Applications of a Theorem of Dubrovskii
to the Periodic Responses of
Nonlinear Systems

By V. E. BENES and 1. W. SANDBERG
(Manuseript received May 14, 1964)

Dubrovskii’s theorem on completely continuous operators that are asymp-
totic to zero is applied to the study of the existence and uniqueness of periodic
responses of nonlinear systems to periodic driving signals. Examples of
nonexistence and nonuniqueness are given, a relctionship between non-
uniqueness and subharmonics is noted, and some general exislence theorems
are proven, giving estimales on the magnitudes of the harmonics.

I. INTRODUCTION

In 1939 V. M. Dubrovskii' proved the following result:

Thearem 1: If A is a complelely continuous operator which maps a Banach
space X into ilself, with the property that

yim 1A%
e Edl

=0, reX,

then for each scalar X and y ¢ X, the equation x = y + NAx has al least
one solution x ¢ X.

Dubrovskii’s theorem was stated in the long review article of M. A.
Krasnoselskii’ on problems of nonlinear analysis, but except for a recent
application,'1 it seems to have gone largely unnoticed. It is the purpose
of this paper to indicate some applications of the basic idea in the
theorem to integral equations (and systems thereof) that arise in the
study of nonlinear electrical networks and automatic control systems.

The applications to he made all center around the existence and
uniqueness of periodie responses of nonlinear systems to periodie driving
signals. These properties of the equations governing nonlinear systems
are frequently taken for granted. The fact is, though, that these are
by no means universal properties of such equations, as simple examples
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(to be given) will show. Often, the nonexistence of periodic responses
is related to instability of the nonlinear system, while their lack of
uniqueness is closely connected with the possibility of responses with
subharmonic components. Thus it is important, in control and eircuit
theory, to be able to distinguish nonlinear equations that have unique
periodic solutions for periodic inputs from those that possess several
such solutions. With the aid of the idea underlying Dubrovskii’s theorem,
we examine this problem in the present paper for systems described by
the nonlinear integral equation

() =y + [ :k(t — Wy(e(w),u) du, (1)

(and by a vector analog thereof,) where () is an input, &(-) is an
integrable (L,) impulse response of a linear system, and ¢(-,-) repre-
sents a periodically time-varying nonlinear element. Periodic solutions
of (1) have already been considered in previous work of one of the
authors;* almost periodic solutions of (1) have been studied in previous
joint work® of the authors. In both these papers a basically different
assumption about the growth of the element ¢(-,-) (from that to be
made here) was used.

II. SUMMARY

A discussion of the abstract Banach space setting for Dubrovskii's
theorem appears in Section II1. It includes a quick proof of the theorem
from Schauder’s fixed-point principle. There follows in Section IV an
account of mathematical preliminaries, assumptions, definitions, etc.,
requisite for our remarks about (1). These remarks begin, in Section V,
with a simple example showing that (1) may have no periodie solution
and continue in Section VI with an existence theorem, for periodic
solutions of (1), based on the principle of Dubrovskii’s theorem. In
Section VII we apply this result in discussing an example of nonunique-
ness due to existence of subharmonic solutions. In Section VIIT it is
shown how the bound on the norm of the solutions obtained in Section
VII can be improved. In Section IX, finally, a vector analog of the
existence theorem of Section VII is stated and its proof sketched.

III. BACKGROUND DISCUSSION

We recall® that an operator A taking one Banach space into another
is termed completely continuous if and only if it is eontinuous and carries
every bounded set into a compact one. Dubrovskii’s theorem for such
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operators is a straightforward consequence of Schauder’s fixed-point
prineiple:” Let S be a bounded, closed, convex set of a Banach space ..
Let A be a continuous transformation of S into a compact subset of
itself. Then there exists at least one point x ¢ S such that + = A,

An operator A satisfying Dubrovskii’s condition

. Az |
lim [ =
jzho || ]

0

is said to be asymplotically close to zere; explicitly, the condition is that
for every € > 0 there is an rsuch that || v || = rimplies | Av || < e[ 2.
To prove Dubrovskii’s theorem we seek a closed ball, of radius i to be
determined, that is mapped into itself by the (completely continuous)
operator (7 defined by

Gr =y + A

with A and y ¢ X fixed. Let e be a number such that 0 < | x| e < 1,
and pick (by Dubrovskii’s condition) an » > 0 such that [« | = r
implies || Ax || < e /| . If now s is a positive number such that

S25 JZP?‘J
then forr = ||| = s
[Gell = lyll + N[ ] Ax]
slholl+Inlellell
=< s.

