Permutation Groups, Complexes, and
Rearrangeable Connecting Networks

By V. E. BENES
(Manuscript received March 12, 1964)

In the interest of providing good telephone service with efficient connecting
networks, it is desirable to have al hand a knowledge of some of the com-
binatorial properties of such nelworks. One of these properties is rearrange-
ability: a connecting network 1s rearrangeable if ils permitled states realize
every assignment of inlets to outlets, or allernatively, if given any state x of
the network, any inlet idle in x, and any outlet idle in x, there s a way of
assigning new routes (if necessary) lo the calls in progress in x so that the
idle inlel can be connecled lo the idle oullel.

A natural algebraic and combinatlorial approach to the study of rear-
rangeable networks is deseribed, with attention cenlered principally on two-
sided networks built of stages of square erossbar switches, each stage having
N dnlets and N outlets. The approach s based in part on the elementary
theory of permulation groups. The principal problem posed (and partly
answered) is this: Whal connecling nelworks buill of slages are rearrange-
able? Sufficient conditions, including all previously known resulls, are
SJormulated and exemplified.

I. INTRODUCTION

A connecting network is an arrangement of switches and transmission
links through which certain terminals can be connected together in
many combinations. Typical examples of connecting networks can be
found in telephone central offices, where they are used to complete calls
among the customers themselves, and between customers and outgoing
trunks leading to other offices.

In the interest of providing good service with efficient connecting net-
works, it is desirable to have a thorough understanding of some of the
combinatorial properties of such networks. In a previous paper,' we
singled out three such combinatory properties as useful in assessing the
performance of connecting networks. The weakest of these properties
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was that of rearrangeability. A connecting network is rearrangeable if its
permitted states realize every assignment of inlets to outlets, or alterna-
tively, if given any state  of the network, any inlet idle in z, and any
outlet idle in z, there is a way of assigning new routes (if necessary) to
the calls in progress in x so as to lead to a new state of the network in
which the idle inlet can be connected to the idle outlet.

Figs. 1 and 2 show the structure of two connecting networks built out
of square crosshar switches, with each switch capable of connecting any
subset of its inlets to an equinumerous subset of its outlets in any de-
sired one-one combination. The network of Fig. 1 is often found in tele-
phone central offices; we may call it the No. 5 crossbar network. It is
nol rearrangeable. The network of Fig. 2 ¢s rearrangeable, but so far it
has not found extensive practical use.

We shall deseribe a natural algebraic and combinatorial approach to
the study of rearrangeability. For the most part we restrict attention to
two-sided connecting networks that are built of stages of crossbar
switches, and have the same number N of inlets as outlets. The approach
is based in part on the elementary theory of permutation groups. The
way the connection with group theory arises can be summarized as
follows: a maximal state of the network is one in which no additional
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Fig. 1 — Structure of No. 5 crossbar network.
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Fig. 2 — Rearrangeable network.

calls can be completed in the network; suppose that both the inlets and
the outlets are numbered in an arbitrary way from 1 to N; each maximal
state realizes some submap of a permutation on {1, --- , N}; the net-
work is rearrangeable if and only if the whole group of all permutations
of {1, ---, N} is generated in this way by the maximal states of the
network. Details are worked out in the main body of the paper.

It is not possible to explore in one paper all the possible uses of group
theory in the study of connecting networks. Indeed, we shall restrict
ourselves to formulating the fundamental problem of rearrangeable
networks in terms of complexes of permutations, and to giving a partial
answer. One of the difficulties with the approach is that it always seems
to be easier to obtain results about groups by the few available methods
known for rearrangeable networks, than vice versa.

A sequel® to the present paper is concerned with the problem of syn-
thesizing a rearrangeable network (for N inlets and outlets), subject to
certain struetural conditions and to the condition that it have a minimum
number of crosspoints.

II. SUMMARY

In Section I1T we define a precise general notion of a “stage’ of switch-
ing in a connecting network, and, after deseribing how the networks
which will be of interest are built out of stages by joining them together
by patterns of links, we pose two problems: first, to discover what net-
works built in this way are rearrangeable; and second, to synthesize
optimal rearrangeable networks of given size, optimal in the sense of
having fewest crosspoints (among those in some class of networks having
practical interest). (See Ref. 2.

