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This article considers the question of exvistence and uniqueness of the
response of nonlinear time-varying RLC networks driven by independent
voltage and current sowrces. It is proved that under certain conditions the
response exists, is unique, and is defined by a set of ordinary differential
equations satisfying some Lipschitz conditions. These conditions are of two
types: (1) the network elements must have characteristics which satisfy
suitable Lipschitz conditions and (2) the metwork must satisfy cerlain
topological conditions. It should be noted that elements with nonmonolonic
characteristics are allowed and that the element characteristics need to be
continuous but not differentiable.

I. INTRODUCTION

This article considers the questions of existence and uniqueness of
the response of nonlinear time-varying RLC networks. It is proved that
under conditions imposed on the network elements and the network
topology the response exists, is unique, and is defined by a set of ordi-
nary differential equations satisfying some Lipschitz conditions. Thus,
from the conditions imposed on the network it follows that the response
of a network of this class is continuous whenever the sources applied to
the network are continuous functions of time. In other words, for the
class of networks under consideration, jump phenomena (of the type
that oceur in relaxation oscillators) are excluded.!

One motivation for studying this problem is the construction of non-
linear network models for physical devices and processes. The behavior
of these models is often investigated by simulation studies performed on
digital computers. It is clear that in order to get meaningful answers the
existence and uniqueness of the model’s response have to be assured.
The simulation study requires the setting up of an appropriate set of
differential equations and their integration. As networks of the class

* On leave of ahsence from the Department of Electrical Engineering, Univer-
sity of California, Berkeley, California.
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considered here do not have jump phenomena, their equations can be
integrated by some standard subroutines.

This article may be viewed as an extension to the RLC case of the
articles by R. J. Duffin?#+4 and G. Birkhoff and J. B. Diaz® which were
devoted to nonlinear resistive networks. We make heavy use of topologi-
cal considerations and had to extend the techniques developed for the
linear case by many people® 78 P. R. Bryant in particular.’ ' For further
references see Ref. 16.

In the next section, we classify the network elements and exhibit the
basic assumptions which hold for the remainder of the article. Some
simple nonlinear circuits are also considered. Section III presents some
standard reductions of sources and the definition of determinateness.
Section IV deals with one-element-kind networks; its theorems are
generalizations of Duffin’s work and include some of his theorems as
corollaries. The main result of the article is Theorem IV in Section V,
which states the conditions under which a nonlinear RLC network is
determinate. The conditions are of two types: (i) every characteristic
has to satisfy suitable Lipschitz conditions and (#7) the network has to
satisfy certain topological conditions. It has to be noted that, first,
elements with nonmonotonic characteristics are allowed and, second,
that each characteristic has to be representable by a function which is
continuous but not necessarily differentiable. Finally, in Section VI we
introduce a symbolic notation which allows us to write the differential
equations for the nonlinear case in a manner which resembles that of
the linear case.

II. ELEMENTS AND SIMPLE CIRCUITS

2.1 Elements

We assume that the reader has some familiarity with network theory,
so that the basic concepts need not be defined.”''* A network may be
considered as a set of points, called nodes, and a set of connecting
branches. Each branch represents a physical {wo-pole. We assume that
the voltage drop across each two-pole and the current through each
two-pole can be measured at any time. The sign conventions are shown
in Fig. 1: if, with respect to some arbitrary reference, the potential of A
is larger (smaller) than the potential of B, then v is positive (negative);
if the current actually flows in the direction of the arrow (opposite to the
arrow) then 7 is positive (negative). Thus the product vZ gives the power
delivered by the outside world to the two-pole under consideration.
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In most of the following, the branches consist of either a single source
or a single element such as a resistor, an inductor or a capacitor. For each
of these elements we shall adopt very broad definitions which we will
narrow down in stating specific results. A two-pole is called a resistor
if it is defined, for each ¢, by a set of ordered pairs (v, ©), where v and ¢
are finite numbers representing all the possible values, at time ¢, of the
voltage and the current associated with the resistor. If the set of ordered
pairs is independent of ¢, the resistor is said to be time-invariant. The set
of (v, 7) is called the characteristic of the resistor; for example, the charac-
teristic of an ideal diode is given by

{(0):0=2i< o} U{(@0):—= <v=0.

A resistor is called current-controlled if, for all time and all currents in
the interval (— o, ), the voltage v () is a function® of the current 7 (t)
and time ¢ (we shall write »(t) = ®(¢(t),t)), and the function ®(i,¢) is
a piecewise-continuous functiont of ¢ for each fixed number 7. A vollage-
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I'ig. 1 — Sign conventions for two-pole.

contralled resistor is defined in the dual manner. For example, a voltage
source is a current-controlled resistor and a current source is a voltage-
controlled resistor. If a resistor is current-controlled and time-invariant
then the characteristic can be represented by a function » = ® (7). A
resistor is called a one-fto-one resistor if, for each ¢, the voltage is related
to the current by a one-to-one mapping from (— %, ) onto (— @ ,®)
which may depend on time.

A two-pole is called an inductor if it is defined, for each ¢, by a set of
ordered pairs (¢,i) which represent the instantaneous flux and current
associated with the inductor. The voltage across the inductor is given by
v = dg/dt. The current-controlled inductor, the fluz-controlled inductor
and the one-to-one inductor are defined as in the case of resistors. In the
first two cases, if the elements are time-invariant, we shall write ¢ = £(2)
and z = T (p), respectively.

* Unless specifically indicated, we follow modern usage: each function is single-
valued; i.e., to each element of its domain it associates one and only one element
of its range.

+ A vector-valued function of time is said to be piecewise-continuous if it is
continuous in every finite interval except at a finite number of points where it is

discontinuous. At these points the function has a finite limit on the left as well
as on the right.
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A two-pole is called a capacitor if it is defined, for each ¢, by a set of
ordered pairs (g,») which represent the instantaneous charge and voltage
associated with the capacitor. The current through the capacitor is given
by © = dq/dt. The charge-controlled capacitor, the voltage-controlled capaci-
tor and the one-to-one capacitor are defined as in the case of resistors. In
the first two cases, if the elements are time invariant, we shall write
v = D(q) and ¢ = €(v), respectively.

Throughout the article we consider only elements whose characteris-
tics ean be represented, at all times, by a function defined on the interval
(— =, ). For example, Fig. 2(a), (b) and (e¢) represents the charac-
teristics at time ¢ of three time-varying resistors; we consider only re-
sistors of the type shown in Fig. 2(a) and (b), since they are current- and

@ | S (0

©

Fig. 2 — Characteristics at time ¢ of three time-varying resistors: (a) and (b)
are current- and voltage-controlled, respectively, while (¢) is neither current-
nor voltage-controlled.
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voltage-controlled; these characteristics can be represented by
v(t) = ®@@@),L), and (t) = G(t)t),

respectively. The characteristics of Fig. 2(c) cannot be represented in
this way, and resistors of this type will not be considered.

Throughout the paper, whenever time-varying network elements are
considered, it is assumed that the functions ®(-,t), G(-,1), £(-,1),
'(-,t), D(-,t), €(+,t) are piecewise-continuous functions of ¢ for all
fixed values of their first argument.

In addition to resistors, capacitors and inductors, our networks in-
clude voltage and current sources. Throughout this article we shall as-
sume that the voltages of the voltage sources and currents of current
sources are regulated functions of time.* For convenience we shall say
that an element is continuous and monotonically increasing, when we
mean that its characteristic is represented by a continuous monotonically
increasing function which is defined on (— o, ).

It is convenient to refer to functions like ®(-,t) and ©(-,t), which
represent the characteristics of some elements, as the characteristics of
the elements. This slight misuse of the concept of a function and a rela-
tion will be used only when there is no danger of confusion between the
two.

2.2 Two-Poles and Stmple Connections of Two-Poles

A two-pole is called vollage-contralled [current-controlled] if, for any
initial time f, and for any initial state, the voltage v(-) [the current 7(-)]
from ¢, on across its terminals determines uniquely the current i(-)
through [the voltage »(-) across] the two-pole for ¢ = .

A two-pole is said to be one-to-one if (a) it is both current-controlled
and voltage-controlled and (b) it satisfies the following condition: for
any initial state sy, any initial time 4 , and any input current (- ), let
f(s0,i) be the voltage appearing at the terminals; for any initial state
s0, any initial time £, and any input voltage v(-), let g(so,v) be the
current — then it is required that

g(s0,f(s0,2)) =1

for all initial states so and all input currents 7 (- ).

An immediate consequence of these definitions is that any parallel
connection of a finite number of voltage-controlled two-poles is voltage-con-
trolled.