Since A is completely continuous, the set

is compact. Thus the continuous funetion || Ax || defined on | || @ || = 7}
is bounded. If R/ is chosen as

R = max {—H -ﬂﬁ,' yll + |A] su Ax }
Lyl Iy sup | A

then || x || £ Rimplies || (e || £ R. The closed ball of radius R is convex,
and the existence of a fixed point of ¢ in the ball follows from Schauder’s
fixed-point prineiple. To establish the result for a particular value of A
it is not necessary that 1 he asymptotically close to zero; clearly, it
suffices that there be esuch that 0 < ¢ < |A| "and rsuch that || x|l > r
implies || Aw || < e x| .
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IV. PRELIMINARIES

We shall be concerned throughout with the case in which the functions
z(-) and y(-) of interest are periodic and square-integrable over a
period. By Ly(—T,T) we denote the Banach space of all funections x(-)
of period 27 that are real-valued, measurable on [— 7",7T], and for which

the norm
1o = (g [ 120 £ at)

is finite. According to standard results in the theory of Fourier series,
such a function is represented in the mean by its Fourier series

N
() = lim. ), xne™m"

Nsow m=N

with Fourier coefficients
T = 1 fr x(t)e ™™ dt —w < m< ®,
27T J_r ’

The norm of z( - ) and its Fourier coefficients are related by the Parseval
identity

-]
lz*= 22 |aal®
n=—oo

We shall need the following two facts from the theory of Fourier
series: (1) If 2(-), w(-) &€ Ly(—T,T), with respective Fourier coeffi-
cients {z,}, {w.)}, then

T
él?f Z(t - u)'ﬂ'-’(u) du = Z zﬂ,wnenmg,rg"
_T ~

the series on the right converging absolutely and uniformly; (2) the
Fourier coefficients of z( - +¢) are {e"""z,).
The notation

el = = REC

is used occasionally.
For a periodic function z(-) ¢ Ly(—T,7") we define the functional

T

w) = g [ L+ 0 =20 |41,
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proportional to an “integral modulus of continuity,” and we remark
that one of the usual arguments for the Riemann-Lebesgue lemma gives,
for n # 0, the inequality

I :
_f z(t)e—nnr!’l‘ dt'

!znl = oT |,

1 T . )
- lﬁf O I dt’
—r

< II-T— fl |2(t) — z(t + T/n) | dt = u(z,T/n).

We shall make two assumptions about the nonlinear element ¥(-,-),
one about its growth and one about its continuity:

(a) there is a function A(-) nondecreasing on [0, ) such that for
all o, ¢

[ ¥(t) | = A(l2]), (2)

(b) the function ¥(-,-) is continuous in the first variable uniformly
in both variables. Then its modulus of continuity w(-), defined by

w(8) = sup | Y(ut) — ¢(vt) | for |u—v| =3, (3)

is a continuous monotone function, and approaches zero with § — 0.
When (v, - ), considered as a function of ¢, has a modulus of continuity
wo( - ), so that

[ Yot + €) — (o) | = wole)

for all v and ¢, we set

_J0 n=20
&= \w(T/n) n =0.

Jensen’s inequality for a concave function ¢(-) reads

[ 1@p() dz [ o)) do

b 3 (4)
L p(2) dz f p(z) do

@

where ¢( ) is concave in an interval containing the range of f(-) over
la,b], p(z) = 0, p # 0, and all the integrals in question exist.

We now return to k(-) in (1). Sinece k(-) belongs to L, it has a
bounded Fourier transform
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K(w) = 2m)7F fw e (1) di.

The convolution operator K on La(—T,T) defined by

o0

Ka(t) = f x(t — w)k(u) du

is described in terms of its effect on Fourier coefficients by the identity

(Kz),, = (2r)'K (%) T,

and takes Ls(—T,T) into itself continuously.

