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A rearrangeable connecting network is one whose permitted stales rea-
lize every assignment of inlets to outlets—that is, one in which it is possible
to rearrange existing calls so as to put in any new call. In the effort to
provide adequate lelephone service with efficient networks it is of interest
to be able to select rearrangeable networks (from suitable classes) having a
minimum number of crosspoints. This problem is fully resolved for the
class of connecting networks butlt of stages of identical square swiltches
arranged symmelrically around a center stage: roughly, the optimal net-
work should have as many stages as possible, with swilches that are as small
as possible, the largest switches being in the center stage; the cost (in cross-
points per inlet) of an optimal networl: of N tnlets and N outlets is nearly
twice the sum of the prime divisors of N, while the number of its stages 1s
2x — 1, where x is the number of prime divisors of N, in each case counted
according to thetr multiplicity. By using a large number of stages, these
destgns achieve a far greater combinatorial efficiency than has been attained
heretofore.

I. INTRODUCTION

A study of rearrangeable connecting networks, begun in a previous
paper,! is here continued; the object of the present work is to solve the
synthesis problem of choosing, from a class of networks that are built
of stages of square switches and satisfy some reasonable conditions on
uniformity of switch size, a rearrangeable connecting network having a
minimum number of crosspoints. Some of the terminology, notation,
and results of Ref. 1 are used, and familiarity with it will be assumed
from Section IV on.

Naturally, we do not pretend that minimizing the number of cross-
points (used to achieve a given end) is the only consideration relevant
to the design of a connecting network. Other factors, like the number
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of memory elements, the amount and placing of terminal equipment,
the ease with which a network is controlled (e.g., the possibility of
reliable end-marking), ete., may be of overriding significance, depend-
ing on the technology used. Still, it is important to know the limits of
the region of possible designs, and these are obtained by optimizing on
one variable without attention to others.

The problem of designing a good rearrangeable network was (prob-
ably first) considered in a paper of C. E. Shannon® investigating memory
requirements in a telephone exchange. On the networks that he con-
sidered he imposed the realistic “‘separate memory condition” to the
effect that in operation a separate part of the memory can be assigned
to each call in progress. This means that completion of a new call or
termination of an old call will not disturb the state of memory elements
associated with any call in progress. Shannon showed that under this
assumption a two-sided rearrangeable network, with N inlets and N
outlets, and N a power of 2, requires at least

2N logs N

memory elements (e.g., relays). He gave a design which actually real-
ized this lower bound using

42" — Dloga N

crosspoints (c.g., relay contacts). His design had the disadvantage of
having very large numbers of contacts on certain relays. It is to be
noted that Shannon was concerned with minimizing the number of
memory elements, without regard to the number of erosspoints.

Shannon’s separate memory condition is actually met by modern
connecting networks that are of current practical interest, viz., by the
networks made of stages of crossbar switches, considered here. Ior in-
deed, an inlet relay on an n X n crossbar switch is used to close any and
each of n crosspoints: the exact one that closes depends on what outlet
relay is simultaneously activated.

In this paper we consider the problem of minimizing the number of
crosspoints in a network built of square switches, without attention to
the number of relays. The following result (a consequence of Theorem
8) then complements Shannon’s: Ior N a power of 2 it is possible to
design a rearrangeable network with N inlets and N outlets using 4N
logs N — 6N relays and 4N (loga N — 2) crosspoints. The figure for
relays is roughly twice Shannon’s while that for crosspoints is much
smaller than his, for N large. In our design, no relay controls more
than 4 contacts.
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II. SUMMARY AND DISCUSSION

In Section III we discuss the notion of the combinatory power or
efliciency of a connecting network, and propose to define it as the frac-
tion 7 of permutations it can realize. According to this definition the
four-stage No. 5 crosshar type of network with 10 X 10 switches has
efficiency r close to zero, although it turns out that for the same number
(=~1000) of terminals there are networks that achieve »r = 1 with a
smaller number of crosspoints.” This greater efficiency is obtained by
using many more stages than four. '