* A vector-valued function of time is said to be regulated when, for all ¢, it

has a limit on the left as well as a limit on the right.!* A step function and a rec-
tangular wave are regulated functions.
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Consider the case where there are only two two-poles in the parallel
connection. Let them be characterized by the functions

e = Fi(v,8 (o)), (k = 1,2),

where v is the voltage across the parallel connection, 7. is the current
through the kth two-pole, sk (fo) is the state of the kth two-pole at time
to . The v and % are real-valued functions defined on [fy, « ). Kirchoff’s
current law implies that the current ¢ through the parallel connection is
given by

Fi(ys1 () + Fa(v,8 (b));

hence, for fixed (s;(t),s:(f)),  is a function of ». This argument obvi-
ously extends, by induction, to the case where there are a finite number
of two-poles.

A dual argument would show that any series connection of a finite num-
ber of current-controlled two-poles is current-controlled.

A parallel connection of current-controlled lwo-poles is not necessarily
current-controlled. Refer to Fig. 3, which shows the characteristics of two
current-controlled resistors. The dashed line shows the characteristic of
the parallel connection: depending on the operating point there may be
three distinet values of the voltage for the same input current. Dually,

CHARACTERISTIC OF THE
// PARALLEL COMBINATION

CHARACTERISTIC OF
SECOND RESISTOR

CHARACTERISTIC OF
FIRST RESISTOR

Fig. 3 — Parallel connection of two current-controlled resistors.
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Fig. 4 — Series connection of two voltage-controlled resistors.

a series conneclion of voltage-controlled two-poles is not necessarily voltage-
controlled.

To assume that each two-pole is one-to-one is not enough to cause both
arbitrary parallel connections and arbitrary series connections to be
one-to-one. Indeed, the well known characterization of continuous func-
tions of bounded variation implies that any vollage-controlled resistor
characteristic, 1 (1) = @ (v (1)), that is continuous and of bounded variation
in v can be obtained by connecting in parallel two one-to-one resistors whose
characteristics are continuous and strictly monotonie. (One resistor is mono-
tonically increasing and the other is monotonically decreasing.) A dual
statement holds for current-controlled resistors.

In fact, there are combined series and parallel connections of one-
to-one two-poles that are neither voltage-controlled nor current-con-
trolled. Refer to Fig. 4, which shows the series connection of G, and G, .
Fig. 5 shows how a voltage-controlled characteristic such as G may be
obtained by connecting in parallel two one-to-one resistors. Putting the
two resistors of characteristic G; and G, in series, we obtain (see Fig. 4)
the characteristic Gy, which is neither voltage-controlled nor current-
controlled.

A (possibly time-varying) flux-controlled inductor is a voltage-controlled
two-pole and, dually, a (possibly time-varying) charge-controlled capacitor
is a current-controlled two-pole. If the inductor is flux-controlled, the cur-
rent 7 is a function of the flux ¢: 7 (f) = T'(p(t),t). If v(-) is the voltage
applied to the inductor and ¢, is the flux through it at the initial time
to, then by Lenz’s law
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t
o) = [ o)t + g
to
hence,

t
i(t) =T (f o(t)dt’ + @, t) for all ¢
3

L]

2.3 Kxamples of One-To-One Two-Poles

We present here a set of sufficient conditions under which some ele-
mentary parallel or series connections of circuit elements constitute a
two-pole which is either current-controlled, voltage-controlled or one-to-
one. As the reader expeets, quite specific assumptions will have to be

L CHARACTERISTIC OF
FIRST ONE-TO-ONE
RESISTOR

-
— A -
- o
- -

P v
\\_____—"— CHARACTERISTIC OF
PARALLEL COMBINATION

N,

CHARACTERISTIC OF
SECOND ONE-TO-ONE
RESISTOR

Fig. 5— Parallel connection of two one-to-one resistors.

made on the characteristics of the elements in order for the circuit to be
a one-to-one two-pole.

The elements that we are going to consider are capacitors, resistors
and inductors. Let us rank order these elements together with voltage
sources and current sourees in the following way: E,C,R,L,J. We shall
say that a resistor is higher in rank than an inductor or a current source
but lower in rank than a capacitor or a voltage source.

Until the end of this section, to simplify the discussion and without
loss of generality, elements are assumed to be time-invariant.

Theorem: Consider the following circuits: the parallel RC, the parallel
RL, the parallel LC and the parallel RLC cireuit.

(A) If (a) the highest-ranked element is current-controlled (charge-
controlled in the case of the capacitor),

(b) all other elements are voltage-controlled (flux-controlled in the case
of the inductor), and
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(¢) the characteristics of all elements satisfy a Lipschitz condition ac-
cording to Table I,
then the parallel circuit is current-controlled.
(B) If, in addition (d) the highest ranked element is one-to-one,
then each parallel circuitl is one-to-one.

Proof: We shall consider only the RL(' cireuit, sinee the proofs of the
simpler cases follow in a similar way.

First let us prove that (a), (b), and (¢) imply that the circuit is cur-
rent-controlled. Let 7, be the source current. Then with the usual nota-
tion

iy =4+ G@) + T'le)
or, equivalently, using the fact that the capacitor is charge-controlled
(4= —®(@) — Tle) +i. (1
L‘o = D(g) (2)

By assumption (¢) D, T and G satisfy Lipschitz conditions. Since the
composite of two Lipschitzian functions is Lipschitzian, G(D(-)) is
also Lipschitzian; therefore the system (1), (2) has a unique solution
for each initial state and each current source. In this case the state is
{¢,¢). Thus the RL(' is current-controlled.

Second we prove that (a)}, (b), (¢), (d) imply that the RLC circuit
is one-to-one. It is immediate that these assumptions imply that the
RLC circuit is voltage-controlled. It remains to show that it is one-to-one.

Call (), ¢:(+), and v, (-) the charge, flux and voltage resulting
from the initial state (g, o) at time ¢ and the input current ¢, . The
functions ¢, (- ) and ¢, (- ) are the corresponding solutions of (1) and (2);
v (t) = @i (t) = D(gp(t)). We have to show that, starting from the same
initial state (g, ¢0) at time #y, the input current resulting from the ap-
plied voltage v, is precisely 7, .

Let ¢z, ¢» and 7, be the resulting charge, flux and input current. It is
immediate that v, (1) = ¢ (1) = D(q(t)). Since @2 (th) = ¢o, we have

TaBLE I
Circuit ‘ Highest-Ranked Element Chu{n};;gf‘iistlzicéu'ﬂlé?é‘;s::isfy
RL R L 80, e
RC C , Diq), G(v)
LC - cC ' D(g), Tle)
RLC | ( ! D(g), (), I'(e)




170 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

#2 = 1. Since the capacitor is one-to-one, ¢» is uniquely defined by the
relation above in terms of »,, hence ¢ = ¢, . Finally, by Kirchhoff’s
current law

Ty = g2 + 9(”2) + I‘(‘F’E)
G+ S®(q@)) + T'ien).

The last expression is precisely 7; by (1). Therefore 4, = ¢, . This con-
cludes the proof that the parallel RLC circuit is a one-to-one two-pole.
The dual case is covered by the following

Theorem: Consider the following circuits: the series RL, the series RC,
the series LC and the series RLC circual.
(4) If
(a) the lowest-ranked element is voltage-conirolled (flux-controlled for
induclor),
(b) all other elements are current-controlled (charge-controlled for
capacitors), and
(c) the characteristics of all elements satisfy szschztz conditions ac-
cording to Table 11,
then the series circuit is voltage-controlled.
(B) If in addition (d) the lowest-ranked element is one-to-one,
then each series circuit is one-to-one. ‘
The proof is similar to that of the previous theorem and is therefore
omitted.

II1. REDUCTION OF THE NETWORK

Throughout the article we consider networks consisting of nonlinear
time-varying resistors, capacitors, inductors (without mutual induect-
ance) and independent sources. We shall label by 9T the network under
consideration. Usually, we consider each element and each source as
constituting a branch of 91. We denote by £,C,R,L,J the set of branches
of 91 which are voltage sources, capacitors, resistors, inductors and cur-

TasLE II
Circuit Lowest-Ranked Element Chai‘:;:zﬁ?{f&;’magﬁufy
RL L ®R (%), I'(e)
RC R D(g), 9(”)
LC L D(q), T
RLC L D), (R(z).l‘(w)
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rent sources, respectively. In our discussion, certain networks derived
from 9 will play an important role. In order to refer to them conveni-
ently, let us define the following notations: Let “A”’ be a subset of the
set of branches of 91. Let us define®

N4 to be the network derived from 9 by removing all branches ex-
cept the ones which are members of 4,

94, to be the network derived from 9 by replacing branches of set A
by a short circuit, and

M4y to be the network derived from 9 by removing the branches of
set A.

