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This paper reports on some resulls concerning the properties of integral
equations that govern the behavior of a large class of control systems or
electrical networks conlaining linear time-invariant elements and an arbi-
trary finite number of nonlinear time-varying elements.

In particular, for networks containing linear time-invariant elements
and an arbitrary finite number of positive-slope nonlinear vesistors, it s
proved, under reasonable conditions, that the response to a pertodic excita-
tion applied at t = 0 is ullimately periodic with the same period as the
excitation, regardless of the inttial state of the network.

1. NOTATION AND DEFINITIONS

Let M denote an arbitrary matrix. We shall denote by M, M*, and
M7, respeetively, the transpose, the complex-conjugate transpose, and
the inverse of /. The positive square-root of the largest eigenvalue of
A*M is denoted by A{M], and 1y denotes the identity matrix of order
N.

The set of real, measurable N-vector-valued functions of the real
variable ¢ defined on ( — =, ) [[0,= )] is denoted by 3Cy [3Cx4], and

Loy = {rife:}cﬁ,f_wf’fdz < n:o}

Cavs = {flf eene, [ 1< w} .
0
The norm of f = (fi, fa, <=+, fx) & Loy [Lony] is denoted by

(KRR IpAIME

it is defined by
2839
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1= [rsa [is = [ rral

and the norm of a linear transformation T defined on £iy [£avy] is
denoted by || T [ [|| T [|4].
Let y € (0, ), and, if f £ 3Cy , let

fo=1 for |t] =y
=0 for |t| >y
if f e 3wy, let
fv =17 for tel0y]
=0 for t>y.
The sets &y and &y, are defined as follows
ey =1{f|fedy, JfoeLw for0 <y < w
Evy = | Jedlny, fieLoyypford <y < wf.

With ® the set of N-vector-valued functions of ¢ which have the prop-
erty that each component is uniformly bounded on its domain of defi-
nition, let

Loy = ® N 3y, and Lexy = B N Ty,

Let T be a real positive constant and let
T

Ky = {flfeﬂ(!;v, f@&) =7+ 7) forallt,f fifdt < oo}.
0

Throughout the paper, & denotes a measurable, real N X N matrix-
valued function of ¢ defined on (— w,®), with elements {k,.} such
that

[ hm@ldt < = mn =19, N,

and Y[f(¢),t], with f ¢ 3Cy or f £ 3Cy , denotes the N vector
(wl[fl(t)rz]:‘p?[fﬂ(!)st]r trty w”[fN(t)lt]),

where yy(w,t), ¥s(w)it), - -+, ¥x(w,i) are real-valued functions of the
real variables w and ¢ for — @ < w < « and —» <t < « such that
() there exist real numbers « and 8 with the property that

ag#’n(wl,t)_‘#n(w?:t)gﬁ (n=1,2,...’N)
w — W
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for all £ ¢ (— =,» ) and all real w, and w, such that w, # w., and
(17) 11;,1[ t) f] is a measurable function of ¢ whenever w(¢) is measura-
ble (n = 1,2, ---,N).
The symbol s denotes a scalar complex variable with ¢ = Re[s] and
= Im[s).

1I. INTRODUCTION

Equations of the form

g(t) = (1) +f" K= D), 0si<» (1)

in which f ¢ &y, and g ¢ Loy, , are frequently encountered in the study
of physical systems containing linear time-invariant elements and an
arbitrary finite number of time-varying nonlinear elements. Typically,
[ represents the system response and g takes into account both the
independent energy sources and the initial conditions at t = 0. For
example, (1) governs the behavior of (a) an important type of control
system containing linear time-invariant elements and an arbitrary finite
number of memoryless time-varying nonlinear amplifiers, or (b) an im-
portant type of electrical network containing linear time-invariant
clements and an arbitrary finite number of time-varying nonlinear
resistors.
The related equation

g(t) = f(t) + [: k(t — o)l f(s),rldr, —w <t < o (2)

is also often encountered. It arises when it is convenient for mathe-
matical reasons to formulate a model of the system such that the re-
sponse and excitation are defined for all t ¢ (—,=). In (2), usually
g € L.y and only solutions belonging to L.y are of interest.