V. NONEXISTENCE OF SOLUTIONS

It is easy to see that in some very simple cases (1) has no periodic
solution. An example is furnished by

Remark 1: If y(v,t) = v for all » and ¢, and if, for some integer n, both
the nth Fourier coefficient y, of y(-) does not vanish and

hu = (277)%K (?;:r) = 17

then (1) has no periodie solution x(-) belonging to L, (—=T,T). For if
there were such a solution, the left side of (1) would have nth Fourier
coefficient x, , while the right-side would have y, + x. # a. .

VI. EXISTENCE OF SOLUTIONS

Theorem 2: If A(-) and w(+) are concave, y(-) ¢ Ly(—T,T),
2
K (FTﬂl)l < w

r= |yl + () (5)
has a positive solution r, then there exvists a solution x(-) of (1), with
pertod 2T, and such that

K3l
an | S [ym| + @)K (E}”‘) A ()

0

KQZQTFZ

m=—og

and if the scalar equation

1A

r,

where Tm , Y are the respective mth Fourier coefficients of x, y.
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Proof: In the complex sequence space I of Fourier coefficients, isometric
to L.(—T,T), consider the set $ of sequences & = {2, —»o <n < =|
such that, with the overbar denoting the complex conjugate,

Loy = Tn

ol 5 L+ K () o,

By Minkowski’s inequality, r ¢ § implies

lell = (X leal® £yl + a(r) =r.
The set $ is compact, being an analog of the Hilbert cube or parallelotope.
It is easily verified that 8 is convex.

Now let x(:) ¢ Lo(—=T,7), and consider the magnitudes of the
Fourier coefficients of the function w( -) defined by

w(t) = Yla(i),t) = (ot + 2T), t 4+ 27T').
We find

L veoc e al s o [ 1veoo)a

I w" 211

1 T
ﬁ‘[r)\( | x(u)|) dt )

= )\(2—17.,‘]:: | ()] du)
INUEZ DR

where the second inequality follows from the fact that A(-) bounds
the growth of y(-,t), the third inequality follows from the concavity
of M -) by the Jensen inequality (4), and the fourth inequality follows
from Schwarz’s and the monotone nature of A(-). Hence if || 2| = r,
then | yw + (Kw)w| = | ym | + (27) K(mm/T) Nr), and it follows
that the operator A defined on L.(—T,T) by

[IA

Az(t) = y(t) + j:m E(t — w(x(u)u)du, [t =T

maps the ball || || £ r into the compacet, convex, isometric image of 8,
that is, into a compact, convex subset of itself. Continuity of 4 on the
image follows from that of K and from the inequality



2862 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

L [ 1@ — $w du s o) 1 - =),

provable by the same method as (6). Existence of a fixed point of 4
in the isometrie image of 8§ follows from Schauder’s theorem,

We remark that if A(u) = o(u) as u — =, then a solution r to the
sealar equation (5) always exists. This ocecurs, for example, if

Au) = Bu” g >0, 0=a<l.

VII. NONUNIQUENESS AND SUBHARMONICS

It is known that a solution of (1) may have Fourier components,
called “‘subharmonics,” of period greater than 27. Our purpose is to
remark that if this occurs, then (1) does not have a unique solution,
and in fact, the greater the period of the subharmonie, the more distinct
solutions exist. We start with a simple example: Let T = =/2, set

Y(ut) = sgn u- Iul*} (7)

y(i) = § — 3 cos 2t
let

x(t) = § + 4sint — § cos 2,
and for K(-) take any Fourier transform of an integrable function
with K(0) = 0 and K(1) = 4(2x)7}. For example, the fourth-order
filter
(2r) 16 (1w)*

(1 + iw)?
will do. Actually, since we need to prescribe only the two parameters
K(0) and K(1), the second-order filter
(2#)_}'&»

(lw)* + tiw + 1

K(w) =

K(w) = (8)

would do as well.
That z(-) as defined is a periodic solution of (1) of period 27 can

be verified from the identity

2 4 sint = (§+ 4sint — 3 cos 2t)*.
This example, in which the solution x(-) contains the subharmonie
component 4 sin ¢, is adapted from Hughes,® and has been used earlier*
by the authors merely to illustrate the real possibility of subharmonics
in relatively simple systems.



NONLINEAR SYSTEM RESPONSE 2863

Now since the input y(-) has period =, while the response z(-) has
period 2, it can be seen that by shifting x(-) by =4, that is, by changing
the sign of (all) the odd components of z(-), another solution of (1)
for this ¢(-) and y(-) is obtained, because

vt =) = y(t) + [ﬂ sgna(t =7 —w) |t =7 — u)lgk(u)du.