We shall use these notations as well as combinations of them. For ex-
ample, Mk is the network derived from 9 by first replacing branches
of set I (the voltage sources) by short circuits and then removing all
elements which do not belong to set C. Similarly, 91+ is the network
derived from 9T by shorting all voltage sources and removing all current
sources.

S#91 is defined to be the network derived from 9 by separating it into
the maximum number of separable subnetworks.

Throughout the article we assume that, first, for any cut set of current
sources only, the source currents satisfy ISirchoff’s current law, and,
second, for any loop of voltage sources only, the source voltages satisfy
Kirchoff’s voltage law.

Without loss of generalily we consider networks that arve connected
and monseparable. This assumption does not exclude the possibility
that 9 be both unconnected and/or separable. In the following we
shall prove that without a loss of generality we can restrict the discussion
to a network 97 such that gy is both connected and nonseparable.
The proof consists of an algorithm which changes the configuration and
reduces : into a network 9" which has the following properties:

(7) 9 consists of connected subgraphs, i/, such that for each one of
them, 9U; g+ is connected and nonseparable.

(77) For all branches of 9 and 9U which are not sources, any set of
branch currents and voltages is a solution of 97 if and only if it is also a
solution of 9 (when the latter is driven by the corresponding sources).

(ii7) Current sources of 9 are linearly related to the current sources
of 91. The same is true for voltage sources.

The step-by-step reduction of the network 91 to 9 is done as follows.

(1) From each loop which consists of voltage sources only, remove one
voltage source.

(2) In each cut set which consists of current sources only, replace
one of the current sources by a short circuit.
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The resulting network is connected; it has a tree which includes all the
voltage sources as tree branches and all the current sources as links.

(3) Each current source J whose fundamental loop includes more
that one tree branch is removed from the network and is replaced by a
set of current sources identical to J, each one placed in parallel with a
tree branch of the fundamental loop.

(4) All current sources that are in parallel with voltage sources are
removed.

(5) Any parallel connection of current sources is replaced by one
equivalent current source.

(6) Consider each fundamental cut set defined by a voltage source.
For each one of them insert in every link a voltage source equal to that
which is in the tree branch and, finally, short circuit the tree branch
voltage source.

(7) In each link, replace any series connection of voltage sources by
one equivalent voltage source.

(8) Separate the network into the maximum number of connected,
nonseparable subgraphs.

The resulting network is called 9. Property (i7) follows from the fact
that all the steps of the above algorithm do not change the source con-
tribution to any of the fundamental loop equations or the cut set equa-
tions. Property (7) follows from the fact that all current sources are links
of 9" and all voltage sources are in a link. Property (i) follows from
steps (5) and (7). Finally, observe that S+ is identical with
N 5y (aye-

It is well known that the state of the network is completely determined
by all the voltages, fluxes, charges, and currents in the branches of the
network. In the case of linear networks it is well known that certain
proper subsets of these variables may be chosen as the state. For special
classes of nonlinear KELC networks similar subsets will be indicated in
the sequel.

We call a solution of an RLC network any set of voltages and currents
of resistors, charges and voltages of capacitors, fluxes and currents of
inductors which satisfy the Kirchhoff’s laws and the branch characteris-
ties. A network 91 is said to be determinate if for any value of the initial
state so, given at any initial time #,, and for any value of the sources
E(-), J(-), there exists one and only one solution for { = ¢y on some
nonvanishing interval [ty , ¢).

In the following section we shall describe a broad class of nonlinear
RLC networks which are determinate.
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IV. ONE-ELEMENT-KIND NETWORK

The purpose of this section is to establish a set of sufficient conditions
under which a nonlinear (possibly time-varying) resistor network driven
by a set of independent current sources and voltage sources has, for all
possible inputs, one and only one set of branch voltages and branch
currents that satisfy Kirchhoff’s laws. Conditions under which the
solution satisfies a Lipschitz condition with respect to the sources are
also given.

The analysis of nonlinear resistor networks is almost identical with
that of nonlinear capacitor networks or nonlinear inductor networks.
Since the nonlinear resistors are the most flexible elements, we shall
develop our analysis in terms of resistor networks.

Let us start by making three preliminary remarks:

(7) Given a resistor network together with an arbitrary distribution
of current sources, it is always legitimate to assume that there are no
cut sets of current sources only. (Dually, that there are no loops of volt-
age sources only.)

(72) Any voltage source in series with a resistor may always be ab-
sorbed into a suitably redefined branch characteristic. Refer to Fig. 6,
where » and » are the node voltages of nodes 1 and 2 referred to the
same datum. Let the current through the resistor be given by its charac-
teristic g (v,t); since g (v,t) = g(mn — » — e,t) and since e(-) is a known
funetion of time, we may introduce a new branch characteristic gi2 (-,-)
specified at each instant of time by

ga(n — voyt) B gy — 02 — e(t),t).

In other words, the voltage source e has been absorbed into the time de-
pendence of g2 . A similar reasoning applies to a current-controlled re-
sistor in series with a voltage source.

The dual case can be taken care of in the same manner: in this case,
a current source which is in parallel with either a voltage-controlled or a
current-controlled resistor can be absorbed into the branch.

Thus, without loss of generality, a network of nonlinear resistors and
sources can be thought of as a network of nonlinear time-varying resist-

o) ' _ @)
v

Fig. 6 — Voltage source in series with resistor.
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ors with the understanding that the sources have been absorbed in the
branch characteristics.

(#%1) Thus when, as in Theorems I and II below, we consider a net-
work of nonlinear time-varying resistors, we include the case of a net-
work made up of time-varying resistors and of independent sources.
There is no loss of generality in considering only connected networks,
since it amounts to considering successively each separate part of an
unconnected network.

We turn now to the statement of the main theorems.

Theorem I (Existence and Uniqueness): Consider a connected nonsepara-
ble network N of nonlinear (possibly time-varying) resistors. In case the
resistor joining node « to node B is voltage-controlled, its characteristic is
defined by the function gas(-,-) such that gap(va(t) — va(t),t) is the cur-
rent flowing through it at time t from node a to node B; here v, and vy are
the node-to-datum voltages of nodes a and B. Similarly, if this resistor s
current-controlled, its characteristic is defined by the function rag(-,-) such
that rap(ias(t),t) is the voltage difference between node o and node 3 at
time t; here i.p is the current through the resistor measured positively if it
flows from a to B.

If
(a) there exists a tree 3 such that all its tree branches are current-con-
trolled and all its links are vollage-controlled,
(b) for all a,B, all L and oll x in (— =,=)
Gag (@) = —gga(—2,t) &f (a,B) is a link
rap(@t) = —rap(—a,t) if (,8) is a tree branch
(c) for all links and all t, gas(-,t) is a monotonically (not necessarily
strictly) increasing continuous function defined on (— =, =), and for all
tree branches and all t, r.5(+,t) s @ monotonically (not necessarily strictly)
increasing continuous function defined on (— o, ).

Then,

for all current-sources i" connected between any pair of nodes and for
all voltage sources e" connected in series with network branches there exists
one and only one set of branch voltages and branch currents that satisfy the
Krichhoff laws and the branch characteristics.

The conclusion of Theorem I can also be stated as follows: any net-
work 97, formed from 97 by inserting any set of voltage sources in series
with any branch and any set of current sources between any node pair,
is delerminate.

Assumption (b) is a consequence of the physical meaning of the func-
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tions g and 7 and of the sign conventions: from a physical point of view
they do not restrict the nonlinear resistors in any way. The two corol-
laries that follow are special cases of Theorem I. Corollary I is an ex-
tension of Theorems 2 and 3 of Duffin,’ and is implied by his 1948 pa-
per.’ Such an extension has been pointed out by 1.W. Sandberg.

Corollary 1: Consider a connected network of nonlinear voltage-con-
trolled (possibly time-varying) resistors.

If

(a) for all branches and all ¢, g.s(-,t) is a monotonically (not neces-
sarily strictly) increasing, continuous function defined on (— w«,« }, and

(b) there exists a tree 3 such that all its branches have g.g’s which are,
for all ¢, monotonically increasing one-to-one mappings of (— w,=)
onto (_ %0, ® ):

then the conclusion of Theorem I holds.

Proof: The conclusion follows directly from Theorem I since the tree
branches have g.g’s that are, for all ¢, monotonically increasing one-to-
one mappings of (— % ,® ) onto (— =,= ); hence the tree branches are
also current-controlled resistors satisfying assumption (¢) of Theorem
I.

