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(Manusecript received May 11, 1964)

The representation of single-sideband angle-modulated carriers as origi-
nally given by Bedrosian is generalized through the functional and spectral
notions of distribution theory. In this treatment the class of related modulat-
ing signals is extended to rather general types of distributions, and spectral
eriteria and iteration algovithms are established by which such modulating
signals can be recovered from bandlimiled components of the modulated
carriers.

I. INTRODUCTION

Among the more recent signal transmission techniques for conserving
spectral bandwidth is single-sideband angle modulation, first proposed
and investigated by Bedrosian.! In this scheme a carrier wave is simul-
taneously angle modulated by an appropriate baseband (bandlimited)
signal and amplitude modulated (multiplied) by the negative exponential
of the Hilbert transform of the baseband signal, the combined modulation
process resulting in an RF spectrum which vanishes identically on the
low-frequency side of the carrier frequency and carrier axis crossings
which coincide exactly with those of a econventional angle-modulated
carrier modulated by the same baseband signal. The single-sideband and
axis-crossing properties, although suggesting means with which to ob-
tain ideal bandwidth reduction and compatible detection, are only par-
tially applicable to physical systems.* In general, the RF speectra under
the combined and conventional modulation schemes are of infinite ex-
tent, and the nonvanishing portion of the spectrum under the former can
have, according to any one of several common definitions, a larger effec-
tive bandwidth than that under the latter; consequently, single-sideband
angle modulation does not necessarily lead to bandwidth reduction, and

* Detection compatibility is suggested by the fact that the output of an ideal
limiter depends only on the axis crossings of the input.
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the axis-crossing patterns of filtered versions of single-sideband and con-
ventional angle-modulated carriers can differ appreciably. Nevertheless,
Bedrosian has shown that the combined form of modulation, as pre-
scribed, offers the possibility of both a reduction in the effective band-
width over limited ranges of the angle-modulation index and detection
compatibility. It is therefore of practical and theoretical interest to es-
tablish eriteria relating either directly or indirectly to the spectral prop-
erties of such carrier waves. In the present paper we specify rather general
signal conditions under which the Bedrosian scheme and the associated
single-sideband property obtain, and determine speetral conditions un-
der which knowledge of the RF spectrum over a frequency interval
slightly wider than half the signal bandwidth provides enough informa-
tion to recover the baseband signal up to an additive constant.* Signal
recovery in this second category is effected by an iterative computation
that cannot be carried out exactly in real time; however, the possibility
of pure mathematical recovery based on a finite portion of the spectrum
constitutes an important spectral property, indicating that the RF spec-
trum, although infinite in extent, can be viewed theoretically as having
an effective bandwidth equal to half the signal bandwidth. These quali-
tative results are now restated somewhat more explicitly.

In precise terms, single-sideband angle-modulated carriers are gener-
ally assumed to have the form

y.(t) = exp [—4£(t)] cos [2nft + ()]

where 2, #, and y. represent respectively a specified angle-modulating
signal, its Hilbert transform, and the modulated carrier, the first two
funetions being periodic or square-integrable, bounded, and bandlimited
to some frequency interval [—fy , fo]. Modulated under these conditions,
y. exhibits the two previously mentioned properties with respect to band-
width and detection; viz., the corresponding amplitude spectrum (Four-
ier transform) vanishes over ( —f.,f.), and the axis crossings as well as
the effects that they produce at the output of an ideal limiter coincide
exactly with those of the usual angle-modulated carrier

* Contrary to established usage, the term “‘bandwidth’’ refers here and through-
out to the total frequency spread of the spectrum of the baseband signal over
hoth positive and negative frequencies (cf. Section 2.2).

1 Other problems and criteria pertaining to the recoverability of signals subject
to nonlinear and bandlimiting operations have received considerable attention
recently.2? Beurling’s theorem, directly applicable to instantaneous compandors,
is perhaps the prineipal result along these lines. In unpublished work, H. O. Pollak
shows by means of Fredholm equation methods that under special conditions the
baseband signal of a conventional FM carrier can be recovered mathematically
from knowledge of the RT spectrum over an interval of twice the signal bandwidth.
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y1 = cos 2nft + 2(0)).*

To deal with more general modulating signals, i.e., signals which are
neither periodic nor square-integrable yet to which the spectral concepts
of TFourier transforms and the results above still apply, requires the
theory of temperate distributions (generalized functions).®-*7 In this
paper we treat both a and y. as special types of distributions and in-
vestigate the feasibility of recovering the former from bandlimited
components of the latter. Specifically, we: () generalize the definitions,
concepts, and methods of classical Hilbert transform theory to incor-
porate arbitrary distributions (cf. Section II, Definition 2 and Theorem
3);t (¢i) extend the class of modulating signals to include all bounded,
handlimited distributions with bounded generalized Hilbert transforms
(ef. Section III, Theorem 4); and (##) establish through a standard
fixed-point theorem related subelasses for which the spectrum of y.
over any open interval containing [f,. , f. + fo| furnishes sufficient infor-
mation for reconstructing derivative /() by iteration (cf. Section IV,
Theorems 7-9).1 It is intended also that this development illustrate the
distribution-theoretic approach to he generally employed in connection
with other modulation schemes.

II. PRELIMINARIES

As noted above, characterizing the amplitude spectra and speectral
properties of the signals considered in this paper requires the theory of
temperate distributions.® We discuss here four aspects of this theory:
notation and terminology, bandlimited distributions, convolution, and
generalized Hilbert transforms.