Thus, there are at least two solutions of (1) for this example; the two
we have identified so far differ only in phase. As an application of
Theorem 2 we show that there is at least one more solution, one that
has period w. The following lemma establishes a Hélder condition for
the nonlinearity of the example:

Lemma 1: If
vv) = sgno|v|?
then for all v and e
W+ e — ¢ | =2 e
Proof: First suppose that sgn (v + ¢) # sgno. Then [e| = [v + €] +
| v|, and concavity gives, by Jensen’s theorem,

WG+ — | = v+ el + o]
gzﬂit%iiﬂY—zﬂq?

If sgn (v + €) = sgn v, there is no loss of generality in supposing that
v 4+ ¢ > v = 0, because (- ) is odd. Then using concavity again

Vo) = v+ o

<

yle) = . e\fl(v + ).

Hence in this case
0<yv+e) — o) Zyle) = el

A dircet application of Theorem 2 shows that (1) for the example
(7), (8) has a solution of period «. The scalar equation

Il + ' =7

is appropriate, and has a positive root r.
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The example just discussed illustrates the following general principle
regarding subharmonies:

Theorem 3: If (1) has a solution L( -) with (minimal) period 2nT, n > 1,
then each of the functions

x(t + 2kT) k=1,---,n
18 a (distinet) solution of (1).

Proof: Since y(-), and the time-dependence of ¢(-,-) have period 27,
we have

(t + 2kT) = y(t) + _/_.w Yot + 2T — w), t + 2kT — uw)k(w)du
= y(t) + [Ny’z(m(i 4+ 2kT — u), ¢t — u)k(u)du.

VIII. CLOSER BOUNDS ON FOURIER COEFFICIENTS

By a more penetrating analysis it is possible to strengthen the bounds
on the norm and on the I'ourier coefficients given by Theorem 2. For
example, the inequality (6) merely establishes a uniform bound A(r)
for all Fourier coefficients of functions

w(t) = P(x(t),t)
for || x || = r. However, since the argument for (6) shows that w(-) is
absolutely integrable over a period, its Fourier coefficients actually go
to zero at infinity, and it should be possible substantially to improve
the estimate (6). This ean be done with the help of the quantities
{gm, — o < m < =}, and the functional p, defined in Section IV.

Throughout this section, it is assumed that ¢(»,-) has the modulus
of continuity w(-) as a function of ¢, and that

2
mir
«(7)
It follows from (9) that there is a funetion iA(-) ¢ Lo( —T,7") such that

for any z(-) & Lo(—T,T)

T ©
in Rt — wa(u)du = f k(¢ — w)x(u)du;
21 -1 —oo
the Fourier coefficients of h( -) are

2

d= 3

m=—no0

< w, (9

mm

B = (21)51{(?), —w <m < »,
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For each positive number s, and m = 0, we define
an(s) = p(y,T/m) + Ms)u(h,T/m).

Sinee for () & Lo( = T,T), u(x,e) — 0 as e — 0, the numbers a,(s)
are bounded in m = 0 for each fixed s. By the Riesz-Fischer theorem
there is for each s > 0 a function u,(-) & L:(—T,T) whose Fourier
coefficients are

o (8) = 3 | Fem | {""’(am('f")) + gnl, m =0
ho | A(s) m = 0.

with (ef. Seetion 1V)

- n=20
o leol T/n) n = 0.
Theorem 4: Let N w( ) be concave, and let r be a positive number

salisfying the mrquahty
foll+ el =

Then there exists a solution x(-) ¢ Ls(=T,T) of (1), such that

[l =7,

wle,T/m) £ aulr), m =0

| = [ yn !+ [wnlr) |, all m.
Proof: Let the operator A be defined on the ball | ol €vtinLa(=T,T)
by

Ax() = y(t) + [ﬂ E(t — w)g(x(u) u)du

= y(0) —|— f h(t — w)p(a(u) u)du.