Seetion 1V is devoted to giving a formulation of the first problem
(discovering rearrangeable networks) in terms of partitions and permuta-
tion groups, using the notion of stage. In Section V we discuss how stages
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generate complexes (in the group theory sense, i.e., sets of group ele-
ments). It is shown that a stage can generate a subgroup only if it con-
tains a substage made of square switches, a result that indicates to some
extent the “best possible” nature of stages made of square switches.
A known example, discussed in Section VI, indicates how a particular
symmetric group S is generated by a rearrangeable network in the form

S = {ﬁm}

i=l

with ¢; , @3 in a subgroup H and ¢ in a certain subgroup ¢ 'He conjugate
to H.

The remainder of the paper is devoted to proving two “‘rearrangeabil-
ity”” theorems for connecting networks built of stages of square switches.
The first theorem gives sufficient conditions under which a set of stages
of square switches connected by link patterns will give rise to a rear-
rangeable network. The second theorem indicates a simple way of
describing link patterns and stages that satisfy the hypotheses of the
first theorem, and so yield many specifiec rearrangeable networks, gener-
alizations of those given by Paull.’

III. STAGES AND LINK PATTERNS

The switches in Figs. 1 and 2 are arranged in columns which we shall
call stages, the switches in these stages being identical. Two adjacent
stages are connected by a pattern of links or junclors. Along with the
switches, the link patterns are responsible for the distributive charac-
teristics of the network. They afford an inlet ways of reaching many
outlets. Obviously, each outlet on a switeh in a given stage is some inlet,
of the next stage, if there is one. Suppose that the N inlets are numbered
in an arbitrary way, and that the N outlets are also numbered in an
arbitrary way, both from 1 to N. Then it is clear that each link pattern,
and each permitted way of closing the largest possible number of cross-
points in a stage, viz. N, can be viewed abstractly as a permutation on
{1, -+, N}. Both the networks in Figs. 1 and 2 have the property that
all maximal* states have the same number N of calls in progress, and
any such maximal state realizes a permutation which is a product of
certain of the permutations represented by the link patterns and the
stages.

It will be convenient to generalize the usual notion of a ‘“‘stage” of
switching in a connecting network. By a stage (of switching) we shall

* Le., states in which no additional calls can be completed.
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mean a connecting network constructed as follows: with 7 the set of
inlets, and € that of outlets, we choose an arbitrary subset § of T X ©,
and we place a crosspoint between all and only those inlets « e I and
outlets v e 2 such that (w,r) € 8. We shall also speak of § itself as the
“stage.” Thus we make

Definition 1: A stage is a subset of 7 X €.

This terminology is easily seen to he an extension of the usual one,
according to which, e.g., a column of switches in Fig. 1 forms a stage,
the network having four stages separated (or joined) by three link pat-
terns. Actually, a link pattern may be associated with one or the other
(but usually not both) of the stages it connects, to define a new stage;
we do not usually do this.

Definition 2: A stage 8 is made of square switches if and only if there is
a partition Il of {1, - -- | N} such that
§= U (4x4),
A el
Definition 3: A substage 8’ of § is a subset of 8.

Exeept in the trivial case in which § is actually a square N-by-N
switch (i.e., § = T X @), a stage $ will not by itself give rise to a rear-
rangeable network. Still, it is known that several stages joined end to
end by suitable link patterns can together give rise to such a network,
e.g., that of Iig. 2. We can thus formulate two fundamental questions
about connecting networks built out of stages:

(1) What stages and link patterns ean be used to construct a rearrange-
able network?

(2) What stages, and how many of them, should be used to construet
a rearrangeable network that has a minimum number of crosspoints
(switches) for a given number of terminals on a side?

Question (1) is studied in the present work, while question (2) is
treated in another paper.?