One of the classic problems in the analysis of nonlinear physical
systems is the determination of the properties of the response of a sys-
tem, governed by an equation of the form (1), to a periodic input
applied at ¢ = 0. Usually, the functions ¥, (w,t), which enter into the
definition of ¢[- , -], are independent of ¢; g can be written as g = g1 + ¢»
in which g1 & Xy N Lany, g2 & Lonvy, and go(t) — 0 ast — =, and (in
accordance with the usual Volterra integral equation theory) it is known
that there exists a solution [ ¢ &y, . In a great many cases of engineering
interest it is simply asswmed that there exists a unique response and
that it is ultimately periodic with the period of the input. This is a
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central assumption associated, for example, with the well-known de-
seribing-function technique for the approximate determination of the
steady-state response of nonlinear systems.

In connection with the actual determination of the steady-state
response, two common engineering assumptions are (in effect) that
there exists a unique element of L.y N Ky, f, that satisfies

0 = JO + [ K= O, = <1<

and that the solution of (1), with ¢ = ¢, + g., approaches f(¢) as
t — o, the principal ideas evidently being that if the physical system is
stable in some suitable sense, then the effect of the initial conditions at
t = 0 should eventually “die out,” and, moreover, that the steady-state
response of the system should be obtained “‘at once” if the periodie
excitation is applied at “t = —«.”

The purpose of this paper is to report on some mathematical results
concerning the properties of (1) and (2) that are pertinent, to a con-
siderable extent, to engineering questions of the type discussed. In
particular, as an application of our first theorem, we establish the
mathematical validity of the engineering assumptions described above
under what amount to reasonable conditions for the case in which
k() is the matrix-valued weighting function of a passive network and
¥[+, ] represents N positive-slope nonlinear resistors (see Theorem 3
and associated remarks).

Under similar conditions, it is proved that an equation of the type
(2) possesses at most one L.y solution. This type of result is of direct
interest with regard to the qualitative nature of the solutions of (2),
for if our conditions are met, and, as is often the case, (a) ¢ in (2) is
periodic with period 7', (b) the ¢, (w,t) are periodic in ¢ with period T,
and (c) fis an Ly solution of (2), then [since f(¢ + T) is also a solu-
tion of (2)] it is clear that f must be periodic with period 7.

III. RESULTS

Theorem 1, below, focuses attention on a relation between the solu-
tions of (1) and (2). This theorem is later used in order to obtain
conditions under which the solution of (1) approaches a periodic steady
state as { — =, when g approaches a periodic steady state as { — .

Theorem 1: Let

(t) = fi(t) + _[;k(t — Y fi(7),rldr, —w < { < w



NONLINEAR INTEGRAL EQUATIONS 2843

m( = 0 + [ Bt = el A, 0<t<w

in which hy £ 3Cx , f1 £ 3y N 8y, ho £ Hny , and fo € Exy . Suppose that
(1) (hy = ha) & Loyy
o
(i) [ K= LAl e Lo,

and that, with
K(s) =f E()e ™'dt for o = 0,
0

(171) det [1y + 3(a + B)K(s)] =0 for o=

(iv) 38 — a) sup Allly + e + BHK (1w
—wC w<m

0
7K (jw)) < 1.
Then (f, — [a) € Loyy , and, with

o= sup Allly + 3a + 8)K(iw)] ™)

—<w <N

sup A[ly + 3Ha + B)K ()] 'K (iw)},

—wlw<xn

i —Ffells < pll — 38 — a)pl™

Vh — hy — f:o E(t — o)l (r)rldr

P2

+

If, in addition to the hypotheses stated above,
hi(t) — ha(t) — f_l k@t — D)ylfi(r)rldr — 0
as !t — =, and
]:!Ir,,,,,([) fdt < = (mmn =12 ---,N),
then [fi(t) — fo(t)] — 0 ast — =.

Our next result is concerned with the character of the change in the
solution of (2) when g is altered by the addition of an element of Loy .

Thearem 2: Let

ha(t) = [i(t) + E E(t — =)glh(e),7ldr, —o <t < w

h:z(ﬂ)

O+ [ R ) A, e <<
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in which: hy, he € x5 1, fo € Lon ; and (hh — he) € Lon . Suppose that
(2)

[ Emn(2) | d

d£<oo

mn

(mm=1,2, ---,N)
and that, with

K (i) = f_ o

(#7) det [1xy + 3(a + B)K(iw)] 5= 0 for all w
(iii) $(8 — @) _sup Allly + 3(a + B)K(iw)] 'K(iw)} < L

Then (fi — f2) € Lon , and, with
po= sup Allly + 3(a + B)K(iw)] ™)

—oo w0

pr = sup Allly + a4+ B)K(iw)] 'K (iw)},

—ww<wo

[fi=Fl S pll = 58 — a)p] " || e — ha .

Observe that Theorem 2 implies that if (), (7) and (%) are satisfied,
then (2) possesses at most one L.y solution.