Corollary 2: Consider a connected network of nonlinear, current-con-
trolled (possibly time-varying) resistors.

If

(a) for all branches and all ¢, 7.5(-,t) is 2 monotonically (not neces-
sarily strictly ) increasing, continuous function defined on (— o, ), and

(b) there exists a tree 3 such that its links have 8o s which are, for
all ¢, monotonically inereasing one-to-one mappings of (— «,= ) onto
(— o, ), then the conclusion of Theorem 1 holds.

We consider now the extension of the Thévenin and Norton equiva-
lent circuits to nonlinear resistive networks. If we pick an arbitrary node
pair of such a network 9, we may regard these nodes as the terminals
of a two-terminal network: we shall call the characteristic of this two-
terminal network the input characteristic of M at these {wo nodes. Dually,
if we pick a branch and insert two terminals in series with it, we obtain a
two-terminal network: we shall eall the characteristic of this two-ter-
minal network the branch-input characteristie of 9.

Theorem IT (Thévenin and Norton equivalent circuits): Consider a net-
work 9 satisfying the requirements of Theorem I together with the same
kind of source distribution.
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Then

(a) the input characteristic of N ai any node pair is that of a current-
controlled resistor whose characteristic 1s a continuous, monotonically in-
creasing function defined on (— «,= ). This characteristic may be repre-
sented by the Thévenin equivalent circwit of Fig. 7 (a): a series combination
of a voltage source and a monotonically increasing curreni-controlled re-
sistor whose characteristic passes through the origin.

(b) The branch-input characteristic of N at any branch is that of a volt-
age-controlled resistor whose characteristic s a continuous, monotonically
increasing function defined on (— «,= ). This characteristic may be repre-
sented by the Norton equivalent circuit of Fig. 7(b): a parallel combination
of a current source and a monotonically increasing vollage-controlled resistor
whose characteristic passes through the origin.

Let us consider some special cases of Theorem II.

Corollary 3: Consider a connected network of nonlinear (possibly time-
varying) resistors satisfying assumptions (a), (b) and (¢) of Theorem I.

(a) If, in addition, the characteristics of the tree branches of J are
strictly inereasing, then the input characteristic at any node pair is
that of a strictly increasing current-controlled resistor. If the character-
istics of all tree branches of J are continuous, monotonically inereasing,
one-to-one mappings of (— «,% ) onto (— %, ) then so is the input
characteristic at any node pair.

(b) If the characteristics of the links of the tree 3 are strictly increas-
ing, then the branch-input characteristic is that of a strictly increasing
voltage-controlled resistor. If the characteristics of all links of 3 are
continuous, monotonically increasing, one-to-one mappings of (— =, )
onto (— w0, ), then so is any branch-input characteristic.

Proof of Theorems I and I'I: The proof of these two theorems is divided

L—= + T _ -—
+0 M
+
v eg v ° Lg
o — -0
rio)=0 go=o0
(a) (b)
Fig. 7 — (a) Thévenin equivalent cireuit: series combination of voltage source

and a monotonically increasing current-controlled resistor whose characteristic
passes through the origin. (b) Norton equivalent circuit: parallel combination of
current source and monotonically inereasing voltage-controlled resistor whose
characteristic passes through the origin.
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into two parts: in part one, we show that if Theorem I holds for a k-node
network then Theorem II is true for a k-node network. In part two, we
use this implication to prove Theorem I by induction.

The statement of the theorem allows time-varying resistors (and
hence includes independent sources); however, in order to have as sim-
ple a notation as possible, we write down the proof as if all resistors were
time-invariant.

Part One: We show that, for any integer & = 2, if Theorem I holds for
a k-node network then the input characteristic at any node pair is that
of the Thévenin equivalent circuit specified in Theorem I (a). Let us
connect the node pair under consideration to a current source 7, (see
Fig. 8); this current source is viewed as an additional link, since it isa
voltage-controlled resistor. By assumption, to each 7, there is one and
only one set of branch currents and voltages that satisfy Kirchhoff’s

k-NODE
NETWORK

Fig. 8 — Node pair connected to current source.

laws and the branch characteristics. Consider two distinet values of 4, ,
namely, 7, and i,. Let the corresponding branch variables be v,i and
!t ~ . .
v'i’. For each current-controlled branch define a number 7 (which de-
. o .
pends on i and i) by the relation

v—1v D A =r() — r(@) A7(i — i) = 7 Ad.

Since all the current-controlled branches are monotonically increasing,
7= 0. (If Ai = 0, 7 may be taken to be any nonnegative number.)
Similarly, we define a § for each voltage-controlled resistor; again § = 0.
The set of Av’s and A7’s together with A, and Az, may be considered as
a set of branch voltages and branch eurrents together with the source
voltage and source current of a linear resistive network which is obtained
by replacing each current-controlled resistor by a linear resistor of re-
sistance 7, each voltage-controlled resistor by a linear resistor of con-
ductance § and the current source by a current source m, . Since the
Av’s and Af’s satisfy Iirchhoff’s laws, Tellegen’s theorem' holds,

o ALy = Z AvAl

where the sum is over all resistive branches.
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Since all branches have monotonically increasing characteristics, this is
a sum of nonnegative terms and Av,A7, = 0. In other words, A7, > 0

implies that Ay, = 0: that is, the Thévenin equivalent circuit has a cur-
rent-controlled monotonically increasing characteristic. The continuity
of the characteristic follows from the following considerations: irrespec-
tive of the values of the #s and §’s, the fact that assumption (¢) of
Theorem I requires them to be nonnegative implies that the current
transfer ratio from the current source to any branch has a magnitude no
larger than unity;" hence A7, — 0 implies A7 — 0 for all branches. Since
the tree branches have continuous characteristics, it follows that, for
them, A» — 0 and, by Kirchhoff’s voltage law, the same holds for the
links. Hence A7, — 0 implies Av, — 0, i.e., the current-controlled charac-
teristic of the Thévenin equivalent circuit is continuous. The proof of
part (b) of Theorem II follows exactly the dual of the above argument.
Part Two: Let us prove Theorem I for a two-node network (see Fig.
9). Let us plot on the (»,7) plane of Fig. 10 the characteristics of the cur-
rent-controlled tree branch and that of the voltage-controlled link, tak-
ing into account the sign eonventions defined on Fig. 9. By assumption,
the functions g and r are both continuous and have (— «,«% ) as do-
mains; therefore their representative curves intersect at least at one
point (v,7). We assert that it is the only one: indeed, suppose there were
a second one, (v',¢'); then the monotonicity of r and ¢ imply, respectively

W -G —i) =20 and & — )@ —i) =0
Hence
W —v) @ =) =0.
Suppose v' = v; then since ¢ is a funetion
i=g(—v) = g(=0) =7

Similarly, if ¢ = 4, the fact that r is a function implies » = »". Hence for
all possible sources, there is one and only one set of branch voltages and
currents that satisfies Kirchhoff’s laws and the branch characteristics.

L= (VJ’L : r(l)
-

Fig. 9 — Two-node network.
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/ L

AN

Fig. 10 — Charaecteristics of current-controlled tree branch and of voltage-
controlled link as function of the tree branch current and voltage.

(v,L)

Thus Theorem I is established for a two-node network. The next step in
the proof of Theorem I is to show that if it is true for an n-node network
it is true for an (n + 1)-node network. Consider the n-node network
shown in Fig. 11. We shall build out this network into an (n 4+ 1)-node
network.

Let us first connect the tree branch between node n and node (n 4 1),
ie., a current-controlled resistor. (There is no loss of generality in as-
suming that the numbering of the nodes is such that the branch (n,n + 1)
is a tree branch.) It is obvious that, for this network, the existence and
uniqueness of the solution holds for all sources. Consequently, from part
one of the proof, the input characteristic at any two nodes of this par-
ticular (n + 1)-node network has the equivalent circuits specified by
Theorem II. The next step is to add a link, say between node &k and node
(n 4 1). Since the input characteristic at the node pair (kn 4 1) is as
specified in Theorem II (a), the voltage and current in the link are
uniquely determined by the reasoning given for the case » = 2, and
consequently the distribution of voltages and currents in all branches of
the network is uniquely determined.

o) (L)

ATAYAY (n+1)

Fig. 11 — N-node network built out to (n + 1)-node network.
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The process of constructing the (n + 1)-node network from the n-node
network ean be carried out step by step, adding a link at a time. Thus
at the end of the process there is one and only one set of branch voltages
and currents in the (n + 1)-node network that satisfies Kirchhoff’s
laws and the branch characteristics. Q.E.D.