IV. GROUP THEORY FORMULATION

We shall adopt some notational eonventions from group theory to
simplify our presentation. Let (7 be a group. It is customary to speak of
a subset K C© 7 as acomplex. If x e (7, then xK denotes the set of products
ay with y e K, Ka denotes the set of products yr with y ¢ K. Similarly,
if Ky and K, are complexes, KK, denotes the set of products yz with
yeKyand z € Ko,

A group (7 of permutations is called imprimitive’ if the objects acted
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on by the permutations of ¢ can be partitioned into mutually disjoint
sets, called the sets of imprimativity, such that every ¢ e (7 either per-
mutes the elements of a set among themselves, or carries that set onto
another. That is, there is a nontrivial partition IT of the set X of objects
acted on such that ¢ ¢ G and A e IT imply ¢(A) e II. We shall extend
this terminology as follows:

Definition 4: @ is called strictly imprimative if it is imprimitive, and
ecach set A of imprimitivity is carried into itself by elements of (7, i.e.,
there is a nontrivial partition IT of X such that A e IT implies p(A) = A
for all ¢ € @, so that ¢ € G is “nonmixing’ on II.

Consider a stage of switching that has N inlets and N outlets. It is
evident that such a stage provides ways of connecting some of the inlets
to some of the outlets. If the stage contains enough crosspoints it can
be used to connect every inlet to some outlet in a one-to-one fashion,
i.e., with no inlet connected to more than one outlet and vice versa.
With the inlets and outlets both numbered 1, 2, ---, N, such a setting
of the switches corresponds to a permutation on {1, ---, N}. Indeed,
there may be many ways of doing this, differing in what inlets are con-
nected to what outlets, that is, corresponding to different permutations.

Definition 5: A stage $ generates the permutation ¢ if there is a setting
of N switches of § which connects each inlet to one and only one outlet
in such a way that 7 is connected to (i)7 = 1, - -+, N, that is, if

(7)) 8.

Definition 6: The set of permutations generated by a stage § is denoted
by P(8).

Definition 7: A network (with N inlets and N outlets) generates a per-
mutation ¢ if there is a setting of the switches in the network which
connects, by mutually disjoint paths, each inlet to one and only one out-
let in such a way that 7 is connected to ¢(¢),7 = 1, --- , N.

If two stages S, , $; are connected by a link pattern corresponding to a
permutation ¢ , then the permutations that they generate together are
those of the form

P192¢3 Qi € P(S;), T' = 1 or 3.

If a network consists of two stages 8, S, joined by a link pattern cor-
responding to a permutation ¢, then it can be seen that it generates
exactly the permutations in the set

P(81)eP(8s).
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A network of s stages 8, ¢ = 1, - -+ | s, with a link pattern corresponding
togi, 2 =1, -+, s — 1, between the ith and the (¢ + 1)th stages,
generates the complex
P(81)¢eril’(82) -+ @uaP(8,).
We shall occasionally use the suggestive notation
'SI‘PIS'.! 1S,

to refer to or indicate such a network,

It is now possible to formulate a group-theoretic approach to the
analysis and synthesis of rearrangeable connecting networks made of
stages of switching joined by link patterns. Consider such a network,
generating the complex

P81 -+ 01 P(8,).

The factors ;P (8i41),7 = 1, - - | s — 1, oceurring herein are themselves
again just complexes. Thus, given any product of complexes

11 &:
i=1

we seek to know whether the product is the whole symmetrie group, and
whether the factor complexes &7, can be written in the form

ol (8)
where ¢ is a permutation and 8 is a stage. In this general form the

problem is largely unsolved; however, special cases are worked out in
the sequel.

V. THE GENERATION OF COMPLEXES BY STAGES
We start with this elementary result:

Remark 1: Let M be a complex (i.e., a set) of permutations. Define a
stage 8§ hy '

8 =1{(x,y): e(x) = y for some ¢ ¢ ary.

Then P(8) 2 M and no smaller stage has this property.

