P, can be either equivalent, Py =
Py, or singular, Py L P, AET89%

(b) I Po= Py, then Ae= o i(w) z @ } (

ﬂ=lw'd_Po 1l —a
if P L Py, then A, = N,

25)

where dP;/dP, is the Radon-Nikodym derivative of P, with respect to
P, and N is a ®-measurable set such that Po(N) = 0 = P, (2 — N).!

Thus, the problem stated in the preceding subsection is reduced to
that of finding dP,/dP,if Py = P, and N is Py L P,, which are expres-
sible in terms of x, .

Solutions — I

Let {74} be a sequence of points in [0,1], which is dense in [0,1]. Let
®, be the minimal o-field with respect to which all a,,, 7 =1, --- | n,

L]

are measurable, and let ®, be the minimal o-field containing U @®,.

n=1

Obviously,
B C B C - C By C B (26)

Then, since {a,, 0 < { < 1} is continuous in probability (with respect
to Py), it follows that, for every set A € ®, there exists a set =
such that

Py(AAA") = 0. (27)

Now, from the fact that m; and r , £ = 0,1, are two alternative mean
and covariance functions of {x,, 0 < { < 1}, the density functions p,
and p, of the random variables z,, (w) — mo(7:), 7 = 1, ---, n, corre-
sponding to P, and P, respectively, are obtained as follows:

* Also see Theorem 3 in Appendix D.
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n

Polwr, =+ ) = (20)"* | R™ |} exp I:_ % _21 Wl (Re™) sy ”{I ’
(2#)_""2 | Rl(n) |7% exp
[_ 5 i (vi = ma) [(B™) Do — mf):l,

i,7=1

pl(pl y "y pu)

where R, k = 0,1, are n X n symmetric, positive-definite matrices
defined by

(Re™)i; = rilrs, 7)),  k=0,1; dj=1--,n,
and
m; = mi(r:) — mo(7i), i=1,---,n.

Then, define a random variable I, by

L(w) = Pl[l'n(‘-") - mﬂ(fl)r T 1fb‘r,.(w) - mU(Tn)]
" pofae, (@) — mo(mr), -+, Tra(w) — mol7a)]

n

= [Ro(n)(R](n))—l |% exp l:% E [:l:f,-(m) — mo(n)]

X [(Re™) ™ — (R"™) s [ (@) — molr;)] (28)
+ .21 l:zr.-(w) — WL;——M:I [(Ry™) ™y

X [my(r;) — mD(Tj)]] .

Note that I, (w) = 0 for all n, and p; = 0 whenever po = 0 and vice
versa. Hence, the processes {l, ,n = 1} and {1/l, , » = 1} are martin-
gales with respect to Py and P, respectively.” Then, lim I, exists a.e.

(Py) and is denoted by I, and also lim 1/7, exists a.e. ().t Further-
more, it can be shown that
(1) if Py = Py, then (26) and (27) imply
_dP
lm = c—iﬁ, a.e. (PD), (29)

(11) lan _I_P1,then
Po({w: lim I,(«) = ¢}) = 0 = Pi({w: lim l.(w) < ¢}) (30)

for an arbitrary constant ¢ > 0.}

* See Ref. 5, pp. 91-93.

T See Ref. 5, p. 319.

1 See Ref. 1, pp. 2783-2784. Although the definition of [, is slightly different
from the one in Ref. 1 the derivation procedure is identical.
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Thus, upon combination of (29) and (30) in conjunction with (25),
the desired set A, can be given by

Ae = {w: lim () = —2 },
n-—>og 1 —_—
irrespective of whether Py = Pyor Py L Py .

Under certain restrictive conditions, the set A. can be specified in
terms of well defined functions of a,. It is of interest to obtain such
specifications as well as the accompanying conditions in terms of the
given mean and covariance functions my. and ry, & = 0,1.

If Py = P,, it has already been shown that

Ao = {w: I(w) = - a}.

Furthermore, it can be shown through the use of martingale theory that
Py = P, if and only if (8) is satisfied.*

Next, examination of (28) indicates that, in addition to the condition
(8), if there exists a positive constant 8 such that (13) holds, then there
exists a random variable 8 such that

n+o | i,j=

f(w) = lim [ in [fﬂr.-(w) - mn(ff)] [(Rn(n))_l - (Rl{n))~1]ij

X ) = ma(r)) 2 3 (2, (o) — Tl Fml))

mmwﬁwmm—mmﬂ,mwu

Thus, the set A, can be specified as follows:

oo 22 )]

It can be shown through the use of martingale theory that the conditions
(8) and (13) are equivalent to those of (16).T

Solutions — IT

Let R, and R; be the integral operators whose kernels are 7 and r
respectively, that is, for any real-valued function f,

* See Ref. 1, pp. 2784-2785, with the definition of I, replaced by (28) of this ar-
ticle.

ii' See Ref. 1, pp. 2786-2787, with the definition of I, replaced by (28) of this ar-
ticle.
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1
(Rif)(t) = fﬂ rnlst)f(s)ds, O0=t=1, k=0]1,

whenever the right-hand side is well defined. Then, Grenander shows
that*
if there exists ¢ € £,(0,1) T satisfying the integral equation (19), then
Py = Pyand

Pu _ o Uﬂ [a-, _ ’M] g(1) dt}, a.e.(Py).