For the purpose of solving the network differential equations of a gen-
eral nonlinear RLC network it is important to know, for the resistive
network case, under what conditions the function which maps the
sources, (E,J), into the branch voltages and currents, (v,i), satisfies a
Lipschitz condition. It is immediately clear that additional assumptions
are required: consider Fig. 12, which shows the characteristic of a cur-
rent-controlled resistor which fulfills the conditions of Theorem I. In
the neighborhood of the operating point A, this resistor may appear to
small signals either as an open circuit or a short circuit. Note that the
same statement would apply if the resistor were voltage-controlled. It is
obvious that under such conditions, the mapping (E,J) — (v,i) will not
satisfy a Lipschitz condition. As shown in the following theorem, only
weak additional assumptions are required.

Theorem II1: Consider a connected network of nonlinear (possibly time-
varying) resistors which satisfies conditions (a), (b) and (c) of Theorem
I. If, in addition, the following Lipschilz conditions are satisfied: there is a
real-valued function h(R,t), defined and positive for R > 0 and all t, such
that

| gas@t) — gas(@'t) | S R(R)) |2 — 2’|

for all links of 3, for all z, 2" in (—R,R) and all t and

e

Fig. 12 — Characteristic of current-controlled resistor fulfilling conditions of
Theorem I; note unbounded slope at point A.
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| rag(@d) — Tap(@'t) | S R(RY) |2 — 2 |

for all branches of 3, for all .2’ in (—R,R) and all t, then the mapping
which maps (E,J) into (v,i) satisfies a Lipschitz condition.*

Proof: Consider the effect of a change in the voltage sources E on the
branch voltages v and branch currents i. E is the vector whose 7th com-
ponent is the output voltage e, of the source located in the ith branch.
In the present (n 4 1) node network there are at most n(n + 1)/2
branches, hence E has at most that many components. Suppose that the
change from E to E 4+ AE is obtained by changing e; to e; 4+ Ae; suc-
cessively with 7 = 1,2, - . Call a,8 the terminals of the first branch
and call N, the remainder of the network (see Fig. 13). Since the input
characteristic of N; is monotonically increasing, and since an increase of
the voltage across the nonlinear resistance R increases the current
through it or keeps it constant, the change in the input voltage of Ny,

+ +
e V" N,
= R/« -
W
ﬂ S

Fig. 13 — Nonlinear resistor ® and voltage source in one branch of (n + 1)-
node network; N, represents remainder of network.

Avag" due to the change of e, to ¢, + Ae, is such that | Aey | = | Avas™ |.
(The superseript 1 indicates that only the source voltage in the first
branch has been changed.) Call Az,'" the corresponding change in the
kth branch voltage. We assert that

| 20" | = | Avag™ | < | Aen |-

For the particular change in the sources under consideration, we may
define, as in the proof of Theorem I, for each tree branch a suitable 7
and for each link a suitable §. Observe now that Ae; and the Av." may
be interpreted as being the source voltage and the resulting branch volt-
age of a linear network which has the same configuration as the given
nonlinear network but in which each nonlinear resistor is replaced by
7 or § as required. By assumption (¢) of Theorem I, all the #s and §’s
are nonnegative, hence all the voltage transfer ratios | Av'"/Ae' | of

* Incidentally, if the network 91 was derived from another network 9., by
applying to 914 the algorithm of Seetion III, then the mapping (E,J) — (v,i) is
one-to-one.
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the linear network cannot' exceed 1 and the inequality asserted above
follows. Thus, for all 7's and &’s,
| Av? | = | Ae; .

Let Awi be the change in the voltage across the kth branch when E be-
comes E + AE. Summing over 7, using the triangle inequality, and de-
fining the norm of a vector as the sum of the magnitude of its components,
we get

| Ave | = || AE [|. 3)
Since there are at most n(n + 1)/2 branches, we get finally
[av | = [n(n + 1)/2] || AE || 4)

where Av is the change in the branch voltages corresponding to the
change of the voltage sources from E to E 4+ AE. We next bound the
change in the branch currents. Applying (3) to a link and using the
Lipschitz condition we find that

| Adp | = h(R) || AE || (for all links)

and since there are at most n(n — 1)/2 links and the change in a tree
branch current is equal to the change in the sum of currents of the links
which belong to its fundamental cut set,

| A | = A(RE)[In(n — 1)/2] || AE || (for all branches).
Thus
| Ai < h(R)[*(n* — 1)/4] || AE ||. (5)

The effect of a change in the current sources from J to J 4+ AJ is ob-
tained in a dual manner. Since the current transfer ratio may not exceed
unity" we get

| aic | = | AT |l
and
lai] = [n(n + 1)/2] ]| AT . (©6)
This implies
| Ave | = h(R)) || AT || (for all tree branches)

and, by Kirchhoff’s voltage law,
| Ave | = h(Rt)n | AT || (for all branches).
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Finally
| av || = h(RR (n + 1)/2) | AT ||. (7

Using the usual product topology' for both the product spaces of voltage
sources and current sources on the one hand and branch voltages and
branch currents on the other, and invoking (4) to (7), we conclude that
the mapping (E,J) — (v,i) is Lipschitz.

V. NONLINEAR RLC NETWORKS

The previous section required all elements of the network to be of the
same kind and to have a monotonically increasing characteristic. In this
section both requirements are removed. In addition to independent
sources, the network consists of nonlinear (possibly time-varying)
resistors, capacitors and inductors and some of the elements are allowed
to have characteristics with negative slope.

As a first step let us make one remark. Theorems I, II, and IIT would
still hold if all resistors were montonically decreasing instead of mono-
tonically increasing. In the more complicated situation considered here
the same possible choice exists. For example, separable subnetworks of
Neme which contain more than one capacitor could just as well contain
monotonically decreasing capacitors. For simplicity, we shall assume
that all monotonic elements are increasing,.

In order to state the following theorem we need two definitions. A
network (or subnetwork) is called a self-loop if it consists of a single
branch whose end-points are identified: it consists of one branch and
one node. A network (or subnetwork) is called an open branch if it con-
sists of a single branch whose end-points are not identified: it consists
of one branch and two nodes.

Theorem IV: Let 9 be a network of independent sources and nonlinear
(possibly time-varying) resistors, capacitors and inductors (without mutual
inductance) such thai: capacilors of 3 are either charge-controlled or mono-
tonically increasing voltage-controlled; resistors are either voltage-controlled
or current-conirolled; inductors are either flux-controlled or monotonically
increasing current-controlled. It is further assumed that I and N (zy)s are
nonseparable and connected. The network 9 is determinate if:

(1) The capacitor network S¥J s c satisfies the following requirements:

(a) Open branches of S*dc are charge-controlled and contain all
charge-controlled capacitors which are not monolonically increasing.

(b) Each subnetwork of S¥3sc which contains more than one element
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has a tree with monotonically increasing charge-controlled tree branches and
monolonically increasing voltage-conirolled links.

(c) Self-loops of S*I(myc are voltage-controlled.

(2) The resistive network S*Mizcyr satisfies the following requirements:

(a) Open branches are current-controlled and contain all current-con-
trolled resistors which are not monotonically increasing.

(b) Each subnetwork which contains more than one element has a lree
with monatonically increasing current-controlled tree branches and mono-
tonically increasing voltage-controlled links.

(c) Self-loops are voltage-controlled and contain all voltage-controlled re-
sistors which are not monotonically increasing.

(3) The inductive network SxJigcrys salisfies the following require-
ments:

(a) Open branches are current-controlled.

(b) Each subnetwork which contains more than one element has a lree
with monotonically increasing current-controlled tree branches and mono-
tonically increasing flux-controlled branches.

(¢) Self-loops are flux-controlled and contain all flux-controlled in-
ductors thal are nol monotonically increasing.

(4) In any finite interval, and for all time, the characteristics of the net-
work resistors, capacitors and inductors salisfy a Lipschitz condition with
respect to the following variables:

tree branches: capacitors, with respect to q

resistors and inductors, with respect to 1
links: capacitors and resistors, with respect to v
inductors, with respect to .

Remarks: Note that nonmonotonic voltage-controlled capacitors and
current-controlled inductors were excluded from the discussion. Such
capacitors and inductors may be included in the discussion provided they
fall into the following trivial cases: each nonmonotonic voltage-con-
trolled capacitor is in parallel with a voltage source and each nonmono-
tonic current-controlled inductor is in series with a current source. In
such cases, 9xy)+ is separable unless 91 contains one element only.