Preliminaries are treated in Section I'V. Particular attention is drawn
to the class C'y of all two-sided networks having N inlets and N outlets,
and built of stages of identical square switches symmetrically arranged
around a center stage. The cost ¢(») of such a network » is defined as the
total number of crosspoints, divided by N. It is proposed to select rear-
rangeable networks » from ('y that have minimal cost ¢(»). This problem
is attacked in Section V by defining (7) a map 7' from Cy to a special set
A such that ¢(v) is a function of T(v) € A, and (i7) a partial ordering
of A. It is then shown (Section VI) that (roughly) a network » is optimal
if and only if T(») is at the hottom of the partial ordering of 4. This
result allows one to identify (Seetion VII) the optimal networks in
Cy. Their general characteristics are these: Except in some easily
enumerated cases, the optimal network should have as many stages as
possible, and switches that are as small as possible, the largest switches
being in the middle stage; the cost ¢(») of an optimal network » is
very nearly twice the sum of the prime divisors of N, while the number
of its stages is 20 — 1, where x is the number of prime divisors of N.

Our chief conelusion is that by using many stages of small switches
it is possible to design networks that are rearrangeable and cost less
(in crosspoints per terminal) than networks in eurrent use, which are
far from being rearrangeable. The price paid for this great increase in
combinatory power is the current difficulty of controlling networks of
many stages. This difficulty is technological, though, and will decrease
as improved circuits are developed.

ITI. THE COMBINATORY POWER OF A NETWORK

A principal reason why rearrangeable networks are of practical in-
terest is (of course) that they can be operated as nonblocking networks.
If the control unit of the connecting system using the rearrangeable
network is made complex enough, it is in prineiple possible to rearrange
calls in progress, repeatedly, in such a way that no call is ever blocked.
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At present this possibility is being exploited in only a few special-pur-
pose systems, because of the large amount of searching and data-proc-
essing it requires.

However, there is another reason why rearrangeable networks should
evoke current interest. Even if we do not care to exploit it, the property
of rearrangeability in a connecting network is an indication of its com-
binatory power or reach, and so can be used as a qualitative “figure of
merit”’ for comparing networks. Other things being equal, a rearrange-
able network is better than one which cannot realize all assignments of
inlets to outlets. Rearrangeability expresses to some extent the efficiency
with which crosspoints have been utilized in designing a connecting
network for distribution, that is, for reaching many outlets from inlets.

If a numerical measure is called for, one can use the fraction of real-
izable maximal assignments. For a network » with the same number
N of inlets as outlets, and with inlets disjoint from outlets, this is just

number of permutations realizable by »
N!

= combinatorial power of ».

It is apparent that 0 < » < 1, and that for a rearrangeable network
r = 1. Also, r may be viewed as the chance that a permutation chosen
at random will be realizable.

We shall caleulate a bound on the combinatorial power » of the kind
of connecting network most commonly found in modern telephone
central offices. This is the network illustrated in Fig. 1. We choose the
switch size n = 10 as a representative value; the network then has
N = 1000 inlets, as many outlets, and 4 X 10* crosspoints. Clearly,
the network can realize at most all the permutations that take exactly
n terminals from each frame on the inlet side into each frame on the
outlet side. Now a frame has n” inlets (outlets), and there are

n’l

ways of partitioning n’ things into n groups of n each. Since there are

2n frames, there are
n2! )‘Zri.
(n!)"

ways of choosing n groups of n each on each frame, and assigning inlet
groups to outlet groups (one-to-one and onto) in such a way that for
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Fig. 1 — Structure of No. 5 erossbar network.

every inlet frame and every outlet frame exactly one group on the in-
let frame is assigned to a group on the outlet frame. There are n* groups
on a side (inlet or outlet), and within each group (at most) n! permu-
tations can be made, i.e., each inlet group can be mapped, terminal by
terminal, in at most n! ways onto its assigned outlet group. Hence at

most
2 n
(n')) n?
!
({n-.’)") (n!)

. . - 3 . .
permutations can be realized. There are N = »" terminals on a side,
and a total of »"! possible permutations in all, Thus

(“‘.': )"_'n
r = 2 3. -
n!"n'!