2.1 Temperate Distributions — Notation and Terminology

Let [ denote a specified, open interval on the real line with 7, I,
and 7_, signifying respectively the intervals (— o ,=), (0, ), and
(—,0); I, the closure of 7; ( *( [, the space of scalar functions of which
the derivatives up to and including order % are continuous on /; and
('y, the space of “rapidly decaying” functions, viz., the linear vector
space

* In the first case the nonvanishing portion of the speetrum of y. is generally
so smeared out as to have an effective bandwidth greater than that of . .

t For detailed examples of Hilbert transform applieations in modulation theory,
the reader is referred to the expositions of Rowe,’ Bennett,” and Dugundji.t®

1 Landau,? Miranker,® Sandberg,? and Bene&'! have recently made extensive
use of fixed-point theorems in a variety of system-theoretic problems relating to
recovery and stability.
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Co= oo € C(1), e™(t) = 0(|t] — =)¥jk = 0. (1)

Also, a topology in 4 is introduced by means of the metric

w0 k —k
2

_ wler — e2,50k — j)
plone) = 2 I T F wlor— eerd =D ()%

01,00 € Cq

where
w(egk) = sup | %™ (1) | .

For convenience the convergence of a sequence {g,} relative to this metric
is expressed as ¢, = ¢(@. , ¢ € (). Since the series in (2) converges
uniformly over such sequences, it follows that
en—= 0= sup | e, ()| — 0 Wik,
terl, n—>00
As generally defined, temperate distributions are merely the elements
of the conjugate space of 'y, i.e., the space of linear, continuous func-
tionals on ;> In the treatment below we represent this space by D
and the corresponding elements by 2(-}. Although mathematically dis-
tinet, a distribution (- ) and an ordinary function x(-) for which

[ aewit = zte) Ve € Cy (3)
are regarded as characterizing one another, either form being essentially
determined by the other.T To extend this notion, we associate every ele-
ment 2 € D with a “generalized function” x(-) (ef. Ref. 6), viz., the
totality of sequences {x,( )} in €y such that

lim f_.mx,,(t)p(t)dt — wle) Ve € Ca (1)1

)

As distributions and generalized funections are in one to one correspond-
ence, it is common to employ all related terms and symbols interchange-
ably. Also, the ordinary and generalized functions relating to (3) are
considered to be equivalent in that both define the same element of D.
In connection with the equality of distributions, let N{g] signify the
null set of ¢ € Cq, viz.,
* Space Oy constitutes a complete linear topological space in pa(-,-) (cf. Ref.

12, p. 49).
t “Essentially’’ is used here to indicate that z{-) determines z(-) almost

everywhere on I, (cf. Ref. 5, pp. 1645-1646).
1 Sequences satisfying this condition can be shown to exist for an arbitrary

distribution (cf. Ref. 6, p. 183).
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Nlgl = [t|t € Ul.;e(t) =0V € L,

and Sle], the support of ¢, viz.,
Slel = 1., — Nlel.
Similarly, let N p[x] signify the null set of 2 € D, viz,,

Nolzel = {t|t € Ul.;2(0) = 0Vp 3 Sle) € I, ¢ € Cd,

and Sp[z], the support of z, viz.,
SD[.I'] = IW - Np[(l'].

Accordingly, if for an interval I € 7 and two elements x and y of D,
I C Naolx — yl, wesay x(-) = y(-)and 2(-) = y(-) on I. This defini-
tion also allows one to equate generalized and ordinary functions on
arbitrary intervals; that is, if

2(p) = f (D) dl (5)

for some v and all ¢ € ('; such that Sle] C I, then I € Nplr — v] and
x=vonl.

Among the standard operations associated with distributions, five re-
quire special notation:

(i) Products. With respect to any two distributions v and y of which
at least one, say y, characterizes an ordinary function y(-) such that
y( ) € Ca Vo € Cq, let 2y(-) (and ya(-)) denote the product of and
y given by

ayle) = yale) = x{ye) Ve € Cu, (6)

and let z(-)y(-) (and y(-)x(-)) denote the related generalized fune-
tion."”

(#) Derivatives. For any v € D, let p"x(-) denote the nth order deriva-
tive of = given by

pale) = (=1)"2(™) Ve € Ca, (7)

and p"z(-), or (d"/d(-)")a(-), the related generalized function.®
(757) Antiderivatives. For any x € D, let

ES:
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denote any nth order antiderivative of x satisfying

" [ we) = 2le) Ve €

and

fﬁx(-),

the related generalized function. All nth order antiderivatives of a par-
ticular element @ € D can differ by only additive polynomials of degree
n — 1 (cf. Ref. 7, p. 8).

(#v) Limaits. Distribution limits of the form

li;11 nig) =a(e) €D Ve ey

are represented in terms of generalized functions by
im™ a(-) = a(+).
A
(v) Fourier Transforms. Foranyx € D,let #(-) denote the generalized
Fourier transform of =z, viz., the distribution given by
) = al{lf-p) Yo € Cs (8)

where

o0

Fo=[ o™i =/,

and let #(-), or F-2(-), denote the related generalized function (cf.
Ref. 6, p. 188). IYor the right-hand functional in definition (8) to exist,
it is required that F-¢ € 'y, a condition which holds for all ¢ € ;.
Rewriting this relation yields the more suggestive form

Falp) = a(F-¢). (9)
Similarly,
F7ha(p) = a(F )

where
e = [ p(eé i,

One property pertaining to operators lim™, p”, and F is of paramount
importance in applications of distribution theory: the last two commute
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with the first.® The reader is referred to the previously mentioned litera-
ture for a detailed discussion of these and other operations as well as the
various terms outlined above.