In cases of practical importance, such as shown in Figs. 1 and 2, the
stages are made of square switches, and it is clear that a stage $ (with N
inlets and N outlets) is capable of effecting certain special permutations
on X = {1, ---, N, and of course, all submaps thereof. (Indeed, for
each switch there are numbers m and n with m < n such that the switch
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is capable of performing all the (n — m + 1)! permutations of the
numbers & in the range m = k& = n among themselves.) Sinee no inlet
[outlet] is on more than one switch, these permutations form a subgroup
of the symmetric group S(X) of all permutations on {1, -- -, N}. This
subgroup has a property which might be described intuitively by saying
that there exist sets on which the subgroup elements ean mix “strongly,”
but which they keep separate. It is apparent, indeed, that the subgroup
generated by a stage made of square switches is strietly imprimitive, the
sets of imprimitivity being just the elements of the partition IT of {1,
..., N} according to what switch an inlet [outlet] is on. This situation
might also be described by saying that a permutation ¢ from the sub-
group is nonmizing on IL.
Our second observation is

Remark 2: Let H be a strictly imprimitive group of permutations on
X = {1, .-+, N}, with sets of imprimitivity forming the partition I1. Let
8 be the smallest stage with P(8) 2 H. Then
s= U 4 X4,
Aell
i.e., 8 is made of square switches.

The main result of this section states that a stage can generate a sub-
eroup only if it contains a substage made of square switches. This sug-
gests that stages made of square switches necessarily arise in the genera-
tion of the symmetric group by products of complexes some of which are
subgroups.

Theorem 1: Let $ be a stage, and let P(8) contain a subgroup H of S(X).
Then there is a substage ® of 8 which is made of square switches.

Proof: Define a relation ® on {1, -+, N} by the condition that i®j if
and only if j = ¢(7) for some ¢ ¢ H. Since H is a subgroup, it must con-
tain the identity permutation, ie., i®i forall7 = 1, --- , N. Let 2,7, k
be numbers in [1, -+, N} such that j = ¢(?) and &k = ¢(j) for some
permutations ¢, ¢ € H. Then e ¢ H and I = ye(7), that is, 7Gk; hence
® is transitive. Finally, if j = ¢(7) with ¢ ¢ H, we have i = ¢ () with
¢ ' e H, since H is a group. Hence & is an equivalence relation, and there
is a partition II such that
®= U (4X4).

Aell
Sinee i@ obviously implies (,j) €8, we have
®R 8.

® is clearly a substage of § made of square switches,
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VI. AN EXAMPLE

Asis well-known, elementary group theory contains many results that
allow one to write a group as a product of complexes. These results often
involve a subgroup of the group in question. We shall quote an elementary
result of this kind, and interpret it in terms of a network that is known
to be rearrangeable.

Let (¢ be a group, and let H, and H, be subgroups of (7, not necessarily
distinet. A double coset is a complex of the form

]’[1(,0]12, @ € G

It is a known result’ that two double cosets are either identical or dis-
joint. Thus there is at least one complex 1 with the properties
U H[QGH: = (r’

¢ eM
HwH: N HyH, =68  ife =y, withe, ¢ elM.
In particular
(f = HMH.,,

and we have factored (7 into a produet of three complexes, two of which
are subgroups. Now suppose that (7 is actually S(X), the symmetric group
of all permutations of N objects, and that m and n are positive integers
such that mn = N. Let IT be a partition of X = {1, --- | N} into m sets
of n elements each, and let H be the largest strictly imprimitive sub-
group of S(X) whose sets of imprimitivity form II. Also let ¢ be a self-
inverse permutation, and II, a partition, such that 4 eII, B € II, imply™

[e(A)NB|=1.

Let K be the largest strictly imprimitive subgroup of S(X) whose sets
of imprimitivity form II, .

By Remark 2, Section IV, H and K can each be generated by stages
of square switches,

Returning to the earlier discussion leading to the factorization (¢ =
HMH,, welet Hy = H, = H. Now it can be seen that the complex

HeKeH
is generated by a network of the form shown in Fig. 2. By the Slepian-

Duguid theorem (Benes, Ref. 1, p. 1484) this network is rearrangeable,
so that

HeKeH = S(X) .

* | A4 | denotes the number of elements of a set A.
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Since ¢ = ¢ ', the complex ¢Kp is itself actually the subgroup ¢ Ke

conjugate to K. Thus for ¢ = S(X) and H, = H: = K, the factor M in
S(X) = HMH

can be chosen to be ¢ 'Ke.