FFor n = 10, with
20 log (100!) = 3159.4000
100 log (10!) = 655.976
3 log 27 = 0.39959

log (¢!) ~3log2r + (¢ + 1) logx — x logp e
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we find roughly
r < 107"

Thus only a vanishingly small fraction of all possible permutations
can actually be achieved by the No. 5 crossbar network (illustrated in
Fig. 1) for n = 10, a reasonable switch size.

In the example calculated, the network has a “cost” of 40 crosspoints
per terminal on a side. Much of the force of the example would be lost
if it were in fact impossible to achieve high values of r (i.e., near 1)
without incurring a great increase in the cost in crosspoints per termi-
nal. This, however, is not the case. It follows from our Theorem 8 that
a rearrangeable network (r = 1) can be designed for N = 1024 terminals
on a side using only

4(loga N — 2) = 32

crosspoints per terminal. Thus it is actually possible to achieve r = 1
for more than 1000 lines with fewer than 40 crosspoints per line. The
network that does this turns out to have 17 stages instead of 4, an
illustration of the way that allowing many stages can lead to vastly
more combinatorially efficient network designs. The middle stage of
this network consists of a column of 256 4 X 4 switches, and each of
the other 16 stages, arranged symmetrieally, consists of a column of
512 2 X 2 switches, For k = 1, ---, 8, the kth stage is connected to
the (k + 1)th as follows: the first outlet of the first switch of stage k
goes to the first switch of stage (k + 1), the second outlet of the first
switch of stage & goes to the second switch of stage (k + 1), the first
outlet of the second switch of stage k goes to the third switch of stage
(k + 1), etc., as in Fig. 2 with 1 < k = 7; when each switch of stage
(k 4+ 1) has 1 link on it the process starts over again with the first
switch, and continues eyelically until all the links from stage k are
assigned. The connections between stages kand k + 1fork =9, -- -, 17
are the inverses of those for k = 1, - -+, 8, so that the network is sym-
metric about the middle stage.’

1IV. PRELIMINARIES

The symbol Cy, N = 2, is used to denote the class of all connecting
networks » with the following properties:*

(1) »is two-sided, with N terminals on each side

(2) v is built of an odd number s of stages &, k =1, ---, 5, of

* Familiarity with Ref. 1 is assumed henceforth.
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Fig. 2 — Link assignment.

square switches, i.c., there are permutations ¢, | - -, ¢, such that
v= 8118, 0, @Sy
(3) wis symmetric in the sense that
S = 8, ip for =1, ,3s—1)
(4) With the notation
s = s(») = number of stages of »
n. = n(v) = switch size in the kth stage of »,

v has N /n. identical switches in stage £, i.e., cach stage §; is of
the form

U 4 x4

Aell

for some partition II with | A | = | B | forall A B €1I.
The defining conditions of 'y imply that

Ne = Ny for k=1 - (s—1)/2

and that
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nk=N.

(s+1)
k=1

It is assumed throughout that ni(v) = 2 for all vand allk = 1, ---,
s(wv).

The cost per terminal (on a side) ¢(») of a network » e Cy is defined
to be the total number of crosspoints of » divided by the number N
of terminals on a side. Since there are N/nz  ni X ni switches in stage k,
the total number of crosspoints is (using the symmetry condition)

L] L]
2
Z (N/ng)ny = N
k=1

k=1
HC Y
=N (T?-%(H,]) + 2 Z m—)

k=1
and so
1(a—1)
e(v) = Mmyosn + 2 2 M.
k=1

A network » is called optimal if
e(v) = min {c(p): peCyi.

It is clear that the cost per terminal of a network » e C'y depends
only on the switch sizes, and not at all on the permutations that define
the link patterns between stages.

Also, it is apparent from Theorem 3 of Ref. 1 that given any network
v, € C'y there is another network », e C'y that is rearrangeable and differs
from », only in the fixed permutations that are used to connect the stages;
in particular, » and » have the same number of crosspoints. Thus the
problem of selecting an optimal rearrangeable network from Cy is equiv-
alent to that of choosing an optimal network from Cy, rearrangeable
or not. A network in Cy can be made rearrangeable by changing its
link patterns at no increase in cost.