2.2 Bandlimiled Distributions

Let f and J denote respectively a point and a compact set on the real
frequency line 7 . A distribution a for which Sp[F-2] C J(ie,F-2=0
on any [ disjoint from .J) is defined to be bandlimited to J, the space of
such elements being designated as

B(J) = {x|x € D, SplF-a] S J}.
Defining, in addition, the space
= {v|v € C(1,);VEiFj 3> (1 4+ 572" (1) = 0( [t]— =)}, (10)
we establish the following
Lemma 1: If x € B(J), then x(-) € C,.

Proof: Construct a real, positive function ¢(f) € Ca satisfying the con-
ditions

1 fen>J
“f)‘{o b L.L.cl,,
and set
o(t) = F-alc(f)e™ ", (11)

We consider first representing F-x(-) on I by an integral. For this it is
necessary to employ the well known result that on any finite interval
an arbitrary distribution can be characterized by a multiple derivative
of some ordinary, continuous function; more specifically, there exist
both a function ¢ € ('(I.) and an integer N = 0 such that

Fealp) = (=1)" f WD (D (12)

for all ¢ € €'y for which S[¢] € I. (ef. Ref. 7, pp. 11-12). Inasmuch as
Sl¢] € 1., expression (11) becomes

o) = f (1) L (e ay,

afv

which in turn gives
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v (1) = (—1) () ?,[( 2mi ) () 1df
If’-.-r:((21rz'f) ey =00 ([t > =)

for all k; therefore, v € (7). In order to identify » further, observe
that for any %

(14 2% -0 (|t]— =)

for some integer j; consequently, by (10),» € C,.
Regarding the relationship between » and @ we note that since

[ =0 2 tetneteiar a

fw v (D (1)t

I

0 [ [T vt 2 tetén i ag

[ =0mvn Zee [ ewera] a
F-x((F™"9) Yo € C4
and since S[({ — 1)8] N Sy[F-z] is empty for all & € Cy,

wle) = F-a(F"¢) + F-2((t — )F"¢)

= FaFe) = [ oot
Hence, in accordance with (3) et seq., v(+) = a(-) witho € C,.

2.3 Convolution

A convolution operation sufficiently general for most applications in
signal theory is given by
Definition 1: For any two distributions z and y of which at least one,
say ¥, is such that F-y(-) € C, we define a distribution x*y, termed the
convolution of x and y, by the relation

wxy = yxx = F-[ (F-x) (Foy) . (13)

As to the consistency of this definition, observe that with #-y(-) € C,,
oF -y(-) € Cqforall ¢ € Cy; therefore, according to (6) et seq., both
the product (F-z)(F-y) and corresponding convolution exist as dis-

* Interchanging the order of integration in this relation is justified by means
of the Tonelli-Hobson theorem (ef. Ref. 13, p. 3).



SINGLE-SIDEBAND ANGLE-MODULATED SIGNALS 2819

tributions, and their factors commute. The associative and distributive
properties of this operation depend in general on the factors involved,
the results in any given case being determined directly from (13). One
important consequence of Definition 1 is stated as

Theorem 1: For any two distributiors x and y of which at least one, say y,
1s such that y(-) € C,

F-(xy) = (F-z)%(F-y).

Proof: From

2{o(t)) = x(F-F-p(—1t)) = F-F-x{p(—1t)) Vze D, Vo€ Ca,
(6), and (13) it follows that

F-(ay) (o)) = 2y(F-) = 2 (OF )
F-F-aly(—t)F ') = -F-x([F-F-y)IF"¢)
= [(F-F-x) (F-F-y) | (F¢) = F'(F-F-x) (F-Fy)]{e)
= [(F-2)%(F-y) ] (o).

We show at this point that Definition 1 relates to a more common but
less general form of convolution (cf. Ref. 7, p. 31).

Theorem 2: If at least one of two distributions x and y, say y, has a finile
support (i.e., Solyl & I C 1), then x*y exists, and

axyle) = a{yle(t + 1)) Ve € Ca.

Proof: Reversing the roles of { and f in Lemma 1 demonstrates that with
Splyl finite, i.e., with y time-limited to I, F-y(-) € C, ; hence, by Defini-
tion 1, x*y exists. In addition, from (13), (9), and (6) there obtains

enylp()) = F-(axy) (Fg) = [(F-2) (F-y) ] (F ")
Fea((F-y) (F7g) ) = a(F-[(F-y) (F9) 1)

Il

T \U:m e - U)E(F_l-«a)sd5>

where the subseripts indicate a function of £. As the integral of this last
functional proves to be linear and continuous on (¢, 1.e., as

L,, (F-y)de ™ (F o) dde = F-y((F"g)ee ™) € D,

then
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a(Fy{(F o) e ™))
2{y(F-[(F ) e ™))
a(yle(t + 1))).