VII. SOME DEFINITIONS

The number of elements of a set A is denoted | A |. Let X, ¥ be
arbitrary finite sets with | X | = | Y [, let B be a subset of Y, let IIy ,1I,
bhe partitions of X, ¥ respectively, and let ¢ be a one-to-one map of ¥
onto X. Let @ be the null set.

Definition 8: ¢(B) = {x ¢ X: ¢ '(x) € B}.
Definition 9: ¢ hits I1; from B if and only if A e IT; implies ¢( B) nNAas=oe.

Definition 10: ¢ covers 11, from I, if and only if B e I implies ¢ hits II,
from B.

Definition 11: ¢(1Is) is the partition of X induced by ¢ acting on ele-
ments of 1., i.e.,

o(Ily) = lp(B): B e1l,}.

Definition 12: up is the restriction of ¢ to B.

Let A he a subset of X.

Definition 13: ,II; is the partition of 4 induced by II;, ie.,
AL = [C N A:C eI

Definition 14: ¢ B-covers II; from 11, if and only if xe covers yumll; from
slls.

Definition 15: Let Iy, I, be partitions of X. Then II; > T, (read “pi-
one refines pi-zero”) if and only if every set in II, is a union of sets in
11, , and II; # I, .

VIII. PRELIMINARY RESULTS

Lemma 1: Let X and Y be any sets with | X | = |V | < o, let II; =
(A, ---, A} and Ty = {By, -, B, bepartitions of X and Y respec-
tively, and suppose that for k = 1, --- | n the union of any k elements aof

11, has more elements than the union of any Ik — 1 elements of My . Then

(7) m = n.
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(72) For each one-to-one map f of X onto Y there exists a sel of n dis-
tinet integers k(1), -+, k(n) with1 < k(i) Em,i =1, - -, n, and
JAYN By #6  i=1--- n.

Proof: Sinee II; and TI; are partitions, and | X | = | V|,

m

214 = 2Bl
j=1 =1

If m were less than n, then the union of m B’s has as many elements as
the union of n A’s, for m < n; this contradicts the hypothesis. Let

K;={j:f(l) e Bjforsomel e A}, =1 n
Also let Ay, -+, Aig be any & elements of 1T, 1 < k < n, and set
.
7‘ = U K.‘(,) -
=1

All of the
"
_Z [ Aicp |
Jj=1

clements of

k

U A,

j=1
are mapped by finto | 7| sets of 1. . Sinee no union of & — 1 sets of 11,
has

I
Z i A i) [

Jj=l1

elements, it follows that [ 7| = k. Thus the union of any k of the sets

{Ki,7 =1, ---,n| has at least & members. Hence by P. Hall’s theorem®
there is a set of n distinet representatives £(1), --- | k(n) with
k(7)) e K t=1,-,n

k(z) #= k() for i = j.
But clearly k(7) ¢ K, if and only if
f(l) € By for somel e A, .
that is, if and only if

f( A i) n B;,r‘,‘, = 6.
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Lemma 2: Let 1L, , 1, be partitions of sets X, Y respectively with the proper-
ties | X | = | Y | and

Oy, Cy e 11, U I dmplies | Cy | = | Ca .
Then for every one-to-one map ¢ of X onto Y there is a set D € X such that
¢ hits T, from D and ¢ ' hits T from (D).

Proof: We observe that | IT; | = | Tz |, and that the conditions of Lemma
1 are satisfied, with m = n. For each onto map ¢ there isaset D € X
with | D | = | II; |, such that

A eI, implies D N A # 8, (¢ " hits T, from (D))

B €I, implies (D) N B # 4, (o hits I, from D).
Lemma 3: Let X be any set and let 1L and TI, be partitions of X such that
AB e 1, U IL implies | A | = | B|. Then for every permutation ¢ on X

there is a partition 1, of X such that (i) ¢ covers Tl from T, , (#7) o
covers 11 from o(11,),

(7i) || =41, Aell, Ul
‘HI=‘H1|=|H3 Bell,.
Proof: Let ¢ be a permutation on X. The hypothesis implies that the
union of any & elements of 11, has more elements than the union of any

-1 elements of M., for k = 1, -+, | 1I;|. Henee by Lemma 2, with
X = Yandm = n, thereisaset D, € X such that

¢ hits T, from D,
¢ " hits I from (D).