As indicated earlier, in many cases of engineering interest ¢, in (1),
can be written as ¢ = g1 + g2, in which g1 € Ky N Lony, g2 € Lovy,
and g,(¢) — 0 ast— . Insuch cases it is often of considerable import-
ance to determine whether f(¢) approaches a steady-state response that
is periodic with period T as { — «. As a specific application of Theorem
1, the following result is proved.

Theorem 3: Let gie Ky N Lony g2 € Lony , go(t) 2 0ast— o,y (wit) =
Uu(w,t + T) for all wandt andn = 1, 2, --- , N, and [0,t] € K . Let
f € &y satisfy

0@ + ¢ = 70 + f ki — Dlf(r)rldr, 0=t< .
Suppose that

® 2
| kn (%) | d| dt < oo (m,n =1,2,---,N)

(12) f:l (1 4 Okna(t) Pdt < (m,m=1,2,---,N)
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and that, with
K(s) =f k(t)e™™'dt for o 20,
0

(#41) det [Ix + e+ B)K(s)] #0 for ¢z 0
(i) 3(8 — a) sup Aflly + }(a + B)K(iw)]"K(iw)} < 1.

—wolw<w

Then there exists a unique f & Ky such that
t
a() = JO) + [ k@ — @A, —e <t < .

Moreover, f ¢ Lox , (f — f) € Lony , and
[f(t) = f()] =0 as t— o=.
With regard to the hypotheses of Theorems 1 and 3, it can be shown
that*
det [Iy + 3(a + B)K(s)] #0 for ¢ =0
and
1B —a) sup Aflly + e + 8)K(iw)] 'K(iw)} <1

—l w0

all w. For this reason our results are particularly relevant to the theory
of passive nonlinear clectrical networks.

provided that « = 0 and [K(iw) + K (iw)™] is nonnegative definite for

IV. PROOFS

4.1 Proof of Theorem 1
Let K denote the bounded linear mapping of €.y, into itself defined
by

Kf = j: J'(‘-(t - T)f(T)dT, fS £2N+ .

With y an arbitrary positive number, and f an arbitrary element of
3Cxs , let P denote the mapping of ¢y, into itself defined by Pf = f,,
and let ¢f denote the N-vector-valued function of ¢ with values

Y, for 0=t < =,

* The validity of the first assertion can be established with a standard argument
involving the analyticity of K(s) for & > 0. The second statement is a direct ex-
tension of a result proved in Ref. 1. In particular, the preatest lower bound (over
n) of the smallest eigenvalue of the term [1y + #,]7* [y + R, + R x4+ RaI7Y
which appears in (7) of Ref. 1, can easily be shown to be positive. Thus, the con-
clusion of Theorem 2 of Ref. 1 remains valid if the condition « > 0 is replaced
by « = 0.
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Then from

m®) = (@) — [k = DA e

=50 -5 + [ k= D WA A — waE) M, )

0=t< »

and the fact that

P f k(t — ) QA A — Yla(e) e

= pfﬂl L — 7) (Yl (e) 7] — $lfa(r) 7D dr,

we obtain
hy = PlI + 3(a + B)K|(fiy — fu)
+ PK{‘Pfly - ‘l’.fﬂu - %(a + .6)(‘f1y - f2y);

in which I denotes the identity operator on £y, and

(4)

hy = Iy — hay — pf_m k(6 — 7)Yl (r) rldr

In order to proceed we need the following result.”

Lemma 1: Let det [1y + 3(a + B)K(s)] # 0 for ¢ = 0. Then
I + 3 (e + B)K]| possesses a bounded inverse on Loy , and

X+ 3a+ 8K+ = sup Allly + 3a + 8K (iw)]7)

—wlwo

[+ 3+ K K[ = sup Af[ly + 3(a + BK(iw)] 'K (iw)}.

—wlw<o
Furthermore,
P + 3(a + )K" = PI + 3(a + BK|'P foral y>O0.
Thus, since
Pl + (e + BK| P+ $(a + BKI(f1y = fa) = fiu — fous
we obtain from (4)
S — Jou = PI + $(a + B)K| ',
— Pl + 3(a + BK[ PK{Yf, — o — 3 + 8)(fu — fu)).
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Using the fact that
| s = ¥fow — $a+ B = fou) [+ £ 28— @) [[ v = fou |4
it follows that
N = Sl S TP+ 3(a + K] Ry |4
+ 3(8 — @) || Pl + 4(a + B)K] PK ||,
Ay = S+
I+ e+ BKT 4 [ Al
+ 38— a) |1+ 3+ K] K|,
N = Sl
Using the inequalities of the lemma,
[ fiw = Sl < pull — 3B — a@)po ™ || Ay ||+
< ol — 38 — a)p] ™ (5)