On the other hand, according to the previous result, improved by
Pitcher,
if there exists a symmetric funetion i on [0,1] X [0,1] satisfying (3)
and the integral equation (2), then P, = P, and

3?110 = IRD—% R\Ry [ BXD{ f f lw. — ma(s)]R(spt)

X [ze — mi(t)] ds dt} , a.e.(Pw)§.

Sinee Py = Py and Py = P, imply Py = P, and

dP, _ dPy dPy

el1_ 211 0w e(P
ap, ~ apgap,’ e

we conclude that
if there exist ¢ € £,(0,1) satisfying (19) and symmetric A satisfying
(3) and (2), then Py = P; and

1
gil | RO R.Ro |—% exp {fﬂ I:w‘ — M;Ll(t)] g(t) dt

+ % ful fol [xs — ma(&)R(st) |z, — ma(t)] ds dt}, a.e. (Po).

Therefore, through the substitution of the above into (25), the desired
set A, can be specified as follows:

* See Appendix B.
1 £2(0,1) is the Eg}ace of all square-integrable functions on [0,1].

I See Appenchx
§ | RyVIBIRY | = H pi where p;, i = 1, 2, ---, are the eigenvalues of
i=1

Ru_;Rl.Ro_*.
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1
= {m: 2f z(w)g(t) dt
0
1 1
[ [ o) = malohse) = (o)) ds a

2 [ (o + m(olo(o @i+ 1og (2 ) | R R},

if there exist ¢ € £,(0,1) satisfying (19) and symmetric A satisfying
(3) and (2).
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APPENDICES

These appendices are given primarily for a tutorial reason. The ma-
jority of the theorems and lemmas here are taken from two articles by
Root" and Pitcher,? in the original, modified or extended forms.* Lemmas
1,2, and 3 are in the original modified and extended form respectively.
Theorem 1 is supplemented by (iii) and a corollary. A more sig-
nificant supplement, however, is in its proof. While the extended portion
of Lemma 4 is a routine matter (hence its proof is omitted), Lemma 5 is
significantly extended and strengthened. Lemmas 6 and 71 are added as
a supplementary part of the proof of Theorem 2. Although Theorem 2
is stated somewhat differently and in much more detail, its main content
remains the same. While the first corollary to Theorem 2 is almost
obvious, the proof of the second is considerably involved and is given as
“Theorem 3"’ in Ref. 3. Lemmas 8 and 9 and Theorem 3, which is a gen-
eralization of Theorems 1 and 2, are the author’s addition. However,
their major contents have already been reported elsewhere in different
forms, e.g., Ref. 2, including the two corollaries to Theorem 3.

* The term “extended’’ refers to the extension of the results in Refs. 9 and 3
to the case where the assumption me = m; = 0 is no longer made.
t+ The proof of Lemma 7 is supplied by both Root and Pitcher.
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APPENDIX A

Preliminaries

Let p and g be probability measures defined on a o-field & of subsets
of an infinite set (uncountable in general). Let p and @ be the completions
of p and g on o-fields §, and &, respectively.

Lemma 1: Let &, be a o-field such that
FC §, and F C Ty,
and let po and uo be the restrictions of p and g on Ty . Then,
po L po=p L u.
Lemma 2: Assume
PO = Mo -
Let o be a o-field of sets of the foom A A N, A € o, p(N)

A ssume
F C fﬁ] .

Let p'o and i’y be the restrictions of p and & on Ty, and let p’ and i’ be the
restrictions of p'v and 'y on . Then,

@) p=1p and p=4,

(%) p =, )
(1) Fo = F, = 5,
A dpo
i , Q..
(4v) b~ dp (p).
Lemma 3: Let 6,, 0, --- , be a sequence of Gaussian variables (F-meas-

wurable) with respect to both p and u such that
Efe} =0,  Epl6i} = w,
E 00} = aidi;, B (0 — v)(0; — v;)} = Bidij,
where B, and E, denote the expectations with respect to p and p respectively
and a;, Bi, T = 1,2, -+, are arbilrary positive numbers. Lel § be the

minimal o-field with respect to which all 0;,7 = 1,2, -+ - | are measurable,
and let § and p be the restrictions of p and u on §. Then,

() ettherp=a or p L p,
(%) p = pif and only if

1— %) d
;Z;( Br) < = oan 12101,4-8
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(ii1) if p = B,
dis _ 3 LY oe % (g, %) + 110g @
& = P {Z;[ ( . 517)0. +3 (6‘ 2)+ 5 log ﬁf]}’
a.e. (p).
Proof:
(i) Let,,7 = 1, 2, ---, be the minimal ¢-field with respect to

which 6; is measurable, and let 5" and 5" be the restrictions of p and
x on &; . Then, from the hypothesm of the lemma,

) ald) -
=4, '1=1727”'1

and
-] o0 i o0 .
§=1I16, »=11s" a=IIa"

Hence, the assertion (i) follows from Kakutani’s theorem.*
(ii) From the hypothesis of the lemma,

A1) A% 2
% = (;—“’_) exp[i(l ;)6 + 50 ;6] ae. (p). (31)

Thus, T

) L)l go- 2]
Fh){(d‘(‘) '—-[—m IB—! exp Z ;‘ j'-|—§'§1§‘ E

. (2mx1-)_} exp (— L) dt
2a;

_ (4mﬁi)= ox (_ 1 v )
B (ai + .81')! P 4 o + |6|' ’
Note, forall7 = 1, 2, ---

4:Oliﬁi
(a; + 8:)*

<1 and O<exp(—}1 .V‘ )<1.

s ()

converges to a positive number if both

* See Ref. 9, pp. 295-296.
T E; denotes expectation with respect to 3.