If defined by this expression instead of (13), convolution would not
necessarily have commuting factors; e.g., with y(-) and x(-) equal to a
Dirac delta function 8(-) and a constant, respectively, y{x{e(t + 1)))
is not defined because for this choice of x, x{¢(¢ + %)) is constant and not
an element of €'y .*'t

zxy(e(t))

Il

2.4 Generalized Hilbert Transforms

In this subsection we extend the applicability of classical Hilbert
transform properties and techniques to arbitrary distributions. Required
initially are two lemmas relating to antiderivatives.

Lemma 2: Corresponding lo all antiderivatives of an element F-z € D
the distribution limits

lim™ [’can_1 )\ff F:c:l (14)

Ao
exist for some N = 0.

Proof: Set [, = (—a,a)and [, = (—e, ) with) < g < & < =,
and construct a real, positive funetion 5(f) € Cy satisfying the condi-
tions

_ 1 fel,
"(f)_{o f¢1,D1.,.

It is convenient to consider first the same type of integral representation
as was used in Lemma 1 [ef. (12)]; namely, there exist both a function
¢ € C(I.,) and an integer N = 0 such that

Feafe) = (=D [ 4(De™ (s (15)

* The Dirae distribution is given formally by the equation &(g) = ¢(0).
t+ Commutativity can be forced in such cases by defining the convolution ac-

cording to the form
yle) = 2l @elt + 0N

where 7 corresponds to the distribution of finite support and where (€ Cy equals
unity over an open interval containing this support and vanishes outside some

finite interval.
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for all ¢ € 'y for which S[e] € 1., . In agreement with (7) and (5) et
seq(., relation (15) merely asserts that

Ia = £ v( /) on [
£ di J €2
and that for all antiderivatives,
N—1
f Fox=y9()) + 22 auf" on I, (16)
N n=0

where constants a, are arbitrary. Since S[ne] € I, for all ¢ € Ca, Eq.
(16) can be written as

[ st = [ [w(.r) + 3 anf"] (Dol

n=>0

3,14
Therefore, by the Lebesgue convergence theorem'"!

lim [ F-a{(tan™" A)ne)
P Y (17
= T G + S arlDetndr

with

1, >0
wnf=1_1 TI<o

On the other hand, since

T
I, C N [.f’ ;? (1— n)so:|

for all j, k, and ¢ € Cy,
(tan™" Af) (1 — m)e = (7/2) (sgn f) (1 — n)e A— o,
and
]im[ F-z((tan”' AN (1 — pe) = %f F-x{(sgn /) (1 — n)e). (18)
A N = v N

Finally, adding limits (17) and (18) yields

5 fN Fx((sgn [)(1 = n)e) + 5 f (s ) [+ 2l e df
- (19)
= ]imf F-z{(tan™" \)g).
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As both terms on the left are elements of D, the distribution limits given
by (14) exist.

Lemma 3: Corresponding to element x, inleger N, and all antiderivatives
of Lemma. 2 the generalized functions

a" 10 [ f ]
e b hm (tan™" \f) | F-x
differ by only the additive combinations

N—1
T 2 am! 8() Y

n=>0

where 8(f)™ represents the nth order derivative of the Dirac function. Fur-
thermore, 8(f) ™" is the highest-order Dirac component which can exist at
= 0.

Proof: From (19) and (7) there results

p" lim ™ [ Pea(tan™ Aoy = 5 F-a((sgn (1 = n)e)
+ DY [ G DUDIDNIVd (20)

+ (=0T [ 160 D) T anf Ul

the last, only nonunique term redueing to
™ Z annz(_l)N—n—lw(O)(N—nfl) = Z am!ﬁ((p)w_"_”,

Inspection of the two remaining distributions on the right of (20) shows,
in addition, that 5(f)*™" is the highest-order Dirac function possible at
f = 0; for the support of the first does not include the origin, and the
second represents the Nth derivative of an ordinary, sectionally con-
tinuous function.

The preceding two lemmas lead immediately to

Definition 2: For any distribution = we define a distribution &, termed
the generalized Hilbert transform of x, by the relation

_ .2 1 de i (D) 1y .
#(:) = —z;F_ {m hE.lm [(tan AS) LGF .1,]

+ 5na(f)‘”°‘"‘”}

n=0

(21)
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where N, designates the smallest integer for which Lemma 2 holds and
where constants 8, are constrained so as to eliminate from F- £ (or to pre-
scribe) all Dirae distributions at f = 0.

As regards ordinary Hilbert transforms it is noted that if

F.-x(-) € Ly(I,) (square-integrable),
then
m®™ (tan ' M)F-x = (x/2) (sgn f)F-x.
A

Consequently, Ny = 0 and
#(-) = —iF "-{(sgnf)F -z},

a formula which is in agreement with classical theory (ef. Ref. 15, pp.
119-120).

Denoting the linear mapping of (21) by H (i.e., H:D — D), we list
a few of the more significant properties of generalized Hilbert transforms:

(1) H-H-x = —x provided there exist in -z no Dirac components

at f = 0.

(#7) H-x is real provided x is real.