1A

0

hi — ha — j;w k(t — r)¢lhlr),7ldr .

for all y > 0. Therefore, (f; — f2) ¢ Loy and || fi — f2 ||+ possesses the
upper bound stated in the theorem.
We now show that (fi — fo) ¢ Layy

0

() — ha(t) —f_ (L — D) Adr — 0 as t— o, (6)

and

f | e (1) [P dt < (m,n=12---,N) (7)
0
imply that [fi(¢) — fo({)] = 0ast — =.

Assume that (fi — f2) € Lavs and that (6) and (7) hold. Then, from
(3) it is evident that [f,(t) — [:(t)] = 0asl{— = if

[ K0 = D WA A~ R D 0 as 1o (@)

To prove that (8) is satisfied, observe first that (f; — f.) ¢ £25, implies
that (¢fi — ¢¥fs) € Laxy . Thus it suffices to show that if g ¢ Lany , then

t
f k(t — 7)g(r)dr -0 as (— =.
0
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Let
Giw) = l.i.m.f g(t)e_i”tdt, g€ Lony .
0

Then, in view of assumption (7), the modulus of any element of the
N-vector K (iw)G(iw) is integrable on the w-set (—=,% ), and hence
by the Riemann-Lebesgue lemma

L f K (i) (i) ' deo
21!’ —o0
which is equal to
t
f E(t — 7)g(r)dr,
0
approaches zero as ¢ — =. This completes the proof of Theorem 1.

4.2 Proof of Theorem 2

In this section, K denotes the bounded linear mapping of £;» into
itself defined by

Kf = fi E(t — 'r)f('r)d'r, fe Lon.

With y an arbitrary positive number and f an arbitrary element of
3w , P denotes the mapping of 3¢y into itsell defined by Pf = f,, and
¥f denotes the N-vector-valued function of ¢ with values

Ylf(),t] for —w <t < o,
TFrom the fact that
hl(t) - hz(t) = fl(t) - fz(t)

© (9)
+ [ k= D QA A =~ W) D,
we obtain
hu = fly - f2y + K(V"flu - 'J’fﬂy)
(10)
= I+ 3(a + BK](fiy — fu)
+ K[‘}r’fly - \{{ﬁly - %(‘1 + B)(fly - f‘.‘y”a (1])

in which I denotes the identity operator on £y, and
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M = Iy () = by @) + [ G = 2 @A) = Yl () ) dr

‘P[}“—MWWNMWW¢mw

At this point we need”'t

Lemma 2: If det [1y + 3(a + B)K(iw)] # 0 for all w, then
I+ i(a + B)K]

possesses a bounded tnverse on Loy , and

I+ 3a+ K| £ sup Allls + 3a + B)K(iw)]™)

=l w <0

I+ 3o+ KK = sup Allly + 3(a + B)K(iw)] K (iw)).

—olw<o
Thus from (11),
fiy — fou
= —[[ + ¥(a+ BK] Kl — ¥l — e+ 8) iy = fu)]
+ I+ Yo+ K] hy .
Using the fact that
[ Wiy — Wy — 2+ B) (1 = o) | £ 38— @) [ fu = S ||,
we have
[ fr = fu |l £ 38— ) | T+ 2a+ BK] K - [ fiy = fou
+ I+ 3+ BKT - [ Ay .
In view of the inequalities of the lemma,
iy = fuu | S il = 38 — @)oa] ™ [ Dy |- (12)

Assume now that there exists a constant ¢ such that || h, || £ ¢ for all
y > 0. Then, from (12), it is clear that (fi — f) & Loy . This implies
that (¢fi — ¥fa) ¢ Loy . Hence, (9) can be written as

]11 — ha = fl - fﬂ + K(lf/fl - \l’{fﬂ),

from which it follows, by essentially the same argument as that used to
obtain (12) from (10), that

t With no more than a reinterpretation of the functions involved, the proofs of
the inequalities of Lemma 1 suffice to establish the inequalities of Lemma 2.




2850 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

[ fi=fall £ mll = 38— a)p)™ | he — he .
Therefore to complete the proof of Theorem 2, it suffices to prove

Lemma 3: If (hy — ha) € Lon, f1, fo € Lun, and assumption (7) of The-
orem 2 is satisfied, then there exists a constant ¢ such that || b, | < ¢ for all
y > 0.