Now we consider the sets X, = X — Dy and Vi = YV — o(Dy) parti-
tioned by

oIl and v, 11, respectively
and we apply Lemma 2 to xe, i.e., to the restriction of ¢ to X — Dy
This gives a new set Dy € X such that again
¢ hits I, from D,
¢ " hits 11, from @(D.).

We proceed in this manner till X and Y are exhausted, and set II, =
{Dy, -+, D)}, where n. = | A | forall A ¢TI, U 11, . It is clear that II,
has the stated properties.
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Let ¢ be a permutation on X, and let II; , I, be partitions of X.

Lemma 4: If ¢ covers 11y from 1L, , and B e 11y implies | B | = | 11, |, then
A ey implies | A | = |2 |.

Proof: Sinee ¢ covers Il from II, , then 4 e Il; and B e I, imply that there
is an @ € B with ¢ '(x) € 4. Thus ¢ '(2) e A for at least | I, | distinet
values of x, and so | A | = [IL[. Since B e II, implies | B | = | IT, |, it
follows that | T, | divides | X | and

|, | =121

| X ]
10,

Clearly

2 4]

Aelly

| X,

Since there are | IT; | sets in II; each with at least | T, | elements,

2 Az |m|-|m]=[X|
Aelly
If any 4 e II; had more than | I, | elements the sum would exceed | X |,
which cannot be. Thus A e II, implies | A | = [IL|.

IX. GENERATING THE PERMUTATION GROUP

In this seetion we exhibit a sufficient condition on permutations ¢, ,
-, ¢e and stages 8;, ---, 8 under which the complex

PiS)er -+ wsal(8s)

is actually the whole symmetrie group, and the corresponding network
(obtained by linking 8; and 8,1 by ¢;,7 = 1, --- | 5 — 1) is rearrange-
able,

In order to focus on the mathematieal character of the results, on their
purely formal aspects divorced from physical considerations having to
do with switches, ete., the conditions on the ¢’s and the 8’s purposely
are phrased in a quite abstract way. Consequently, the practical implica-
tions and applications of the result may be unelear and require discus-
sion. This discussion is given after the theorem has been stated, and is
followed by its proof.

Theorem 2: Let s > 3 be an odd integer, lel @1, - -+ | @,_1 be permutations
onX =1, - N} letlly  k=1,---,s,and 1", k=1, -+, s — 1),
be partitions of X, and let
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(X) k=0
ot = P ‘P%(s—n_l(_nk) k=1,---,3(s—1)

ek - @y (TT7F) k=3(s+1),--,s =1,

(X} k= s.

Suppose that
(1) If s = 3, then I* < W7 k=0, ---,%(s — 3).
(#) Mypqny = M
(#t1) For k = }c, cor s — 1), and every B e T 0" B-covers T,
from @i from @ (¥7).

(iv) Fork = X(s+ 1), ---,s — 1, and every B e W o B-covers
H_iH_l f?‘om QOA;_I (‘Ifk). .
() If A e I* and B e ¥ U W ghon | 410 | = | sllegi| =

|A,k=1,---,%(—=1).

Let Hy, k = 1, --- | s be the largest strictly tmprimitive subgroup of
S(X) whose sets of imprimitivity are exactly the elements of T (i.e., A € 1lx
implies { 40: ¢ € Hi) = S(A)). Then the complex K defined by

K = H1&01H2 H571¢=71Hs

has the property K = S(X), and any network generating this complex s
rearrangeable.

The theorem given above does not provide any new designs of rear-
rangeable networks that are not already implicit in the work of M. C.
Paull® and D. Slepian;' thus no new principle is involved. Rather, in
formulating the result, we have sought insight by stating a generalized,
purely combinatory form of these previous results. The theorem exhibits
this generalization, first as providing a way of generating the symmetric
group in a fixed number of multiplications of certain restricted group
elements, and second as based on some purely abstract properties of
some partitions and permutations.