The above conditions insure the existence and uniqueness® of the
solution on some nonvanishing interval [ty, {,), where {, > t;. The
length of this interval cannot be specified without further assumptions
on the Lipschitz constants h(R,). This is the well known problem of
finite escape time. In particular, if for all branch characteristics the same
Lipschitz constant ean be used and holds over the whole domain of the
characteristic, then the solution exists and is unique on [fp, <) for all
regulated E’s and J’s.
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Proof of Theorem I'V: Let us denote the voltages and charges of the ca-
pacitive branches by (e.,q.). Similarly, denote the voltages and cur-
rents of the resistive branches by (e, , i,) and fluxes and currents of in-
ductive branches by (o, ,i.). Voltage sources and current sources will
denoted as usual by E and J.

We assert that conditions (2) and (4) of Theorem IV imply, first,
that the currents and the voltages of the resistive branches at time ¢,
(e-(t),i,(¢)) are uniquely determined by the values, at the same time t,
of the capacitor voltages, the voltage sources, the inductor currents and
the current sources, (e.(),E(t),i.(t),J(t)); and, second, that the map-
pings

e (t) = fo, (e(t),E(t),iL(t),J(t),t) (8)
(1) = fi, (e (0),E ()i (0),J(),0) 9)

satisfy Lipschitz conditions.

Given any set of capacitor voltages e, and inductor currents i;, such
that Kirchoff’s voltage law is satisfied in each loop formed by capacitors
and voltage sources, and such that Kirchoff’s current law is satisfied in
cach cut set formed by inductors and current sources, let us replace each
capacitor with a voltage source whose voltage is equal to the voltage of
the replaced capacitor and replace each inductor with a current source
whose current is equal to the current of the replaced inductor. The net-
work consists now of resistors, current sources and voltage sources only.

Let us use the algorithm of Section III to change the configuration of
the sources and to separate the network into its separable parts. Let us
denote the resulting network by % and its sources by (E*,J%).

The network 9t* has three sets of subnetworks: (a) connected non-
separable subnetworks which contain sources and two or more resistive
branches, (b) subnetworks containing one resistive branch in parallel
with a voltage source, and (c¢) subnetworks containing one resistive
branch in parallel with a current source.

Consider the first set of subnetworks. Denote the branch voltages and
branch currents of these subnetworks by (e,,i,);, and their sources
by (E,",J1*). From conditions (2) and (4) of Theorem IV it follows that
each subnetwork contains a tree whose resistive branches are mono-
tonically increasing current-controlled resistors and whose links are
monotonically increasing voltage-controlled resistors, and that all ele-
ments satisfy Lipschitz conditions. Therefore, from Theorems I and ITI
of Section IV it follows that (e, ,i,); are uniquely denfied by (E,",J,*)
and that the mapping (e, (t),i,(t)) = £ (E."(t),]."(t),t) satisfies Lip-
schitz conditions.
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The second set of networks corresponds to self-loops of S*(zcyz . In
each subnetwork, the resistor is voltage-controlled, and hence the cur-
rent through it is uniquely determined in terms of the voltage source.
Since the characteristics satisfy a Lipschitz condition, the mapping from
space E," (the voltage sources) to (e,,i.): (the branch voltages and
currents in the subnetworks of the second set) satisfies Lipschitz condi-
tions.

Subnetworks of the third set correspond to open branches of S*J(zcyr .
As each subnetwork contains only one resistor and a current source, the
requirement that the branch be current-controlled is enough to insure
uniqueness of (e,, i,);, the branch voltages and currents of this set, in
terms of the corresponding sources J;*. From condition (4) it follows
that the mapping from J;" to (e, , i,)s satisfies the Lipschitz condition.

The voltages of sources E* are linear eombinations of the voltages E
and e, , and the currents J* are linear combinations of J and i (see
Section IV). From this linearity property and from the properties of the
above relations between the voltages and currents of the resistive
branches and (E*,J¥) it follows that (e,(t),i-(t)) are uniquely defined
by (e.(t),E(t),iz(t),J(t)) and that the mappings in (8) and (9) satisfy
Lipschitz conditions.

Let us now consider the capacitors of the network . Given any set of
resistor eurrents i, and inductor currents iy, such that Kirchoff’s current
law is satisfied in each cut set formed by resistors, inductors and current
sources, let us replace the inductive and resistive branches of 9 by
current sources with currents equal to the corresponding currents i, ,
i, . The network consists now of sources and capacitors only. Let us use
the algorithm of Section III to change the configuration of the sources
and separate the network into its separable parts. The resulting network
is denoted by 91¢ and its sources by E¢,J¢. We are going to establish an
analogy between 91¢ and its sources by E¢,Jc. We are going to establish
analogy between 91¢ and 9% and use the result just proved for 9 to
deduce a similar result for 9tc.

9% consists of the three sets of subnetworks which were deseribed in
connections with 9% . Consider the second set of subnetworks of 9t°,
which consists of single capacitors in parallel with a voltage source.
Except for the trivial case where 9 consists only of a single capacitor in
parallel with a voltage source, this set is empty, for otherwise 90z
would be separable. Condition (1) implies that each subnetwork of the
first set has a tree, say 7. , whose tree branches are monotonically increas-
ing and charge-controlled, and whose links are monotonically increasing
and voltage-controlled. For each subnetwork of this set, with each funda-
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mental cut set of 7¢ defined by a capacitive tree branch, we assign a
variable ¢; equal to the sum of the charges on all the capacitors of that cut
set. For each subnetwork of the third set, we assign a ¢; equal to the
charge on the capacitor. q will denote the vector whose components are
the ¢.'s.

The analogy between 9° and 9" is established in four steps:

(¢) For m”, the Kirchhoff current law applied to the ith cut set as-
sociated with a resistive tree branch reads

Ji& = kz?:ki

where 4; is the current in the kth branch of the 7th cut set. The %, are
components of i, . For 91°, we have by definition of ¢,

qi = ;q.h'

where g is the charge in the kth branch of the ith cut set. The gi; are
components of q.

(#5) For both 9% and 91°, the Kirchhoff voltage law holds.

(#47) Condition (1) imposes requirements on the topology and ele-
ment characteristics of 9° which are entirely similar to those imposed on
a* by condition (2).

(iv) Finally, the elements of ®* and 91° satisfy analogous Lipschitz
conditions by condition (4).

Therefore, the variables (e, q.) and (E°q) of 91° are analogous to
the variables (e, ,i.) and (E*J") of :".

Remembering that E° is linearly related to E, we conclude that the
voltages and charges of the capacitors at time { are uniquely determined
by the values, at the same time t, of the voltage sources E (¢) and q (1),
and that the mapping

e.(t) = f. (E(t),q(t),t) (10)
q.(t) = £, (E(),q(),t) (11)

satisfies Lipschitz conditions.
Since ¢; in any fundamental cut set is equal to the sum of the capacitor

charges

in(t) _7°c
o =7

where J;°(t) is the contribution of the current sources to the 7th cut set.
As J¢ is a linear combination of i, , i, and J it follows that
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(1) = £,06,(0,1,(0,11) (12)

where f, is linear and does not depend explicitly on time.

Let us now consider the inductors of the network . Given any set of
resistor voltages e, and capacitor voltages e, such that Kirchoft’s voltage
law is satisfied in each loop formed by capacitors, resistors and voltage
sources, let us replace the capacitor and resistor branches of 9% with volt-
age sources equal to the corresponding voltages e, , e,. The network now
consists of sources and inductors only. Let us again use the algorithm of
Section IIT to change the configuration of the sources and separate the
network into its separable parts. The resulting network is denoted by
9" and its sources by E*, J". As in the case of the resistive network, we
are going to use the result previously proved for 91* to deduce a similar
result for 9",

9" consists of the three sets of subnetworks which were described in
connection with 9%, Consider the third set of subnetworks of 9, which
consists of single inductors in parallel with a current source. Except for
the trivial case where 91 consists only of a single inductor in parallel with
a current source, this set is empty, for otherwise 9z (s« would be sepa-
rable. Condition (3) implies that each subnetwork of the first set has a
tree, say 71, whose tree branches are monotonically increasing and cur-
rent-controlled and whose links are monotonically increasing and flux-
controlled. For each subnetwork of the first set, with each fundamental
loop of r,, defined by an inductive link, we assign a variable ¢; equal to
the sum of the fluxes of all the inductors of that loop. For each subnet-
work of the second set we assign a ¢; equal to the flux of the inductor.
o will denote the vector whose components are the ¢;’s.