The argument of Theorem 2 shows that A maps | el = ¢} con-
tinuously into L.( —T,7T"). Further, by Fubini’s theorem and the con-
cavity of A(-),

% _: dt [; [h(t + e — u) — h(t — w)|-[g(x(u) )| du
= ulhye) - 5T fT | () )| du
w(hoN( 2 ),

1A
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and we find that ||z | < r implies p(Ax,T/m) £ a,(r) for m = 0.
Moreover
[¥(x(u+ e)u+e) —Yle(u)u) | £ ol [z(u+ ) —z(u) |) + wle),
so that the concavity of w(-) implies
2u(Y(r),e) = wlp(r,e)) + wole).
It follows that || z || < r implies
| (A2)n | S [ Y| 4+ & b | {@(@n(r) + qul,  m =0
and also
| (Aa)o| = [yo| 4+ [ ho | M(r).
Let 8 be the compact set of I sequences
=1, —»w <n < »}
such that
Tom = Tm,
|zl = Tym | + [ualr) |.

[t can be seen that A maps the ball { || x| = r} into the isometric
image in Ly(—T,T) of 8. This image is compact and convex, and The-
orem 4 follows from Schauder’s fixed-point principle, as did Theorem 2.

IA

Theorem 4: Let N(-),w(-) be concave, let y(-) ¢ Ly(—T,T), and let
there exist a positive number r and a real bounded sequence b = {b,, , m = 0}
satisfying the inequalities

(R78I o WA PNCO R

. nr
sin 5 | A | {w(ba) + ¢} = b, m = (.

#(er/m) + §0

Then there exists a solution () ¢ Ly(—T,T) of (1) such that
| @m | S |y |+ 5 [hn| (b)) + ¢,  m=0.

1A

Izl 27

Proof: Let R be the compact, convex subset of L.(—7,7) consisting of
funetions z( - ) such that

Izl =r
2u(z,T/m) < bn, m = 0.
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Let 2(+) ¢ R, and let [y, —® < n < =} be the Fourier coefficients
of the funetion w(-) defined by
w(t) = g(a(t),t), all 1.
Then the concavity of A(-) implies that

il 5 (g [ 1201a) 520

and that of w(-) implies that for m # 0
1
27
w(2u(z,T/m)) + @m.

| S g [ wClate+ 7/m) = 2Ot + g

1A

Now

Azt 4+ ) — Ax(D)
=yt +¢ — ylt) + [T (Rt + e —u) — h(t — w) }g(x(u)u)du

and the second term on the right is

Z ’R mue, _ )'.bn rlu.!’

n=0

the series converging absolutely and uniformly to a quantity of modulus
at most

22 | Il

n=0

bln

Hence, with e = 7/m, m # 0,
2u(Ax,T/m) = bu.
At the same time

1£”
27 Ly

)| dt g_)i,],f | ()] dt +41’2f |t — )| | (eu)u)|dudt

IIA

[yl + 1A xG)

IIA

r.

Thus Ax(-) belongs to K. The result follows by Schauder’s theorem,
as before.
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Remark: Let w(-) be conecave, with w(u) = o(u) as uw — o=,
Let [z, , n = 0} belong to l,, and let [k, , n 5% 0] belong to f, N 1, . Then
there exists a minimal bounded sequence {b, , n ¥ 0} satisfying

lza | + 2

mz=0

|hm | w(bm) hn, n #= 0. (10)

lIl —

The sequence {b,} is minimal in the sense that its components are less
than or equal to the corresponding components of any other sequence
satisfying (10).

Let B be the set of sequences v satisfying (10). To prove B is non-
empty, let

0 n =20
Un = . Tm

> | sin — | | ha |, n #= 0,

m= 2]‘

and let r satisfy || z || + || v || w(r) = r. Define w = |w, , n = 0} by
T+ wo(r) =7

w, = |z,

Then

lz. | + 2

m#l

sin —— } | A | () < w,,

so that w ¢ B and is bounded. Now set b, = inf », . Foranyve B
ve B

wh
ll] —

|z |+ 2 |5

m=0

.omm
Sin 5 { |’lm I w(l'm)
zn

hm | w(bm = Izu { + Z

m0)

A

Up .

Thus b ¢ B and is minimal.

IX. THE VECTOR EQUATION

In this final section, we consider a veetor form of the integral equa-
tion (1). Let A( +) be an N X N matrix of real functions of L, , and for
each t, let ¢(- 1) be a real N-vector valued function of a real N-vector.
Let y(-) be a l('al N-vector valued function of time {. With these re-
interpretations of the notations in mind, we can leave (1) unchanged.