As in A. M. Duguid’s proof of the Slepian-Duguid theorem,’ the basic
combinatory theorem of P. Hall on distinet representatives of subsets
is used repeatedly. This means (roughly) that the proof proceeds by
showing that an arbitrary permutation (to be realized in the network)
can be decomposed into submaps each of which can be realized in a dis-
joint part of the network, thereby not interfering with the realization
of the other submaps. A significant departure from Ref. 3 is that we try
to obtain rearrangeability directly from conditions that are stated for
the network as a whole, as well as by building it up from rearrangeable
subnetworks.

The following intuitive guides should be useful in understanding
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Theorem 2. The permutations ¢, -« - , g, are of course intended to be
those corresponding to the link patterns between the stages of a net-
work, The partition I corresponds to the assignment of the terminals
entering the kth stage to various square switches, all u e A for A4 e II,
being on the same switch. The partitions 11" are used in defining the
submaps mentioned above.

The “covering” properties (777) and (iv) of the ¢ in Theorem 2 ensure
(roughly) that the ¢, are sufficiently mixing or distributive to be able
to generate all permutations in the restricted ways permitted in the
definition of K. They are generalizations of the property, exhibited in
I"ig. 2, that every middle switch is connected to every side switch by a
link. The property (v), finally, implies that various sets of switches all
have the same cardinality; this ensures (again, roughly) that if a cross-
point is not being used for a connection between one inlet-outlet pair,
then it can be used for a conncetion between some other pair.

Proof of Theorem 2: We use induction on odd s = 3. If s = 3, there is

only one I1¥, viz. II'. Let ¢ he a permutation; we show that
¢ € e HopHy

The argument to be given is constructive, in that we do not use proof by
contradiction, but actually give a kind of recipe for finding three per-
mutations 5, e f;, ¢ = 1, 2, 3, with

® = merneens .

To prove the theorem for s = 3, it is enough for ¢ = 1, 2, 3 to exhibit
a partition TI1(7) and to define n; on A e II(2), i.e., to give

s A e TI(7), i=1,2 3.
Condition (») for k = 1 (=21(s — 1) here) tells us that for A e IT'
[Th| =[] =[4]

However, the “middle-stage” condition (27) states that I, = TI.
Hence |11, | - | Il.| = N. Since [condition (777) now] ¢, covers II; from
e1(¥") = gy (') = 1., it follows that B e I, implies | B | = | 1L |.
If for some B e II; it was true that | B| < | Iz |, then

SIB|<|m|- L] =N

Belly
which is impossible. Thus | B | = | I | for B ¢ I; . In exactly the same
way, using condition (év), we find that ' e II; implies | C'| = |1, |.

Therefore B, (' ¢ 11, U Iy implies | B| = | C'|.
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Returning now to the chosen permutation ¢, we apply Lemma 3 to
conclude that there exists a partition II, of X such that ¢ covers II; from
,,¢ " covers I, from o(IL,), [ 1, | = | A [for A ¢ II; UTly, and | B | =
|| = || for B e II,. Hence also | I, | = | Iz |.

Let u: O, < Iy be any map of 11, onto IIs. The desired partitions
II(7),z = 1, 2, 3 will be taken to be

H(l) = fPl(Hz)

I(2) = {u(D): D ell,} =11,
In(3) = 1,
and the desired permutations #;, 7 = 1, 2, 3, are defined so as to

have these properties: for D e II,
mie(D) o e (u(D))
m:e(u(D)) < D
n2 tgams( D) <> <P1_17h_1¢'(n)-

That this can be done (uniquely, indeed) can be seen as follows: Let
D ell,, and u(D) = B e Il,. Since ¢ ' covers II; from ¢(I1,), and ¢
covers IT; from II, , it must be true that

(1) ¢ " hits II; from (D)

(2) ¢ hits II; from D.