Hence
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< da;B; - v
i=1 (ai ~+ Bi)2 and ; o + ﬁi

converge. Therefore, according to Kakutani’s theorem, 3 = a if and
only if these infinite product and sum converge.
Now,

oo

4a;B;
i=1 (e + Bi)?

converges if and only if*

Zl:l 4o ]< .

U @t ey

/03]
! (a; + B:i)? ! Bi / 1+ Bi

and the infinite sum of this converges if and only if

] 2
o
S(-5) <=

But

hence, the assertion (ii) follows.
(iii) Note

H 57:} ) a.e. (p).

i=1

n dﬁ(i) dﬁ
_ = E" —_—
:1[:]; dﬁh) p dp

Hence,*

7 da” _ di ,

=i dp®  dp’ ae ().
Then, the assertion (iii) is obtained through substitution of (31) into
the above.

APPENDIX B

First Theorem on Equivalence and Singularity
Theorem 1: (Grenander)
(7) Either Po = Pro or Py L Py,
(ii) Po = Py if and only if Ry 'm € £.(0,1),
(#%1) if Po = Py,

* See Ref. 11, p. 381,
t See Ref. 5, p. 331.
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d.Pm - Vi Vi2 D

= ex e a.e. (Py)
fil)() p 'Z; A.’ E th ] 0/y

where m(t) = my(t) — me(1),0 =t = l,and E;and v, 1= 1,2, -+
are defined by

1
E(0) = (2() = ma,p) = [ [n(e) = mo(OWalD) dt
a.e. (Pu,Plu)
1
v, = (my;) = f m (i) (1) dt.

Proof: Let Py and Py, be the completions of Pyand Pyon ®p, and @e,,
respectively. Then, from the definition, £, ¢ = 1, 2, - - - ,are measurable
with respect to both ®p, and ®e,, , and Gaussian distributed with re-
spect to both Py and Py, such that*

Eulé.‘} = Kot — ”i} =0,
Eolkigjl = Eof (8 — vi) (5 — vi)} = Ndbij.

I"'urthermore, a modified version of Kauhunen-Loéve theoremf holds;
namely, for every t € [0,1],

e — mo't) = lim 2 &i(t), ae (Po). (32)
n—=o =1
Now, let ®;/,7 = 1, 2, ---, b2 the minimal o-field with respect to
which £, is measurable, and let

-]

® =[] /"

i=1
Then,
B C ®Bpy, B C Bp,y, ® C Bry, B C By, - (33)

Let P"" and Py’ be the restrictions of Py and Py on ®;, and P,
and Py on ®'. Then, it is readily seen that P = Pm'('), i=1,2, -,
and

dP ’(‘) |l2 ( I‘ - i 2 ll l-z -
ﬁ = exp [3_7\ — &-2—)\”}] = exp [; & — QVT:I' a.e. (Py).

*E,, E,,and E, denote expectations with respect to Py, Pyy and P, in general.
However, if the function whose expectation is in question is (3-measurable, the
same symbols are used for expectations with respect to Py, P1o and P, also.

t See Ref. 1, pp. 2801-2802.
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Hence,

aPy "N e -4 fﬂo (Vi v’ ¢
-/{;(d—Pg'(” dPy"Y = (27\) . exp Q‘)C-; zﬁ_‘ exp —2—)\!_ ity

v,—z
=exp|—o-)-

- de’(i) 5 i 1 = V“z
H»/;(d—-—l’u"") dPy " = exp 3 ;lz .

Hence, from Kakutani’s theorem, either

Thus,

P/ =Py or P/ L Py, (34)
and P, = Py if and only if
] 2
Z;; < o, ie, Ry'm € £0,1). (35)
i=1 Ng

Next, for an arbitrary ¢ € [0,1], define

T, = {w: 2(w) — mo(t) = g E;(w)\bi(t)},

Ay = {w:a(w) — me(t) € A}, A;’ = {m: ;E,(m)lﬁ,(t) € A},

where A is an arbitrary Borel set. Put
A= (A NTHU (A, NTS, A = (AN U Nro).
Then, from (32)
ANT, =A/NT,, P(A,NTS) =0 = Po(aA' NTO).

Hence,
Po(A; A AS) = 0.

Let ®' be a o-field of sets of the form A’ A N, K € &', Po(N) = 0. Then
AER, 0=t 1

That is, 2 — mo(t) is ® -measurable for every ¢ € [0,1]. Hence, z, is
® -measurable for every [. But, since ® is the minimal o-field with re-
spect to which x, is measurable for every ¢, we have

®C®. (36)*

(i) Necessity: Assume Py = Py . Then, Py = Py, thus P, =Py

* This part of the proof, i.e., establishment of (36), is not given in Ref. 4. In
fact, Grenander’s assertion is only on the primed measures Py’ and P,y .
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Hence, from (35),
Ry 'm € £,(0,1).
Sufficiency: Assume Ry'm € £(0,1).

Then, from (35), Py’ = Py . Then, from Lemma 2 (ii) together with
(36),
Pn = PlD .