The analogy between 9t* and 91" is established in four steps:

(7) For 91" the Kirchhoff voltage law applied to the ith loop associ-
ated with a resistive link reads

Ef = Y e
k

where e;; is the voltage across the kth branch of the 7th loop. The e;;
are components of e, . For 9t” we have by definition of ¢,

Pi = %:Pki

where ¢; is the flux in the kth branch of the ¢th loop. The ¢;; are com-

ponents of @ .
(#) For both 9" and 9t”* the Kirchhoff current law holds.
(#z) Condition (3) imposes requirements on the topology and ele-
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ment characteristics of 9* which are entirely similar to those imposed
on M” by condition (2).

(iv) Tinally, the elements of %" and 3" satisfy analogous Lipschitz
conditions by condition (4).

Therefore, the variables (¢ ,i.) and (@,J*) of 9U* are analogous to
the variables (e, ,i,) and (E*,J).

As J" is linearly related to J, we conclude that fluxes and currents of
the inductors at time ¢ are uniquely determined by the values, at the
same time {, of (o (¢),J(¢)), and that the mappings

eu(t) = f,, (@0),J 1)) (13)
iL(t) = fi, (@(®),J(0)t) (14)

satisfy Lipschitz conditions.
Since ¢; in each loop is equal to the sum of the fluxes in the loop, it
follows from the Kirchhoff voltage law that

d oIy

where E.® () is the contribution of the voltage sources in the 7th loop.
As E” is a linear combination of e, , e, , and E, it follows that

%@m — £,(e.(1), (1), E(1)) (15)

where £, is linear and does not depend explicitly on time.

Any solution of the network requires that (8), (9), (10), (11), (12),
(13), (14) and (15) be satisfied simultaneously. It is shown in the follow-
ing that these equations determine a unique solution.

In (12) and (15) substitute valuesof e, , e, , i, and i, from (10), (11),
(9) and (14). The results are

ggq = ffl[f'i.-(f"c(E’qat)aElfiL(@)J;t))Jst),fi'L('Q,J:t),J] (16)
o = Ll (B0 L, (. (Bg) B (@ J0,JOEL (D)

Since the right-hand sides of (16) and (17) are compositions of fune-
tions satisfying Lipschitz conditions, these equations may be rewritten
as

%q(t) — F,(E(0),a(0),0(1),JO,0) (18)
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OIS XeORTORION (OF) (19)

where F, and F, satisfy Lipschitz conditions in q and ¢. Therefore, for
any E(-) and J(-) that are regulated functions of time" and for any
initial values of ¢ and g, the differential equations (18) and (19) deter-
mine uniquely @(-) and g(-), and the solutions are continuous functions
of time.”® In terms of E(-), J(-), o(-) and q(-), equations (8), (9), (10),
(11), (13) and (14) determine uniquely the currents and voltages of the
resistive branches, the voltages and charges of the capacitive branches,
and the fluxes and currents of the inductive branches. Therefore the
network 9 is determinate. (Incidentally, the proof shows that the state
of the network may be represented by (g, ¢).)

It is worth indicating an immediate consequence of (18) and (19) and
the other circuit relations.

Corollary: If the conditions of Theorem IV are satisfied, E and J are
continuous functions of time, and all elements depend continuously on
time, then e.,q.,e€:,ir, @z, i, are continuous functions of time; in
other words, jump phenomena' are excluded.

Corollary: Let the network 91 consist of independent sources, nonlinear
(possibly time-dependent) monotonically increasing one-to-one re-
sistors, capacitors and inductors. If the characteristics of all elements
Lipschitz conditions as described in condition (4) of Theorem IV, the
network 9 is determinate.

Corollary: If branches of a network 91 consist of: (a) voltage sources,
current sources; (b) one-to-one monotonically increasing resistors,
capacitors, and inductors whose characteristics satisfy condition (4) of
Theorem IV; (¢c) one-to-one two-poles of the types described by the
theorems of Section II and which satisfy conditions (a), (b), (¢) and
(d) of these theorems: then network 9 is determinate.

Given a physical circuit or device, it may happen that a particular
model of the circuit does not satisfy the conditions of Theorem IV. For
example, this model 9t might be such that S*9 (gye includes a parallel
connection of two charge-controlled eapacitors, Di(g) and Ds(g), with
only D, monotonically increasing. Under these conditions, it may happen
that the current through the parallel combination does not determine
uniquely the voltage across it. If, however, the model is changed (call it
91”) and a resistor (or inductor) is inserted in series with D, then
S*” (e now includes an open branch D., condition (1) of Theorem
IV is no longer violated, and 91” is determinate. Obviously, this idea
may be used in the case of inductors and resistors.
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Finally, let us conclude this section by a discussion which draws at-
tention to some consequences of the conditions of Theorem IV. Some of
the properties considered here will be used in the next section for writing
in detail the network equations.

Let 91 be a network which satisfies the conditions of Theorem IV. De-
note by 7,71_1, g the sets of resistors which are current-controlled (but
not voltage-controlled ), one-to-one, and voltage-controlled (and not cur-
rent-controlled ), respectively. Similarly, denote respectively by d,di_. , ¢
the charge-controlled (and not voltage-controlled ), one-to-one, and volt-
age-controlled capacitors, and by I,T;_;, T' the current-controlled (and
not flux-controlled ), one-to-one, and flux-controlled inductors.

Let us carry out the following operations:

(a) choose a forest of g

(b) choose a forest of (ma

(¢) choose a forest of 9M(raa, _,

(d) choose a forest of (gaa, )

(e) choose a forest of Miraa,_,rr,_,

(f) choose a forest of M gaa, _,rry_11

(g) choose a forest of M(gaa, ,rr,_,0r;_, -

Since the conditions of Theorem IV are satisfied by 9, it follows that
the union of these forests forms a iree of 9 which we denote by 7. The con-
struction of this tree is an extension of Bryant’s procedure.’

This can be proved in the following way: From the conditions of
Theorem IV it follows that the union of the forests chosen by (b) and
(¢) [by (d) and (e), by (f) and (g)] are forests of Nxye, [Nzeyr , and
Neem , respectively]. Let us add the network’s resistors to Mzcr)s -
This is done by splitting nodes and adding the new branches between
them. Consider a node which was split, say, to three nodes and a resistor
subnetwork connected between these nodes, It is clear that the subtree of
this resistive subnetwork completes the forest of 9 (gcr) . for a forest of
the 9 zeyrr - We can use the same argument to show that by adding the
capacitors and voltage sources we get a forest of the network which in-
cludes all branches but the current sources. However, the current sources
do not form any cut set and therefore are links of this forest. Thus r,
the union of these forests, is a tree of 9t.

From the construction of the tree, the conditions of Theorem IV, and
the above discussion it follows that r contains all current and charge-con-
trolled elements which are not one-lto-one, and all voltage and fluz-controlled
elements which are not one-to-one are links of this tree.

Consider the fundamental cut set of 9 defined by an element of set d,
a charge-controlled capacitor whose characteristic is not monotonically
increasing. By assumption, this capacitor is an open branch of S+ ;
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this cut set may not contain capacitors or voltage sources and therefore
consists solely of resistors, inductors and current sources. Similar proper-
ties exist for fundamental loops defined by the various links. One can ex-
hibit these properties by making a table in which links and tree branches
are partitioned according to the types of their elements and properties
of their characteristics; for each link and branch the table specifies the
type of elements that are allowed to be in the corresponding loop or cut
set. As the table is complicated, it is omitted and only some of the more
interesting properties are listed below. Here we are going to make use of
the rank-order of the elements, ECRL./, defined in Section 1I:

(7) Tree branches with characteristics which are not monotonically
inereasing are the highest ranked elements in their own fundamental cut
set. Thus, for example, a charged-controlled nonmonotonically increas-
ing capacitor has a fundamental cut set which may include links which
are resistors, inductors and current sources but no other capacitors.

(77) Links with characteristics which are not monotonically increasing
are the lowest ranked elements in their own fundamental loop. Thus, a
fundamental loop defined by a nonmonotonically increasing resistor
may have only capacitors or voltage sources in its tree branches.

VI. EQUATIONS FOR RLC NETWORKS

The purpose of this section is to write explicitly the equations of a
nonlinear RLC circuit of the type considered in the previous section,
Another purpose is to exhibit the similarities and differences between
the equations that describe linear networks and those that describe the
nonlinear networks under consideration.