(i71) SplF-H-x) © Sp[F-x].
These results follow directly from (20) and Definition 2. Of importance
in single-sideband theory is the property given by

Theorem 3: For any distribution x,
SolF - (x + 1) | © It
and
SplF(x —i2) ] € I .
That is, F-(x + %) and F-(x — i) vanish on I_., and I =, respectively.
Proof: Consider all ¢ such that Slg] € I_ ; then,

(—I)Nj; (sgn N () + E an S (N (N ™df

_ f F-2(np) = —F-a(no),

and from (20) and (21) there obtains
F-xle) + iF-i(p) = F-alp) — F-al(1 — n)g) — F-z{ng) = 0.
Similarly, with Sle] € I, , F-x(e) — 1F-d(g) = 0.
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III. SINGLE-SIDEBAND ANGLE MODULATION (SSBOM)

The notions and results of the previous section apply directly to signals
classified as single-sideband angle-modulated, namely, time funetions of
the form

ye(t) = exp [—&(t) ] cos [2afd + (1) |.

It is the intent here to show that if the modulating signals x correspond
to elements of the space

So={x|x € B(L), Iy = (—fo,fu);|a],] 2| < =, real},

functions . characterize distributions, and have, as the term SSBOM
suggests, amplitude spectra (Fourier transforms) which vanish on the
interval ( —f.,f.). We begin with three lemmas pertaining to exponen-
tials and convolution.

Lemma 4: Elements of the spaces
Si=lyly=¢%2=2a+4+1it z € S,
Se=fv|v=2"z2=a+1it,x € S,N = 0

are equivalent to generalized functions [cf. (4) el seq.].

Proof: Clearly, since Sy[F-#] € Sp[F-z], both x and & are bandlimited
as well as bounded, and are, by Lemma 1, elements of Cg; hence, y is
bounded on f_ and integrable over finite intervals, and

y(1)

[ vwewal s mp i+ o0 [7| 20 T @
V‘P € Cy.
This latter condition, however, implies that
[ v —o (23)

for ¢, = 0. Therefore, the left-hand integral of (22) constitutes a con-
tinuous, linear functional on Cy, i.e., a distribution, and y is equivalent
to a generalized function. Precisely the same argument applies to
(N = 0), showing that this function is also bounded, integrable
over finite intervals, and equivalent to a generalized function.

Lemma 5: For x € Soand z = x + &

»
iz . D
¢ = lim™ Y,

N->oo

(24)

(i2)"
nl
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Proof: Set
y =",
N -
_ (iz)"
v = 123 n!

Then, by Darboux’s formula,'®

1
_ 1Az _ N
YU = j;e (1 —A)"dn,
and inasmuch as y and yx represent generalized funetions (ef. Lemma 4),

) = w) | = | [0 = n@kear

]- w N+1 fl Thz N
A_”f_mz o[ - a’.)\dt‘

é Ni' Stllkp l zN+lc£M’ |j: l(p(i) |dt
1 .
< — (sup |z )" exp (sup | &)

N1
. t [

[ lewa—0  Vee c,
— o0 N

a result corresponding to (24).
Lemma 6: If two distributions g and h are such that
SplF-g] € [0,f1],
Spll'-h] € [0,f],
then
SolF- (gh)] S 0.1 + fal.
Proof: With respect to any ¢ € ', for which Slg] € I_,, set
eo(t) = F-hlp(t + 1)).

As defined, ¢o(t) = 0 for all ¢ > 0; i.e., I, & Nleo] and Slpo) © I-w .
Hence, by Theorems 1 and 2

[F-(gh))e) = [(F-g)%(F-h)}{e)
= F-g(F-hle(t + 1)) = F-gla(t)) = 0,
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which yields
SplF-(gh)] € I, - (25)

In a similar manner, consider any ¢ € Cy for which S[e] C [fi + f2, =),
and set

et) = F-hip(t + 1)).

It follows that ¢,(2) = Oforallt € (— =,f;), i.e., that Sle:] € [fi, ).
Therefore,

[F-(gh)[e) = F-gler) = 0,
which yields

SolF-(gh)] € (—=,fi + [ (26)
Conditions (25) and (26) prove that

SplF-(gh)] < [0,i + ful.

The main result of this section is stated as
Theorem 4: The amplitude spectra of generalized functions
ye(t) exp [—2(t)] cos [2xft + x()] @ € Sy

vanish on the interval (—f.,f.).

Proof: Again, fgr x € Spand z = x + ¢, Sp[F-2] € I and, by Theorem
3, SplF-2] C I, ; consequently, Sp[F'-2] C [0,fo]. This econdition com-
bined with Lemmas 5 and 6 leads to

Sn[[“ . en'z

= s [pim® 35 0] s, [l 5 L] en

C U S[F-[(i2)")] C T -

On the other hand, for Z = = — %
SplF-e ™ €I . (28)

Finally, since F-[e2* ' (t)] = §(f F f.) for F-y = §, then (27) and
(28) give

SplF-y.] = SplF- (™" + e Ze ™) S [fe, ») U (—w,—=f],
or, equivalently, F-y. = Oon (—f., f.).
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1V. SIGNAL RECOVERY FOR SSBOM REPRESENTATIONS

In this section we treat the problem of reconstructing signals x € S,
from bandlimited versions of the associated SSBOM functions y, .
Specifically, it is demonstrated that for a large subclass of Sy , knowledge
of the amplitude spectrum of y. over any open interval containing
[f. ,f. + fol proves sufficient to recover x up to an additive constant. As
in the previous section, several lemmas involving the exponential ¢'* are
developed first. To collect notation, we set

z =+ if x €5
0=, ga=1l—¢ y=(1—2mit)7,
ya = F-[(\)*kl,  yn = F - [(NF -y ) %0,
g = - [gaasl, 0n = no(nf)(n = 1,2, ---)
g="F-y Yy € D