(i) Dichotomy: Assume P, and P are not equivalent. Then,
from (ii), Ry 'm € £:(0,1). Hence, from (35) and (34), P 1 Py
Then, from Lemma 1 together with (33),

Py L Py.

(iii) Radon-Nikodym Derivalive: From (ii) and (35), Py = Pp =
Py = Py Then, from Lemma 2 (iv) together with (36), dPyw/dP, =
dPw /dPy, a.e. (Po). Then, the assertion follows from Lemma 3 (iii)
withe, =8, =X,1=1,2, -+ .

Corollary (Grenander):
If Ry'm € £4(0,1), then Py = Py and

dPy mo + ma 1
m—cxp(x——g—;Rn m), ae. (Po).

Proo): The first assertion is obvious from Theorm 1 (ii) since
Ry'm € £(0,1)= Ro 'm € £(0,1).

To prove the second assertion, note that

4;1 (Ei B ;—')% - (; (E‘ B 3) Hf’i,Ro_lm).

Then, from (32) and the definition of »,,7 = 1,2, ---,

(;,, — ’ﬂ_:ﬂ' , Rﬂ—'m) = lim (Z (.g-.- — "2—) Vi, Ro“m),
a.e. (Py).

APPENDIX C

Second Theorem on Equivalence and Singularity

Lemma 4: If either R'RY or Ro'R,"Y is unbounded, then Py L Py and
P!ﬂ ..L Pl .
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Lemma 5: If RiRy ™ is bounded and Ri'm € £ (0,1), then, for any se-
quence of functions f; € £,(0,1),7 =1, 2, - - -, thereexistsa corresponding
sequence of Gaussian variables §,, ¢ = 1, 2, ---, (measurable with re-
spect to Bp, , ®p,, and Bp,) such that for 4, j = 1,2, -+,

Iﬂ“n{G; + V,‘} = Eln{ 6',} = 1’:1‘91'} = 0,
Eof (0; + v:) (6; + v;)} = Ewlbib} = (f.,fi), (37)
Efot) = (fi, X*XFf)),

where X is the bounded extension of Ry'Ro™* to the whole of £2(0,1) and
vi,i=1,2,---, are defined as

v, = (_f. N Ru_ém).

Proof: Since Ro*(£2(0,1)) is dense in  £,(0,1), there exists a sequence
{fit; for each f;, ¢ = 1, 2, --- | such that

RU_&fllJl € £2(0)1)1J =1, 21 T ,a-ﬂd !iln ”fl - fl'.f ” = 0:
joo

where || f|| is the norm of f in the space £:(0,1). Then, through ele-
mentary steps, it can be shown that

lim (f,'m,f,‘,,) = lim lim (f[m,fjn) = (f. ,fj). (38)
1° Let 8,;; 77 = 1,2, -+ - , be ®-measurable functions such that

B:;; = (& — my, Ru"%f,-j), a.e. (Pn,Pm,Pl).

Then, there exist random variables 8;, 7 = 1,2, -- - , which are measur-
able with respect to Bp, , B#,, and @, , and Gaussian distributed with
respect to P, , P,y and P, such that

8,‘-‘—'1.i.]]1.9,‘j, (P(),Pm,Pl)-

jew

To prove 1°, consider expectation with respect to Py, Py and P, of
| 6:; — 6w |® = 0., — 20,,60 + 647,71 = 1,2, --- . First, note

Eol 8;0a} = Eof (Ro 'fij, x — mo — m)(x — mg — m, R fu))

= (R Yii, RoRfa) — (R Y.i, m) (R, m).

Thus, from (38),
lim o {8:8:.}

j k>0

lim [(fis, /i) = (fiir Ro™'m) (fie, Ro'm))

1F: 1 = (Fi, Ro”'m)*.
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Hence,

lim Eu[ |6;‘j - B,'J,- [3} = 0. (39)

Jik—>0
Secondly, note
lim Em{ﬁ,‘jﬂ.’” = .l;lclll (Ru_%f-ij ) RURU-%fﬂ-) = liknl (f:'j :f:'k) = ” ,f. H-‘
Ik ik>=

j ko
Hence,

lim Em{ “B,‘,‘ — B IEE = 0. (40)

jikree
Thirdly, note
Bf6,84) = Bif (Ro 'fis, R Tl = (Xfis, Xfu)-
Since X is bounded, it is continuous. Thus, from (38),

_lim (Xfi, Xfu) = | Xff”z-
Jkevo0

Hence,

lim Euf[0; = 0"} = 0. (41)
3.k—>0

Next, upon combination of (39), (40) and (41), {8;5};,7 = 1,2, -- -,
are seen to be mean fundamental sequences with respect to Py + Py + P).
Hence, there exist 8, ,7 = 1,2, - - - , measurable with respect to Bpo4r,o+r,
such that

0; = Li.m. 85,', (Po + Pm + Pl)

e
But, since this implies

6; = lLim. 6,;, (Py, Py, Py), i=12 -,
jm
8;,i = 1,2, - -+, are measurable with respect to g, , ®s,, and Bp, , and
are Gaussian distributed with respect to Py, Py and P, .
2° To prove (37), simply note
Ea [B, + V.'l = ]_il‘ll EO{B{)'] + Vi

jo

= lim Eo{(x — mo — m, Ro i)} + i = 0,

joa

Ewi6:} = lim Ep{6;;] = 0,

jore
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E:{6:} = lim Eif6,;} = 0,

Jj-—>0

Eof (0 + vi) (6, + v;)] = lim lim Eo{(0im + »vi) (8;0 + )}

n—>00 m->00

= lim lim (Ro_%f.-m , RoRn-;fjn)

n—+00 m->oc

= (ft :fj)s
En{6:6;] = lim lim Ey{6:mb;.]

n—+0 Mm—>0

= lim lim (Ro fim, RoRo f;n)

= (fi,f)
Ede.ﬂ,} = lim lim El{ﬂmﬂml

n—>0 m->00

= lim lim (Ro *fim, R1Ro fin)

= (Xf:, Xf3),
where (38) is used for the last three calculations.