To simplify the exposition consider the resistive network of Fig. 14,
Call 7, the tree formed by the branches 1,2,3, and the voltage source E.
If the network were linear, the fundamental cut set equations would
read

Fig. 14 — Resistive network.
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gier + gales + e — ey — E) = J;
gi(er + €2 — 5 — E) + goes — gs(—e2 + ;) = Jy (20)
—giler + es —e3 — E) + gaes + gs(—e2 + e3) = 0

where e; is the voltage across the 7th branch and g; is the conductance

of this branch. In the well known matrix form, the equations become
g0 0 0 0 DL 0 0 0

100 1 07|0 go0 0 0fJO 1 0 of|® J

010 1 —-1f]0 0 gooljo o 1 oflj®l=|J.] @)

001 —1 1 00040_' 1 -1 —-1||F 0

0 0 0 0 g 0 -1 1 0

or, more generally,

e
AT(R),RGRA’T(RR}.R [E:I + AT(R).LU)J =0 (22)

where e, E and J are column vectors whose components are the tree
€
branch voltages, | e |, the voltage sources, [E], and the current sources,
€3
[/], of the network; Gy is the branch admittance matrix. The A’s are
appropriate submatrices of the fundamental cut set matrix Q. The first
subscript of A denotes the rows and the second subseript denotes the
columns of Q whose intersection forms the submatrix. Thus Arr), L(r)
is a submatrix formed by the intersection of rows corresponding to
resistive and voltage source tree branches and columns corresponding
to resistive links; Arg . p 18 formed by the intersection of rows corre-
sponding to resistive tree branches and columns corresponding to re-
sistive branches. Az s 18 defined similarly. The prime over a matrix
indicates transposition. Now, let the resistors become monotonically in-
creasing one-to-one nonlinear resistors. Without loss of generality we
can assume these new resistors to be time invariant. Let §(-), §=(-),
G3(+), gs(+) and §(-) be their characteristics.
The cut set equations are:

giler) + gales + e — e — E) = Jy
gl("l+?e—(’3—E)+§2((’2) — Jsles — e) = J, (23)
—giler + ea — ey — E) + Gsles — ex) + ga(es) = 0

where, for example, g, (e;) 1s now the value of the function § evaluated
at e; .
The similarity between (20) and (23) suggests a shorthand notation
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for writing the equations of nonlinear networks. By the product A+x
(where 4 is a diagonal matrix whose elements are functions a,(-) and
x is a column vector whose components are x;, @, * -+ , ), We denote
the column vector whose ¢th component is a;(x;)}, that is, the sth di-
agonal element of A evaluated at the ith component of x. With this
symbolic notation the equations of the network of Fig. 14 can be written
(for the nonlinear case) in a form analogous to (22).

12 e
Arr),rGr* (A T(RE).R [E:I) + Ary,n] = 0

where G is the diagonal matrix whose elements are the characteristics
d1, G2, -+, s and the » operation must be interpreted as indicated
above. Gy will be referred to the branch characteristic matrix. With this
symbolic notation, cut set matrices, loop matrices and branch resistance
matrices may be used to writing equations of nonlinear networks in the
same way as for linear networks.

Let us now assume that the elements of the tree = of the network of
Fig. 14 are monotonically increasing current-controlled but not voltage-
controlled and the links are monotonically increasing voltage-controlled
but not current-controlled. Since the tree branches are not voltage-
controlled, the equations cannot be written in the form of (22). Let
71(+), 72(+) and 7;(- ) represent the characteristics of the tree branches
and 7 , 73 and 4; be the currents of the corresponding tree branches. In
terms of the tree branch voltages and currents the cut set equations
become:

t gilen +e—eg— E) =,

Bo+ Galer + e+ e3 — E) — Jrles — ea) = J, (24)
i3 — Jaler + €2 — e — E) + Gale: — e3) = 0.
The other set of equations is
ey = 71(41)
ez = T2 (ia) (25)
ez = 73(13)

or symbolically
. ’ €r(r)
irmy + AT(R),L(R)GL(R)* (A T(RE).L(E}[ E :I) + AT(R).L(J]J = 0. (26)

erm = Rrm¥irie (27)

where ir) , €rr) , E and J are the tree currents and voltages, and vol- |
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tage and current sources respectively. G and R are the link and branch
characteristic matrices, and in our example

0 @& 0 O
Gup = I:g4 _:|, Ryry =0 ®: 0
0 0 ay

The A’s are appropriate submatrices of the fundamental cut set matrix
Q. The first subseript denotes the rows and the second subscript denotes
the columns of Q whose intersection forms the submatrix. Thus
Arre).Lr) 18 & submatrix formed from the intersection of rows cor-
responding to resistive and voltage source tree branches and columns
corresponding to resistive links. Agey, ey and Ay, nn are defined
similarly. A comparison of (26), (27) and (22) shows that in the case of
current-controlled tree branches and voltage-controlled links which are
not one-to-one, we need both ircx, and er for a straightforward writ-
ing of the cut set equations and the branch characteristic equations.
Tither irz) or €r¢xy can be eliminated from the equations. The resulting
equations are:

' ? RT(R)*iT(R)
ir(ey + Avio, L Grm* (A T(RE),L(R) |: E

+ AT(:.:J,L(J)J =0

(28)

Or

e
erimy + Ry {AT(R).L(H)GL(R)* (A’mu)'um |: Ti::m:D}
(29)

+ Rrm*(Ara.un] = 0.

Fundamental loop equations can be written in a similar way using both
the voltages and currents of the links i,z and e, . The equations are

’ ine
e + Loy, remR vy * (1 L(RJ).T(R)I: J— + IL(H).T(E)E =0

inm = Gum*erw

where the I’s are appropriate submatrixes of the fundamental tie set
matrix B. Similarly to (26) and (27), either e, or i) can be elimi-
nated.
We now write the equations for a general RLC network (which satis-
fies the requirements of Theorem IV) by performing the following stepsf
 Other systems of variables are possible. For example, one can choose charges

and fluxes as above and voltages of resistive links whose loop does not consist of
capacitors and voltage sources only.
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(7) A tree is chosen as explained in Section V.

(77) Variables are chosen. We choose here the charges on the capaci-
tive tree branches, qp , the eurrents of the resistive tree branches whose
fundamental cut set dees nol consist of inductors and current sources
only, iz, and the fluxes of the inductive links, ¢r .

The equations make use of the following characteristic branch ma-
trixes: C and D are diagonal matrixes whose elements are the charac-
teristics of voltage-controlled and charged-controlled capacitors, re-
spectively; G and R, those of voltage-controlled and current-controlled
resistors, respectively; L and T, those of current-controlled and flux-
controlled inductors, respectively. Without loss of generality we can
assume that the elements are time-invariant. The equations are

d D
i {QD + Are), ey Crier* (A’r(cﬁ).uc)[ T(CE)*qD])}

, DT(L)*qD (30)
+ Are) . Gram* | A rickm. L | Rr@*in

E

+ Arer. T um*or + Arcey,en] = 0
DT(C‘}*qD

. ! -
in 4+ Ariy, o Grm* | A rickr. 1@ | Rrm*ie
E (31)

+ Avm.unTum*or + Ar@,un] = 0

d , | TTAL
- (Q[‘+li'.(L}.T(L)L’I'(L)* (l L(LJ).T(L)I: we @F:I)
dt J
r *
+ w2 R, * (lfum.:rml)[ L(? ‘QF]) (32)

+ Loy . 7o Drey*qo + Lo 7 Rrm¥ie
+ 1o, 2mE = 0

where E, is the set of resistive tree branches whose fundamental cut set
contains inductive links and current sources only; and R is the set which
contains all other resistive branches.

The terms in the brackets in (30) and (32) are equal to our state
variables q and ¢ of Section V. One can write the equations in terms of
these variables: the relations between qp and q and or and ¢ are given by
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Dy
dpo -+ AT(C).L(L‘JCL(E)* (A’T(C‘E),L((‘) I: T(g*‘lu]) =q

, r *
Qor + lL(L).T(L)LT(L)* (l L(LJ),T(L) [ L(}) (91‘:|) = Q.

In summary, the equations of the RLC nonlinear network are written
in a way which is a generalization of the methods used in linear networks.
However, great care must be taken of the fact that some characteristics
are representable by functions which do not have inverses. This section
indicated a method for tackling the problem. In this section, the equa-
tions are written in terms of three sets of variables: q» , the charges on
the capacitive tree branches; ¢ , the fluxes in the inductive links and
ir, the currents in the resistive tree branches whose fundamental cut
sets do not consist of only inductors and current sources. It is interest-
ing to note that (except for the trivial casc where 91 consists of a single
capacitor in parallel with a voltage source or a single inductor in parallel
with a current source) the dimension of the state vector (q,o) used
ahove is the same as in the linear case: [number of independent initial
conditions| = [number of reactive elements] — [number of independent
capacitor-only tie sets] — [number of independent inductor-only cut
sets].”™"
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