—7
K(f) = F-(1 — 2mit) " = {g 120 (29)

where A and ¢ are any frequency functions of €, such that
Mf):{l fel, I = 00y + ¢, 0<e<
0 & [—efo+ 2
semeiod [ o=t

In addition, let BV (I) and UL denote respectively the space of scalar
functions of bounded variation on a closed interval I and the space of
sealar functions satisfying a first-order uniform Lipschitz condition on
some closed neighborhood of the origin. Finally, define the following sub-
class of signal space Sy :

Sw = {z |z € So; [ — H(0T)] € UL N BV(L); 5(0%) = 1.
Lemma 7: Elements Ya , Yo, Ya > Yn > Gn , &y N, and o, are in D,

Proof: This result follows immediately from the corresponding defini-
tions and the test employed in Lemma 4 [ef. (22) and (23)].

Lemma 8: Splis) € 1., .
Proof: Clearly, by (27)
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Splifal = Spls] U Sp[F-e”] € I (30)
Also, taking any ¢ € Cy for which S[p] € I ., one obtains
FUL[(F k) (F)l=0 Vf>0,
or
SF [ (F k) (Fe)]l € Iw.
Henece, for all such ¢
Feyle) = mlF-0) = yul(FE) (Frp))
= F-yF 7" [(F-k) (F-9)]) = 0,

a condition implying that # = Oon /.
Lemma 9: On 1., s = (Aja)#k = faand (F -y )*on = (AF y.") %o = o .

Proof: Take any ¢ € Cy for which Se] € I.. With regard to the first
relation

SF[(F k) (Fo)l] ©(—®,fo+ €,
and by (30)
Foylp) = yslFr0) = yal(F k) (F-0))
FoyalF7[(F7E) (F-9)]) = F-gaMNF - [(F72 ) (Fre)])
= F-[(FE)F - (A\F-ya)l{p) = [(Ma)+kl{e)-

As to the second relation
f_: ee(De(f + Ndf = aule(f + D),

S[2rif) anle(f + )] S [—efo + €,
and by (30) and Theorem 1
[(F-ya")#aullp) = F-yal2mifonle(f + 1))
F-ya@mifA(Donle(f + 1)) = [(AF-yd")*0al{e).
Lemma 10: ja € Ls(1,) and §. € Ca.

I

Proof: On the basis of the Tonelli-Hobson theorem

F7' (AF-9) (@) = yalF- (\NF+0))
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= [: ya(‘r) {[: Lf‘z:,-,f)\(f) [[: ezn'nw(t)dz] df} dr
= [: yal7) {[: [[: ezn'm—r))\(f)df] (p(t)dt} dr

- : [ [ : ya(7) (F'l-)\)._,dr] edl Ve € Ca
Therefore, as indicated operationally,
P OF) = 0 = [ ) (B0 i,
and
O S G L@ ) [ 1 fdr < =,

which indieates that s, s € L2([,). Lastly, since
(M-yd) € B([—efu + 2¢),
Fle, €Cq,
by Lemma 1
FL Ny €0y,
Un = (F 7o) [F-(NF-y)] € Ca,
#n € Ca.
Lemma 11: im™ g, = ¢, g € Ca, and Splg.] € I. .

n-—+w

Proof: As

liPl j:: na{nf)e(fdf = liin _[: a(fe ('i) df = ¢(0) Ve € Oy,

n
then

. (D)
lim™ o, = 8,
n

and

lim g.(e) = lim (gF"-a,){(p) = lim olF - (go))

Il

S(F - (ge)) = gF 8p) = glo) Ve € (..
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Furthermore, with o, € Cg, all three elements F' ¢, , g,, and §, are
also of Cy . Finally, from Lemmas 6 and 7 it follows that

Solda] = Solgl U Slew) C 1.
Theorem 6: For x € Sy, elements §, satisfy the functional equations
f - -
0w = o[ [ 0 =D agh - 1.0

fejﬁ.) n=1,2,---,

(31)

where
f -
7)) = 7)) — HO") + f a(d  fel

7:(0) = Gi{fo+¢) =0
y = [1—=(07)™.
Proaof: According to definitions (29)

Ya'F ™ on = (1 — 27it)gats — gn ' (32)
with 3 € Lo(I.), ya'F "-04 € Ca, and (1 — 2mit)g, € Cq4. Expression
(32) and Parseval’s relation combine to give

(Fya')4on = Go(fn + §’) —§n [ € Lo,

which by Lemmas 8 and 11 reduces to
f
Fyrve = [ 3 [0 = - Za.0 - |4 - 00,

However, if considering f on I, , one need specify (F-y,')*s, and § on
this interval only; consequently, Lemmas 9, 10, and 11 apply, yielding

’
) = [ 3 [0.6-0 - Zog-p]a-000 et

Clearly, in this equation, #,(0) and (for the development below)
7a(fo + €) ean be set equal to zero without affecting the associated in-
tegrals; hence, on integrating by parts, we get (31). To be noted in this
theorem is that with respect to signal information, . , §a, and v derive
solely from the bandlimited signal spectrum Aj = AF-e"; i.e.,

Ga = (A — \j)#k,
Ga = _(2ﬂﬁg)*“n y
7(0%) = 7a(0™).
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It is necessary to consider next some general properties of the integral
operators in (31), viz., the mappings

S
w=too =y [ o0 -Das® - 50| el

(33)
veC(I); mn=12 -
Relative to the domain of T, , define the norm
loll. = sup [o(N)] v € C(L)
fEI:
and metric
pe(vw) = [[v —wl. vw € C(le). (34)

Under this scheme the pair [C(1.), p] = R. (more precisely, the pair
consisting of ('(I,) and the metric topology in C'({.)) forms a metric
space which is complete.” We then have

Theorem 6: Corresponding to any modulating signal x € Sw, operators
T, constitute continuous mappings of the complete meiric space R, into
atself.