Remark 1: The assertion of Lemma 5 with respect to Py and P; only,
is valid without the condition By ‘m € £:(0,1).

Remark 2: Suppose Ry 'm ¢ £,(0,1) but there exist a sequence {f;}};
foreach fi,i = 1,2, ---, such that By 'f;; € £(0,1),7 = 1,2, «--

lim || f; — fis | = 0, lim (m, Ry ™) = »/

j—oo jw
for some real number »,. Then, Lemma 5 is still valid if »; is replaced by
viyi=1,2 .
Remark 3: Suppose Ro'm ¢ £, (0,1) and there is no such sequence. Then,

Py L Py
Proof: Let
vis= (m Ro fii);  dj=12 -,

where

lim | fi = Jiill = 0

for each 7 = 1,2, - - - . Without loss of generality, we assume that
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lim |v;;| =
j

for some 7. Define for such 7,

bij = 0:i/vii, J=12,---.

Then

Eod:; + 1} = Evfé;} = 0, i=12 ---
Put

o = Eol 0 + 1), o = B (0:5)7.
Then,

lim o;* = 0, k= 0,1.

jq-m
Thus, there exists a subsequence {c,; "} such that

E 0’;‘,‘: < w0, k = 0,1

n=l1

But, from Techebycheff inequality, we have for some g, 0 < & < %,

Po(fw: 8.5,@)] < €}) < Po(fo: |6i,) + 1] 2 ) < GT
Pyl B (@) 2 o)) 5 7
Hence, by Borel-Cantalli lemma, )
Po(lim inf,{w: | 8, (w)| < ) = Po(lim sup,fw: | 8, (w)| < &) = 0,
P (lim sup,fw: |8, (w)| = &) = 0.
Hence, by noting that
lim sup, {w: |8, (w)| 2 & = @ — lim inf,{w: | 8;;, ()| < €],
we have
Py L Pr.
Lemma 6: If I — RRRy is a densely defined, bounded, completely

conlinuous operator on £:(0,1), then

r, —mt) = lim l: ‘ (RO%G‘%’)(U‘G:‘ + E (Rn%q?’i)(f);h:': (u X Py)
1=1

m,n—+x i=
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where p;, 1 = 1,2, --- , are the orthonormal eigenfunctions corresponding
to nonzero eigenvalues of I — Ro *RiRy * and @i,1 =12, ---, are an
orthonormal basis of the null space of I — R(%RlR(%,* and n; and 7, are
defined by

pi = Lim. (z — m1, Ro Yo,

j—0
) 1 (PD,PID:PI)!
7: = Lim. (x — mu, Ry '@i),
j->o0
where ¢;;, :; € £2(0,1); 1,5 = 1,2, -+, are chosen in such a way that
Ry ¢ij, Ro gi; € £:(0,1) and, for each 1,
lim [l¢: — @i ]| =0, lim @ — @4 = 0,
joo J—>oo

and finally u is Lebesgue measure on Borel field @ of the subsets of [0,1].

Proof: Note that ¢;and ¢;, 7 = 1,2, - -, exist since [ — RoRRY s
densely defined, hounded, self-adjoint and completely continuous.
Consider
).

1
Im.n = El(l {f
0

By expanding the bracket,

xe — malt) — 2: (Ro'e:) ()i — Z::l (Ru%@)(i)ﬁr

m

T = [ () dt =2 f (Réos) (DBl e — ma(Oln.) dt

—2 IZ::l -/; (Ro%@f)(t)Em{[_r‘ — ma(t) 15} di

m n

+2 -21 Z:, Ewinds} (Roie:, Ro'@:)
i=1 j=

m n

+ E Enlnami} (Roei, Ro'e;) + Z Bl (Ro'gi, Ro'g;) .

i,5=1 =1

Note

1
Eypilee — m(Dlni} = En {].'i-.-ln:l.j; (R 0i) (8)[m — ma(s)]

e — ml(t)] ds}

* If the null space is finite dimensional, then {&:} can be incorporated into
{@:) and there is no need to treat {:} separately.
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= lim (RoRs ‘e (1)

i
= (Ro'e:) (1) ;
similarly,
Eullee — m@)]7) = (R'g:) (1)

Also, from Remark 1 of Lemma 5%

Ewlninsl = (e, ;) =0,

Efninit = (oo, @) = bij,

Ewinad = (@i, @) = 85
Therefore,

Inn = j: ro(,t) dt — :Zl (@i, Ropi) — Zl (&, Ro@:) -

Now,

1 ©
f roltyt) dl = 2 Ak
0 k=1

On the other hand,

; (gi, Ropi) + ; (@i, Ro@i) = Z Z (@i, ¥n) (Rogi , i)

—
=

+ Z > (@i ¥i) (Rodi s i)

1 k=1

= Zk_zl?\k(‘ﬁ.,\h- + 2 EM(@«';%)E

i=1 k=1

Il
||Ms
r—1
s
1‘5
<
:'l."