We make
Definition 1: m = m(v) = [s(») + 1]/2 = numerical index of
the middle stage
n = n(¥) = Nme = size of middle stage switches
Definition 2: O(») = {ny, -+, two} = the set of switch sizes {with

repetitions) in outer (i.e., nonmiddle) stages

Definition 3: w(N) = {O(v): v e Cul.
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Remark 1:¢(») = n(v) +2 Y.

Tel (v)
Theorem 1: Let (An) be a point (element) of
w(N) X X
with

nHy=N.

yed

Then there exists a nonempty sel Y C Oy such that
T(v) = (An), velt.

The »'s in ¥V differ only in the permutations between the stages and in
the placing of the outer stages, and at least one of them is rearrangeable.
This result follows from the definition of C'y and from Theorem 2 of
Ref. 1.

V. CONSTRUCTION OF THE BASIC PARTIAL ORDERING

The solution to the problem of synthesizing an optimal rearrangeable
network from C'y will be accomplished as follows: we shall define a
mapping 7 of C'y into w(N) X X, with X = 11, -~ -, Ni, and a partial
ordering < of T(Cy); the map 7' will have the property that ¢(») is a
funetion of T'(»); then we shall prove that (roughly speaking) a net-
work » is optimal if and only if 7'(») is at the “bottom” of the partial
ordering, i.e., that ¢(») is almost an isotone funetion of T(v).

To define a partial ordering of a finite set, it is enough to specify
consistently which elements cover which others. Let 2,207y, -+ be
sets of positive integers <N possibly containing repetitions.

Definition 4: Z; covers Z, if and only if there are positive integers j
and k such that & occurs in Z, , j divides k, and Z, is obtained from Z,
by replacing an occurrence of k with one occurrence each of Jand k/j.

Definition 5: Z, = Z if and only if there is an integer n and sets Z, ,

Zy, -+, Z,suchthat Zy, covers Z; ,i = 0,1, --- ,n — 1 and Z, = Z.
Definition 6: 7: v — O(»), n(»).

A partial ordering < of 7(('y) is defined by the following definition of
covering:

Definition 7: Let g, » be elements of ('(N).
T(p) covers T'(») if and only if either
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(1) n(v) < n(w), n(v) divides n(n), and O(») results from O(u)
by adding an occurrence of n(u)/n(v), or
(i1) n(v) = n(u) and O(u) covers O(v).

VI. COST 18 NEARLY 1SOTONE oN T(Cy)

Theorem 2: If T(v) = T(p), and n(p) > 6, then

c(v) = clp).
Proof: 1t is enough to prove the result for u and » such that 7'(x) covers
T(v).

Case (i): n(v) < n(w), n(v) divides n(p), n(») 2 2, and O(v) results
from O(g) by adding an oceurrence of n(,u)/n(u) Then

c(v) = n() UZ( ) "
= n(v) + )n((»“;) +2 2z
ze0 (1)
=c(w) +n @) — nlp + H;t((:‘))
= C nlv _ ”’(H)] )n(,u.)
L(#)‘W‘n()[l n()+ e

Thus ¢(v) = ¢(p) if and only if
n(v) (1 ~ "i“—)) L2 <

n(v) n(v)
that is, if
20 o
1= x
where ¢ = n(v) and y = n(g)/n(v). Now n(x) > 6 implies that either
() n(p) = 2 and?i'u—) =4
n(v)
or
(7i) n(y) = 3 and M =3
n(»)

or

(iii) n(») = 3
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The condition 2y/(y — 1) = .« is fulfilled in all three cases, and so
e(v) = clu).

Case (#7): n(p) = n(v») and O(g) covers O(v). There exist integers
7,k such that j divides k, j = 2 in O(p), and O(») results from O(u)
by replacing one oceurrence of & with one each of j and k/j. Then

c(v) = n(v) + 2 >

zel(v)

n(w) — 2k + 25 + (2k/f) +2 2 =

zel(p)

=c(p) — 2k + 25 + (2k/7).

Since j divides kand j = 2, &k = 2jand k = 2k/j, so
k= 2 max (j, 5) >+ l—'
J J
and c(v) < c(p).

Theorem 3: 1f v € ('y and O(v) does not consist entirely of prime numbers
(possibly repeated), then there exists a network p in Cy of s(v) + 2 stages
with ¢(p) < e(¥), and v cannot be optimal in Cy .