Proof: To show that the range as well as the domain of T, is in C(1.),
take any v € C(I,) andsetw = 7,-v for an arbitrary n. With x € Suw,
i € BV(I,), and by Lemma 10, 7, € Cs € C(I.); moreover, since
fia = @ on I, (cf. Lemma 9), and since

y
gi = ga — H(0%) + fn jgadf f€ L
7:(0) = §:(fo + ¢ =0,
function ; € BV (I,). Therefore, by the Lebesgue convergence theorem

1
lim [w(f2) — w(fi)] = lim {'y /; w(fs = ) — (i — D1z

SorSy
Sa -
+ v { v(fs — J) digi() — v[7.(f2) — gn(fl)]} =0 Yfi,f. € I..

That is, w € C(I.)(T,: C(I.) — C(I.)). For establishing the con-
tinuity of T, , consider any two funections v, , v € C( I.), and set w; =
Toevy, ws = Tyevs,and vy = vo — v for an arbitrary n. It follows from
(33) and (34) that
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pe(wz, wy) = sup
sei,

S/
v [ 0 = dgi)

S v | Vilfo+ ¢ sup | w(f) |

fel,
= |v| Vilfo + € pclva, 1)

where V.(f) signifies the total variation of #; on the interval [0,f]. Con-
sequently, p.(w., w;) — 0 if p.(v2,v) — 0; i.e., T, is continuous.

A basic result relating to the reconstruction of SSBOM signals can
now be stated as

Theorem 7: Corresponding o any modulating signal x € Se , each of the
equations

g’n: Tn'g-'n gn EC(TC); n = ]'?21 I

has a unique solution given by

Gn = lim Gu,m nm=12 ---
gn,m-H. = Tnm'g-'n,l Vﬂ-,m

goa=0 fel, Yn
where eonvergence 48 uniform on I, . Furthermore,

% = Im [F_l-lz'mw’ lim gn.m] = Im [tim'hm.g"'"']
( m

gn, gn,m = 0 f & I_g Vn,m
where fm[-] indicates the tmaginary part of the quantity in brackets.

Proof: We employ here a standard fixed-point contraction-mapping
theorem (cf. Ref. 17, p. 50): If p(-, -) and 7 represent respectively a
metrie in a complete metric space R = [C,p] and a continuous mapping
of R into itself, and if for some k and any two elements v,w € ('

P(Ti{'vsTk'w) = QP(UJw) a <1,

then there exists a unique solution to the equation T», = v, . Also, for
an arbitrary element v € (' this solution is given by
vo = lim T"-,
mroo
where convergence is taken relative to p. In view of Theorem 6 we need
only demonstrate in the present proof that for some & and any two
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elements v,w € C(I.) each mapping 7, satisfies the contraction condi-
tion

I| v — T w|.€allv—w|. a < 1.

First, set
v—w=u

M =sup |u(f)| = ||u]..

feT,
With §; € BV(I.) (cf. Theorem 6)

d - -
I?‘"-v - T,,'w| = ;-yj; “U—f) dﬂ;(f)\

i _ -
< ,1[|7|j; avii) = M |4 | Vi) feL,

where V,(f) again denotes the total variation of #; on [0,f]. However,
inasmuch as

[ — §:(07)] € UL N BV(I,),
S
Ji = ip — §(07) + j; ¥ df fel,,

7:0) = §:i(fo + € = 0,

then §; € UL N BV(I,); hence, there exists a positive constant ao such
that

Vi(f) Saf JE€I.
From this last condition it follows that

| Twv — Thw| = M|y |af

. o ) ) s
|T. v — T w| = M|y 1'(10[0 (F =0 dvif) = ﬂf|’}’|zﬂoj; V(7 df

IIA

IA

S 2 2.2 _
Ml?ﬁafﬁjd]:w fel.,
and, in general,

k_ k—1 S

Mhle [ ¢-pravip
M|y |a
h (k — 1)1

[T — 75w

lIA

f: Vi) dif — e
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< M ! v [fao f Fa(f — e

& =11
Mma«f’-u_n Myl g
= —_—- = — 'r
G-t Y ! € L.
Therefore, for k sufficiently large
k_k k
M|y [0 (fo + ¢ <l
k!
and
| Tf0 = T wl. £ allo—w]. o<l

The contraction principle as outlined then yields the main statement
of the theorem, the last result being an immediate consequence of
Lemma 11.

Treated next are two important classes of modulating signals which
prove to be contained in Sy : periodic functions of Sy and integrable
(I,(I,)) functions of Sy having integrable Hilbert transforms. In the
following development we represent the space of periodic functions by
P and the intersection H-(L(Z,)) N Li(I,) by L(1,).

Theorem 8: Se N P < Swo .