+ ; ‘PI:\[‘L :|

Hence,
lim I, = 0.
m,n—>%

* Note that, it Ry R Ry} is densely defined and bounded, then R{R,™ is
bounded.
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Lemma 7: Under the hypothesis of Lemma 6,

®C®
where @& is a o-field of sels of the foom A A N, A € &, Pw(N) = 0, and
® 1s the minimal o-field with respect which all , and 7;,1 = 1,2, -+ , are
measurable.

Proof: Tt suffices to prove that x, is @-measurable for every ¢ € [0,1],
since ® is the minimal o-field with respect to which x, is measurable for
every {.
1° =z, is @-measurable for almost every ¢ (with respect to u).

To prove 1°, define

5ully0) = Z [(Réos) (Dmi(w) + (Rda) (Diic(w)].

Then, from Lemma 6, there exists a subsequence {s,, (t,w)} which con-
verges to r; — m(t), a.e. (u X Py). Namely, if

D = {(tw): xw) — mll) # EI.E Sn(tw) ),
then
DeEaxX®p,, and (uX Py)(D) =0.
Hence, from Fubini’s theorem,* for almost every ¢
Pu(D,) =0,

where D, is the section of D determined by ¢. In other words, s, (f,0)
converges to x,(w) — my(t), a.e. (Pu), for almost every ¢ Then, since

each s, (fw), £ = 1,2, -+, is ®-measurable for every ¢, an argument
analogous to the one in the proof of Theorem 1 (p. 1642) shows that
Ay = {wir(w) — mi(t) € A} is @-measurable for almost every ¢, where

A is any Borel set. Namely, x, — m, (¢) and, hence, x, are ®-measurable
for almost every ¢.
2° ,is @-measurable for every t.

To prove 2° let T € @ be a set of ¢ for which 2, is @-measurable.
Then, u(T) = 1. Since r, is continuous on [0,1] X [0,1] and 7' is dense
in [0,1], there exists for every ¢ € [0,1] a sequence {t.}, t. € T, converg-
ing to ¢ such that

lim Exwf [z — mi(t) — 2, + ma(ta) '} = 0.

n—>o0

* See Ref. 10, p. 147.
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Hence, there exists a subsequence {¢,,} such that

}cim (@, — m(t,)] = 20 — mu(t),  ae (Pu).
Then, since each v, — ma(ty,), kb = 1,2, -+, is ®-measurable for every
f, the same argument used above shows that A, is @-measurable for
every ¢ Namely, v, — m,(f) and, hence, x, are ®-measurable for every
t € [0,1].

Theorem 2 (Pitcher):

(1-) Fither 1)10 = Pl or Pl[) 1 Pl:
(i1) Py = Py if and only if I — Ry ‘RyR,™* is a densely defined,
bounded, complelely conlinuous, Hilbert-Schmidt operator on £,(0,1),
(’ul) 'L;fpw = P] N

dPl . ]. 2 ( ]. 2 -
- - E I i - 1 i | , e, ,
de le exp {9 e 1 Py n og p a.e (Pm)

where p;, 1 = 1,2, «-- | are the eigenvalues of RRR,
Proof:

(ii) Necessity: Assume Py = P, .

Then, from Lemma 4, RB,'R," is bounded. Hence, I — Ry ‘RiRy ! is
densely defined and bounded.

The above statement implies that RRR,Y s self-adjoint and
positive-definite, and its bounded extension to the whole of £,(0,1) is
equal to X*X. Let [ wdP, be the spectral representation of X*X. We
now show by contradiction that X*X has a purely discrete spectrum.
Suppose for some ¢ > 0, I — P,,. is infinite dimensional. Then, there
exists a sequence {vi}, 1 + & = » < »» < ---, and a sequence of ortho-
normal functions f; € £,(0,1),7 = 1, 2, -- -, such that

(Py,., — P.)fi = fi. (42)

Hence, from Remark 1 of Lemma 5, there exists a sequence of random
variables 6;, 7 = 1,2, ---, which are measurable with respect to ®p,,
and ®p, and Gaussian distributed with respect to both Py and P, , such
that

Enfo;) = Ero) =0,
Emfﬂig,f} = (fi:fi) = 6".1')

it1

66} = (fi, X*Xf;) = & vd(fi, Pofs) = (1 4+ €)by;.

Yi
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Let ®* be the minimal ¢-field with respect to which all §;,7 = 1,2, - -,
are measurable, and let Py and P,* be the restrictions of Py and P, on
®*. Then, from Lemma 3, Pyo" L P.*. It follows then from Lemma 1
that Py L Py, which is a contradiction. Therefore, I — Py, is finite
dimensional for every £ > 0. Similarly, it can be shown that Py_. is
finite dimensional also. Hence, X*X has a purely discrete spectrum, and
1 is the only limit point of the spectrum. Henee, I — X *X is completely
continuous,* and so is I — R RR:

It follows from the preceding paragraph that the eigenvalues and the
corresponding eigenfunctions, p; and ¢;, © = 1,2, -+, of Ry '‘RiR,}
exist. Then, according to Lemma 5, 5; and 7,, 7 = 1,2, - - -, defined in
Lemma 6 have the following properties:

Evwlnd = Ewlad = Ednd = Eifaid =0
Ewlninil = (@i, i) = 8.5,
Ewlnaid = (@i, @) = 8ij,
Ewlnmit = (ei, 8:) =0, (43)
Enimi} = (¢i,R07iR1R0—%¢j) = pdj,
Bia) = @i, RiCRR'8;) = 8.
Ex{niai} = (ei, R 'RiR’8;) = (ei, &5) = 0.