4.2.1 Proof of Lemma 3
Letg: (quq2: "':QN)’ = (llbfl_‘lbfﬂ):
oty =1 for |t] <y
=0 for |t|>uy,

and

w = (U, uz, -, uy) = j:w E(t — 7)[0(r) — 6(D)]g(r)dr.

Then, since (hy — hs) € Loy, it is sufficient to prove that there exists a
constant ¢; such that || « || = ¢ for all y > 0. Further, since

N oo
Jult = 2 j_m | un(t) [*dt

=2 [T [ katt = 206 - 00l ie|

sVE D [T kot = 206) — 0wanar]| a

< T,N:Z:,I "i_l f_: f;mm(; —) |- 166 — o) | dr| az,
in which

n = max sup | g.() [,
n t

it suffices to show that there exists a constant ¢; such that for ally > 0

I

2

[: [Tt — 7) || 6(r) — 0C0) | dr | dt <

(m,n =1,2,---,N).

Using the fact that
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[ Vo) 116G = ) = 0(0) | ar

) t—y
- .[ [ 'r“mn('r) |dT + f l kfﬂ?i(T) |d‘r fOI‘ | t i é Y
ity —m

t+y
:f | T () | dr for [] >y,
t—y
it is a simple matter to verify that
] -] 2
[ ke = 01 o) = 00) | ar | a

-drc

lIA
()

0
+[ L
- f: f T ) | de

from which it i evident that our assumptions imply that there exists
a ¢ with the required property. This proves the lemma and completes
the proof of Theorem 2.

f | T (7) | dr

r

f | ko (r) | dr

2 0
de + 2 f

dr

| kun(7) | dr

2
da,

Remark:
Assumption (7) of Theorem 2 is satisfied if
f | thn(t) | dt < o=, (n,m = 1,2, -+, N),
for then the (bounded) functions

o i
j | kun(z) | da and [ | bon () | d
3 '— o0

are integrable on (0, = ) and (— =,0), respectively.

4.3 Proaf of Thearem 3
We need two lemmas.

Lemma 4: Let |-, -] satisfy the conditions of Thearem 3, g1 ¢ Xy, and

K(iw) = j (e,
1]
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Suppose that, with 9 the set of integers,

(1) det [IN + Ha + BK (121’[")] =0 for medl

(6) 38 ~ e sup A {[ Ha+ o)k (2] K (%‘")} <1

Then there exists a unique f £ Ky such that
t
0@ = J0 + [ K= Dplf)ldr,  —w << .

Proof of Lemma 4:

Theorem 4 of Ref. 1 and the remarks relating to its proof imply
that the conclusion of Lemma 4 is valid if the hypotheses of the lemma
are satisfied and the condition

sup A {l: Ha+ AK (q”z:;,m)]_l} < w (13)
neN

is met. However, since every element of K(72xn/T') approaches zero
as | n { — o, assumption (¢) of Lemma 1 implies that

det [1~ + 3a + 8K (ﬁgn)]' > 0.

Therefore, in view of the fact that the elements of K(i2mn/T) are
uniformly bounded for n ¢ 9, it follows that (13) is satisfied. This
proves the lemma.

inf
n eI

Lemma &: Let §[-,-] satisfy the conditions of Theorem 3, let fe &y, and
suppose that assumption (1) of Theorem 3 is salisfied. Then

fj k(t — T)lll[j"(r),'r]d'r £ Lun.

Proaf of Lemma 5:
Let ¢(¢) = ¢[f(1),4], and

w = (up, U, -, un) = [ kG — 7)q(r)dr.

Then ¢ € Xy , and
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U (1) |

1A

S [ unlt = ) L aae) |

m=

IIA

3 [ 1) 1 galt = 1)

m=1

Furthermore,

lfﬂ | Fwn () [ | u(t — 7) | d7

o o0 | [ — T) 2
< 1 o (1) f gl = 7)
< [ 10+ Dkfar [ —ar,
and the last integral can be bounded as follows
£l 2 o (m+1) T |12
— n t — |
[ l([n(f T) ‘ dr = Z [ q ( T)‘ dr
Yoo 1 + T m=0 YmT + T
o T
= (1 + > (m.’i‘)‘Q)f [ qu(t) |* dt.
n=1 0
Thus, the #,, (1) are uniformly bounded on ( — «, % ), which proves the

lemma.
Theorem 3 follows at once from Lemmas 4 and 5, Theorem 1, and

the fact that assumption (7) of Theorem 3 and f & £y imply that

I It — T)l,b[j‘(T),T]dTE£2;\'+.

— =
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