Proof: Elements « € Sy 1 P must have the form

N
2w t
2= 3 b

n=—N
pr éfﬂ, bn = 6—11

where b signifies the conjugate of b. Consequently, in accordance with
Definition 2

N
2 = _E — Z 'r:'nf,,l‘
Putting z, = 2z — by, we obtain

W = (1 - 27”:t)—1 |:(1 - eibo) - Gihu i ('izp)ﬂ:l:

n=1

or

g = (1 — e’hu)k — ™ [Z ke*F - (izp)njl’
n=1
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which, since
Soll-(iz,) "] S [nfy, =)
So |:FZ (.flzp‘) ”] c [.fPl » ):
n=1

gives

Solfp = (1 = ™)k S [fy, =),

G0T) = (1 —e™) =1,
and

[§o — §,(07)] € UL N BV(I,).
Theorem 9: So N Ly(1,) © Soo, and for all « in this intersection

d—'f = Im [lim hn) m= 12 -

e, m-son

where
hm-{-l = (Fﬁl'k[))*[(yu*F—I'Aﬁ)hm] - % (ya*r['hﬂ) 4 E Iw

]1-150 [EIM

e 1 fele
M(f) = {0 T i

Proof: Considering that x € Sy N L.(I,), z is a bounded element of
Ly(1_); hence, by Darboux’s formula

1

() | = |1 =% ] = \3[[ Man < | z2(0) | exp (sup |2]), (35)
0 tET

and

= | il
D¢ S .A' t 1 — 254f
exp (Stlp | &) Lc'z( ) (1 - 27r%¢)

sin w(fo — fi)t
r(fe — )t

[ fe) — ()| £ e — N1

‘ dl

1A

| f2 — 1] exp (S}lp [ &) [ | 2(t) | dt

Vfljfﬂ € Ioc)
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the latter condition indicating that 7,(0™) = #(07) = 0 (c¢f. Lemma 8)
and that 7, € UL N BV(L).* In order to prove the second part of the
theorem, we note first that with v € S, N Ly(£,), 2 € Lo(I,) and z €

L. N C(I,); moreover, as Sy(3] € I, 2 € Ly({,) and § = 2xif(d3) €

Ly N L, N C(1,). Similarly, by (35), y. € Ln N Ly(Z.,) and §, € L, N
C(I,). As a result,

‘Q-'n [ = [g*’:’n!

L
= ifo g(f — Do(nfin (f_,l‘

= sup | §(/) | f | o(f) | df < constant  Vn,
f Eic 0
im™ g, = lim g, = ¢,

n n

im™ 7, = lim [(271f§\) *0] = (20ifiFa),

n

and by the Lebesgue convergence theorem

3
j = lim™ T,.g. = fn i — 1) di () — 2mifir = A-§5  f€ L.

This expression asserts that § is a fixed point of the mapping 4: C(1I,) —
('(1.). Precisely the same arguments as were used in Theorems 6 and
7 apply here to show that A is continuous with respect to norm || - |,

and that

du

i im -] =1.2 ...

i Im [31111; ) m 1,2,
Frpir = A™ Iy Ym

51 =0 f € f ¢

=0 rel Ym

where convergence is uniform on I, . On writing j: as

I -
G = () sk + f [(F0) #] dF

* A similar caleulation employing the Schwarz inequality shows that §,(0%) = 0
for x € L.(I,) also. Most square-integrable signals of practical interest satisfy
the appropriate Lipschitz and bounded variation conditions, and are therefore

contained in S .
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e’ fn ' kel df + fn ' e [ fo ’ jane’’ df’] df

S
fo WG & fel,

we get
j -~ - - - — -
s = [ Ball = DIGDAD) & — 2mifg 1€ L,
or, more compactly,

S
By = No(f) fo inf = g2l dF — 2xifiade [ € T.. (36)

(Since Splg] < [0, ful, Ao could be defined to have the same support.)
Taking the inverse Fourier transform of both sides of (36) yields the
second part of the theorem.

V. SUMMARY

Definition 2 and Theorems 3 through 9, which constitute the principal
results of the preceding sections, provide both a distribution-theoretic
basis for the spectral representation of single-sideband angle-modulated
carriers and a recurrence formulation for reconstructing most of the as-
sociated modulating signals of practical interest. It is important to
emphasize again that the approach employed in this development applies
also to other modulation schemes.
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APPENDIX

Index of Symbols

A — p. 2836 fes fo — p. 2824
B(J) — p. 2817 F — p. 2816
BV(I) —p. 2827 9,0n —p. 2827
C(I, Cy — p. 2813 H — p. 2823
C, — p. 2817 JI T, — p. 2813

I
D —p. 2814 1. — p. 2827



2838 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

k(f) — p. 2827 i — p. 2830

1 — p. 2834 z — p. 2824
N,Np — p. 2814-2815 Y — p. 2830
P —p. 2834 é — p. 2820
S, Sp — p. 2815 A — p. 2828
So ’ Sy y Sg — P. 2824 pc( ‘y ) — Pp. 2832
Soo —P. 2827 [ —Pp. 2827
T, — p. 2831 Tn — p. 2827
UL — p. 2827 p —p. 2815
(), x(+) —p. 2814 Jax —p. 2815
& — p. 2823 x*Y —p. 2818
F —p. 2816 lim™ —p. 2816
Yas Yby Yd s Yn — p. 2827 - — p. 2814
Ye —p. 2824 | 2. — p. 2831
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