With M a complex matrix, we let 3’3, and M* denote the trans-
pose, the complex-conjugate, and the complex-conjugate-transpose,
respectively, of M. The positive square-root of the largest eigenvalue
of M*M is denoted by A{M}.
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If » is a real or complex N-vector, its norm is defined as the “‘Euclid-
ean’’ norm

foll = (X 10 = ot

It is well-known that

AUMY = sup *M*Mo (11)
e)=1

= A{M]} || v | for complex N-vectors v.
As previously, L.(—7,T) is the space of real-valued, measurable,
funetions 2( - ) of the real variable { which satisfy

(2) x(t + 27) = a(),

and hence that || Mo ||

I .
(72) 57 j:T [2()] dt < .
We take as our basic space the Nth power of L,(—1,T), i.e.,

LY(—=T,T),

and think of it as composed of column N-vector valued functions of
time. A norm for L,"( = T,T) can be defined by the formula

1 T
! 2

. of
I &£ ‘ﬁ, . v dt

1 T N
- ?‘.TL IIRNOK
where # = (&1, -+, ay) ¢ L"(—=T,T). This norm makes LYN(=T,T)

a Banach space. Further, an element x( - ) of L.*(—=1T,T) has the Fourier
representation

w(f) = lim. D, ane”™'"

Nn-»0 M=—n
where the N-vector x, of mth Fourier coefficients is given by
T
Uy = RS e(t)e ™™ adt
m 2T s y
and the Parseval identity
-}

DA SR E e Pl s

for @ ¢ L."(—T,T) holds.
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The matrix convolution operator K is defined on L,"(—T,T) by
Kzx(t) = f E(t — w)a(u)du

and the operator ¢ by
yr(l) = ¢la(i),l), all .
Equation (1) assumes the coneise form
T =y + Kya.
The matrix K,,, m = 0, =1, --- is defined by the condition

o0
Ko=) = [ ™7 k(.
It is assumed that Y A*K,} < o. This condition is met, e.g., if
2 k< e,

for 1 = 4, = N. The matrix convolution operator K takes a function
a(-) e L"(—=T,T) with (vector) Fourier coefficients x,, into the fune-
tion z( - ) whose coefficients are

zlll = I(”!:F", ’ ?n = Ol :tlF Tt b

and the Riesz-Fischer theorem guarantees that z(-) ¢ L.“(=T,T).
Further, by formula (11) we have

[ zm || = A{KW} || 2 |-
An analog of Hilbert’s cube in L,"( —T,T') is described by

Lemma 2: Let {c,, — = < n < =} be nonnegative real numbers with
E e < o,
n

Then the set
(xe L"(=T,T): || xn || € o, alln)

s compact.

This result is a consequence of a known theorem. (See p. 136 of Ref.
5.)

Analogs of the growth condition (2) and of the uniform continuity
condition (3) will be used. These are
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(i) (e | = N[l u] ), for all ¢ and all real N-vectors u where
A ) is a monotone funetion.

(i) ¥(-,-) is continuous in the first variable uniformly in both
variables; its modulus of continuity w(-), defined hy

w(8) = sup || Y(u,t) —d(ot) | for [[u—ov] =3,

w,v, b
is a continuous monotone function that approaches zero with 6.
Theorem 6: If N(-) and w(-) are concave, y belongs to LYX(=17,T),
K= 2 AK. < =,

m

and if the scalar equation
r=yll + «NA(r)

has a posttive solution r, then there exists an element v & LY(=T,T) satis-
Juing

[l
[aw |l = [ ym |l + AMEKNN),

wilh ¥, , i the respective mth (vector) Fourier coeflicients of x,y.
The proof of Theorem 6 is an exact analog of that of Theorem 2,
using the compact set

e LY(=T,1): || 2wl £ | ym || + A{KIN(r), all m)

y + Kyx

r

IIA

and with w(t) = ¢(x(),1), the inequality, (analogous to (6),)

| = Nx([[a D,

Il w,,

provable by ohserving first that for all ¢

y
2wty | = N lw() |
=1

A

< N\([[x() ),
so that trivially
Lwy() | £ NI 2 )

and by concavity of N(- ),

1 (" )
o7 _[T | w; ()] dt = N'X(|| 2 ]]).
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Squaring both sides and summing overj = 1, - - - , N we obtain

2

[ wn || = Nz)\z(” x ).
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