Let Py and P; be the restrictions of Py and P; on ®. Then, since p, >
0,7= 1,2, -+, it follows from Lemma 3 that either Pyw=PiorPy L P,
and Py, = P, if and only if

"'(1_1_)2< ., (44)
=1 pi

Furthermore, from Lemma 1, Pyo 1L P,= Py L P,.But,since Py = P,
from the hypothesis, we must have Py, = P, . Hence, (44) is satisfied, or
equivalently,

(1 —p)* < =. (45)

Namely, I — Ro 'RiR,* is of Hilbert-Schmidt type.

Sufficiency:  Assume that J — Ry RR Visa densely defined,
bounded, completely continuous, Hilbert-Schmidt operator on £:(0,1).
Then, R'Ro* is bounded, and RoR.Ry! is self-adjoint and positive-

*See Ref. 12, pp. 234-235.
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definite. Thus, we establish »; and 3;,7 = 1,2, --- , and (43) as previ-
ously done. Now, since I — Ry *RyRo "} is of Hilbert-Schmidt type, (45)
is satisfied, and so is (44). Then, since p; > 0,z = 1,2, - - -, it follows
from Lemma 3 that P, = P, . Then, from Lemma 7 and Lemma 2 (i),

PloEPI.

(i} Dichotomy:  Assume that Py and P, are not equivalent. Then,
one of the following three cases must hold:
(a) I — RyRRy} is either not densely defined or unbounded, or
both,
(b) it is densely defined and bounded, but not completely continuous,
(¢) it is densely defined, bounded and completely continuous, but
not of Hilbert-Schmidt type.
In case (a), R.'Ry ! is unbounded. Hence, from Lemma 4, Pyl P;.In
case (b), X*X has a spectral representation, and either 7 — P, or
P,_. must be infinite dimensional for some & > 0. Then, P;,* 1 P,* and,
hence, Py L Py, as shown in the necessity part of the proof of (ii). In
case (¢), I — RoR.Ro! has the eigenvalues and eigenfunctions 1 — p;
and ¢;, 7 = 1,2, --- , and there are the associated Gaussian variables
niand §;,7 = 1,2, - - -, as described previously. But since J — Ry 'R,R,
is not of Hilbert-Schmidt type, (45) and, hence, (44) do not hold. Then,
according to Lemma 3, Py 1 Pi. Then, from Lemma 1, Py L P,.
Therefore, we conclude that if 7,y and P, are not equivalent then they
must be singular.*
(i) Radon-Nikodym Derivative: The assertion (iii) is an Immediate

consequence of Lemma 3 (iii) with », = 0,7 = 1,2, --- | and Lemma 2
().
Corollary 1: If Py = Piand
; (1— Pi)‘ < o,
then
() (-] e
Proof: Note that 5;, ¢ = 1,2, -- -, are mutually independent Gaussian

variables with

Em{m] =0, Em{’?.‘?! =1, Em[ﬂid} = 3.

* Note this trivially implies that if P, and P, are not singular, then they must
be equivalent.
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S (110 =[S (=)< =
;Elo{(l - FlT,-)z”“} =3 2(1 - ;1;_)2 < w.

Therefore,

Hence

T

(1 — 1_) ni < o, ae (Py).
=1 pi

Then, the assertion follows upon combination of the above and Theorem
2 (iii).
Corollary 2 (Piicher): If there exists a bounded, self-adjoint operator H on
£:(0,1) satisfying

RHR, = RHRy = R, — Ry, (46)
then

Pp=nr

and

dP: T\ o
= pi) exp[ia — m, Hx — mi)], ae (Pn).
dP][) 1

=
APPENDIX D

Third Theorem on Equivalence and Singularity
Lemma 8: PmJ_P1=>P0 1 P

Proof: If Pyy L Py, it follows from Theorem 2, (i) and (ii), that one
of the three cases (a), (b) and (e) listed in the proof of Theorem 2 (i)
holds.

In case (a), Ri'Ry " is unbounded, then Py L P, according to Lemma
4,

In case (b), at least, either I — P,,. or P, must be infinite dimen-
sional for some & > 0, as shown in the proof of Theorem 2 (ii). Suppose
I — Pi,. is infinite dimensional. Then, there exists a sequence of ortho-
normal functions f,, ¢ = 1,2, -- -, satisfying (42). Hence, according to
Lemma 5, there exist a corresponding sequence of Gaussian variables

* See Ref. 5, p. 108.
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6;,i=1,2, --.,such that
Eof6; + »} = Eif6:) =0, Eof (6, + v/)(0; + v,-’)} = bij,
E6:6] = (f:, X*Xf) = (1 + €)bi;,

provided that either Ry "'m € £,(0,1) or there exists a sequence {f;j;,
¢ = 1,2, ---, satisfying the conditions of Remark 2 of Lemma 5. Now,
let ®* be the minimal o-field with respect to which all 6;,7 = 1,2, - - -,
are measurable, and let Po* and P,* be the restrictions of P, and P, on
®*. Then, from Lemma 3 and the above result, it follows that Po* 1 P,*.
Hence, from Lemma 1, Py L P, . On the other hand, suppose neither
Ro 'm € £,(0,1) nor there exist such a sequence {f;;} ; for some ¢ Then,
from Remark 3 of Lemma 5, Py 1 P, also.