Proof: There is a value of & in the range 1 £ k = n(») — 1 for which
ny 1s not a prime, say n, = ab. Define stages 8,(p), j =1, -+ ,s(») + 2
as follows:

Sj+1(nu') = SJ( V)l .j =k + 11 ] ”‘(V);
let 11, , T1, be partitions of X = {1, ---, N} with

[II,|] =N/a and A ell,=|A|=a
|1, | = N/b and Belly=|B| =0
Set,
Sppalp) = HI,AJ
Si(w) = U B
B,
S;(u) = 8;(v) j=1 -, k=1
8;(u) = Sym—jslp) allj =1, ---,s(v) + 2
By Theorem 2 of Ref. 1 permutations ¢, - - -, @.»—1 can be found so that

the network

M= ‘sl‘Pi y T ‘Ps(u)—lsﬂ(n)
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is in C'y and is rearrangeable. It is apparent that n.q) = 7w and that
O(v) covers O(p). Hence the argument for case (iz) of Theorem 2 shows
that u has strietly lower cost than ».

Corollary 1: If N > 6 and s not prime, then a network v consisting of one
square switch is not optimal.

VII. PRINCIPAL RESULTS
Definition 8: An element 7' (v) of T(Cy) is ultzmate if there are no
u € C'y such that T'(v) covers T'(u).

Remark 2: T'(») is ultimate if and only if n(v) is prime and O(») con-
sists entirely of prime numbers,

Definition 9: An element 7'(») of T{(Cy) is penultimate if it covers an
ultimate element.

Definition 10: p, , n = 1,2, --- | is the nth prime.

Definition 11: #(n) is the prime decomposition of n, that is, the set
of numbers (with repetitions) such that

ay

no=p'p"
if and ounly if w(n) contains exactly «; occurrences of p;, ¢ = 1, --- |
[, and nothing else,
Definition 12: p is the largest prime factor of N.
Lemma 1: I[f p = 3 and N > 6 1is even, then the following conditions are
equivalent:
(7) »1s oplimal

(71) T(v) is penultimate and n(v) = 6 or 4
(tir) T(v) = (w(N/)6,)6 or (x(N/4),4).

Proof: By Theorems 2, 3 only » with n(») £ 6 and O(») consisting
entirely of primes ean be optimal. Writing N = 23" with = 1 and
y = 1, it is seen that such » must have a cost ¢(») having one of the
forms

24 22(x — 1) + 3y] = 40 + 6y — 2,
34 22 4+ 3(y — 1)) = 4x + 6y — 3,
44 22(x — 2) + 3y] = 4 + 6y — 4
(only occurs if + > 1),
6 +22(x—1) +3(y — 1)] = 4 + 6y — 4
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The least of these is either of the last two, which correspond to n{») =
6if o = lorton(») = Gor4ifr > 1. It is apparent that (47) is equiv-
alent to (i77).

Lemma 2: If p = 2, and N > 4, then the following conditions are equiva-
lend:
() v is optimal
(72) T'(v) is penultimate and n(v) = 4
(w1) T(v) = (7(N/4), 4).

Proof: With N' = 27 it can be seen as in Lemma 1 that only those »
can be optimal whose cost ¢( ») has one of the forms

24 212(x — 1)),

44 220 — 2)].
The second of these is the better, and corresponds to n(») = 4.
Theorem 4: Let u be a network such that a prime number r > n(u) occurs
n O(u). Let M result from O(u) by replacing one occurrence of rbyn(u).
Then for any network v with

T(v) = (M)

it 1s true that

elv) < e(p)

t.e., v is strictly better than p. Among such v, that is best for which r is
largest.

Proof: Existence of a rearrangeable v satisfying 7'(v) = (M,r) is guar-
anteed by Theorem 1. For the rest of the proof, we observe that r > n(u)
and

nip) +2 2 2

TeO(p)

=n(p) +2r —2n(u) + 22 2

TeM

clu)

=7r — n(p) + c(v).

Theorem 5: If n(p) = 6, n(p) = 273"5°, some prime number r > 3 oc-
curs in 0(p), and if M results from O(p) by replacing one occurrence of
r by x occurrences of 2, y occurrences of 3, and z occurrences of 5 then for
any network v e C'y with

T(v) = (Myr)
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il 1s true that
c(v) = e(p)

ie., v is at least as good as p. Among such v, that is best for which r s
largest.

Proof: Existence of a rearrangeable v e ('y satisfying T'(v) = (M,r) is
given by Theorem 1. For the rest of the proof, we observe that r = 5
and

n(p) + 2 Z u

ue0 (p)

n(u) + 2r — 40 — 6y — 102+ 2 2 u

ueM

=7 4 n(p) — 4 — 6y — 10z + c(v).

am

Il

Since v, y, and z can only assume the values 0 and 1, with z = 1
if and only if x = y = 0, we have ¢(u) = ¢(»), the best » corresponding
to the largest r.

Definition 13: Q = {(A,7):7a prime and A = =(N/r)}.
Definition 14: L = T7(Q).
Remark 2: Q consists of all the absolute minima in the partial ordering =
of T(Cy), i.e., » ¢ L implies that there are no u € C'y for which
T(p) < T(v).
Theorem 6: If p > 3, then all optimal networks belong to L.

Proof: Let p e Cy — L be given. We show that there exists a » ¢ L that
is at least as good.

Case 1: There is a sequence g = py, Mo, ** , pa, ¥ With p, # v, v e L,
n(p.) > 6,

T(u) = T(u) = --- = T(pa)

and such that 7'(u,) covers T'(»). Then the numbers n(u;), j = 1,
., nare all > 6, and the result follows from Theorem 2.

Case 2: All sequences g = py, pa, ~ <, pn , ¥ With g, # v, v e L, T(w) =
T(pe) = -+ = T(ua), and such that T'(u,) covers T'(»), are such that
n(p,) = 6. Consider such a sequence. Let ¢ be the smallest index j
for which n(g;) < 6,7 = 1, -, n. Then Theorem 2 gives ¢(u) = e(p:).
Since n(p;) < 6 and T'(u,) covers T(v), it follows that O(x,) contains



REARRANGEABLE NETWORKS 1655

an oceurrence of p > 3. Henee by Theorem 5 there exists a network
n ey with n(n) = pand

eln) = elp) = elp).

Let £ € L be such that n(¢) = p and T(x) covers T(£). Then e(¢) =
c(n) by case (77) of Theorem 2. Hence
c(t) = elu)
tel.

Theorem 7: [[ N = 6 and v is optimal, then v is a square switch and ¢(v) =
N.
Proof: For prime N with 2 = N < 6 the result is obvious. If N = 6
and » e (s then exactly one of the following alternatives obtains:

T(v) = (8, G) and e(v) = 6

T(v) = (13],2) and ¢(v) =8

T(v) = (12},3) and e(») =T.
The first alternative is optimal, and there is exactly one » ¢ Cy such
that 7'(») = (8, (), viz., the 6 X 6 square switch. Similarly, if N = 4

and » e ('y, then T(v) = (6, 4) or ({2}, 2); the former has cost 4, the
latter 6.

Definition 15: For n = 2, D(n) is the sum of the prime divisors of n

counted according to their multiplicity; thus if
no= 23" ... p™
then
Din) = i P = Z T,
= zer(n)
Definition 16: ¢(N) = min je(v): v e C'y}.
Thearem 8:
(N itN =06 or N is prime
e(N) = <p 4+ 2D(N/p) if N > 6 and either p > 3 or N s odd

12D(N/2) if N > G in all other cases (ie., p = 2, or
p = 3 and N is even).

Proof: Putting together Lemmas 1, 2 and Theorems 1, 2, 3, 4, 6, and 7
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we obtain the following values for the minimal cost in crosspoints per
terminal on a side for networks in Cy :

N if N = 6 or N is prime

p+2 2 ifp>3,N>6
zem (N[ p)
6+ 2 r=2 2 ifp =3 N>06,N even
zerm (N/G) zem (N/2)
e(N) =43 + 2 2;;:3) x =3+ 6(logg N — 1)
if p =3 N>06,N odd
442 > r=4d4(logmN -2 =22 =x

:rt'lr[NM)‘ zew(/2)
ifp=2 N> G0;

simplification gives Theorem 8.
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