Similarly, if Py_. is infinite dimensional, it can be shown that Py 1 P, .

In case (¢), we can assume existence of the Gaussian variables #;
and 7;,¢ = 1,2, -+, with the properties (43) and the following:

Eolni + v = Eofai + 74 =0,
Eof (0 +vi) (i + vt = Eol (7 + %) (75 + ¥3)} = 6.5, (47)
Eol (ni + ) (5 + 450} =0,
where v: = (gi, Ro 'm), %: = (#:, Ro'm),i=1,2, --- .

Since I — Ry ‘RiRy *is not of Hilbert-Schmidt type, (45) does not hold.
Thus, (44) is not satisfied. Hence, from Lemma 3, P, 1 P, . Then, from
Lemma 1, Py, L P;.

Lemma 9: Py | Py= Py 1L P,.

Proof: Since Py 1 Py, there exist a non-empty set A € & such that
Py — A) =0 and Pu(A) =0,

Now, if Pio = P,, then P,(A) = 0. Hence, we have
Py(2 — A) =0 and P(A) =0,

namely, Py 1L P,. If P, and P, are not equivalent, then they must be
singular according to Theorem 2 (i), i.e., Py L P; . Then, from Lemma
8 Py L P,.

Theorem 3:

(i) Either Po= Pyor Py L P,
(i7) Py = P, if and only if
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(@) T — Ro 'RiRy " is a densely defined, bounded, completely con-
tinuous, Hilbert-Schmidi operator an £, (0,1),
(b) RD—%m € £‘2(011);
(#i2) if Po = Py,

dP], . ]. = _ 1 .2 _ X
apr, = P {é S[(1—5) 0t - e ”]}
- Vi I ¥i 5
-exp {; |:%‘ (?1:' + 5) + ¥ (m + E—)]} ) a.e. (Po).

(Remark) Note it follows from Theorems 1 and 2 that the necessary
and sufficient condition for Po = P is (a) Pw = Pyand (b) Py = Py

Proof:

(ii) Necessity: Assume Py = Py .
Then, from Theorem 2 (i) and Lemma 8§,

Py =P,
while, from Theorem 1 (i) and Lemma 9,
Pg = Plo .
Hence, (a) and (b) follow immediately from Theorem 2 (ii) and
Theorem 1 (ii) respectively.
Sufficiency: ~ Obvious since Py = Py and Py = P; imply
PD = P] .
(i) Dichotomy: Assume that Py and P; are not equivalent.

Then, it follows from the sufficiency part of (ii) as well as from
Theorem 2 (i) and Theorem 1 (i) that, at least, either

Py 1l P, or Py L Py.
Then, from Lemma 8 and Lemma 9, we have
Po L Py,

Thus, if Py and P; are not equivalent, then they must be singular.
(iii) Radon-Nikodym Derivative: From Lemma 3 (iii) and Lemma 2
(iv), in conjunction with (43) and (47), we have

dPy —[1 1 2 4 _
- en[E[3(- )o-roee

+ i (m + %‘) + ¥ (ﬁs + %):I} , a.e. (Py).

(48)
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Since Py = P, = Py = Py and Py = P, according to (ii), it follows
from Theorem 2 (iii) that

Z l:(]. —_ ;-—) 17,2 _ lOg pl':l < ©, a.e. (P{;).
i=1 1,

Hence, the remainder of the exponent of (48) converges a.e. (P,). This
proves (iii).

Corollary 1: If Py = P, and

then

i =) e [32(1- )]
-exp {2 I:'rf (m + ?_f) + Fi (ﬁf + g):l}, a.e. (Pp).

Proof: This follows from Corollary 1 of Theorem 2 and Theorem 3 (iii).

Corollary 2: If there etzsts a bounded, self-adjoint operator H on £,(0,1)
satisfying (46), and Ry 'm € £4(0,1), then

(i) Py = Py,

® N\l
(ii) @ dP = (H P:‘) exp [%(-t' — m, H(x — m1))

i=1

+ (-L' - m; Rﬂl?n):[ ) a.e. (PU)’

4

(lll) Ru(ucz(o,].)) = Rl (£2(0,1)).
Proof:

(i) The assertion is an immediate consequence of combination of
Theorem 3 and Corollary 2 of Theorem 2.
(ii) Note
dPy  dP, dPy i
dP, = dPudp, ¢ P
Then, the assertion follows upon combination of Corollary 2 of Theorem
2 and the corollary to Theorem 1.
(iii) I'rom (46),
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R1(£2(O,1)) = [RG(HRl + I)](ﬂBE'.(OJ]-J) C RD(£2(Oa1))r
Ry(£:(0,1)) = [Ri{I — HR0)](£:(0,1)) < Ri(£:(0,1)).

Hence, the assertion follows.
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