But at the same time, by conditions (#%%) and (#), and the fact that
' = I, ¢ covers IT; from IT. and ¢» covers II; from II. , and so

(3) @ " hits 11, from B

(4) @ hits 1T, from B.

Thus if w e D N A and A €1l , there is a unique v € A such that ¢.(v) € B,
and we take n3(u) = ». Similarly, if z = ¢(u) e (' and C e II; , there is a
unique w e ' such that ¢, '(w) e B, and we take m(w) = z. Finally, de-
fine 7. so that m(es(v)) = @ '(w). Since u(-) is onto, each D e II,
deals with a unique B = u(D) e I, and the definition of ;,7 = 1, 2, 3
can be made for each D and its associated B, independently of the
others. It is apparent that

memeeans (D) = (D), Dell,,
or
© = Mmei1neerns .
Since 5; for 7 = 1, 2, 3 is onto, and is a subset of

UE X E,

Eell;
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it follows that #; e H,, 7 = 1, 2, 3, and thus that
K = S(X).

We now assume, as an hypothesis of induction, that the theorem is
true for a given odd s — 2 = 3, and that we are given permutations ¢ ,
and partitions |11} and (11"}, satisfying the conditions of the theorem.

No loss of generality is sustained if it is assumed that each A e IT°

is invariant under ¢s , - - - , ¢,_» . This invariance can always be achieved
by redefining the ¢;, without loss of properties (777) to (v). It can now
he seen that for b = 2, - -+, s — 2 the restrictions

L, Lf, with A eI,
satisfy all the conditions on II;, ° (respectively) used in Theorem 2.
Hence by the hypothesis of induction, for each A e I°, the restriction of
the complex

H;*&Gz e ﬁﬂ.qqusfl

to A generates S(A ). The argument used for the case s = 3 can now be
used to ecomplete the induetion, (= ¥ here) playing the role of I, .

X. CONSTRUCTION OF A CLASS OF REARRANGEABLE NETWORKS

We consider a network » built of an odd number s = 3 of stages,

v =8¢ @S,
satisfying the symmetry conditions
$r = ©s ;11
ok =1, H(s = 1),
S = Sett1)
with each stage $; made of identical square switches. The ¢, will be
chosen in the following way: order the switches of each stage; to define
er foragiven 1 £ k£ = 3(s — 1) take the first switch of 8, say with
outlets and n a divisor of N, and conuect these outlets one to each of
the first n switches of 8,41 ; go on to the second switch of §; and connect
its n outlets one to each of the next n switches of 84, ; when all the
switehes of 8,4 have one link on the inlet side, start again with the first
switch; proceed cyclically in this way till all the outlets of § are as-
signed. (See I'ig. 3.)
We shall show that a network » constructed in this way is always
rearrangeable.

Theorem 3: Let s = 3 be an odd integer. Let ng o = 1, --- | (s + 1)/2, be

any posilive inlegers such that
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L Sk+1

Nk INLETS | 1

][] -

Fig. 3 — Assignment of inlets and outlets of rearrangeable network.

s+
I[[ni=N and n;, =2
k=1
Foreach b =1, -+ (s 4 1)/2, let 11, be the partition of X = |1, --+ , N}
into the N /ny sets of the form
Ao = {t: (T — Dne < t = g i=1,-,N/n.
Let gi k=1, , (s — 1)/2, be permutations with the property thatn = {
(mod N /niy1) tf and only if
ee(n) € Apyie t=0,-, (N/neu) — 1.
Define
or = @os = for (s—1)/2<k=s—1

Let 8,k =1, -+ | s, be the stages made of square swilches defined by

Sk=S,_k+1 k = ], ...,(s_ 1)/2
= U A XA

A eIl
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and v be the network constructed by putting a link patiern corresponding to
or, k=1, 58— 1between stages 8; and 8y, . Then v is rearrangeable.

Proof: 1t is readily seen that fork =1, --- | s
P(8:) = the largest strictly imprimitive subgroup with sets of im-
primitivity II; ,

= Hk)
in the notation of Theorem 2. Thus to prove the theorem by appeal to
Theorem 2 it is enough to exhibit suitable partitions 11, &t = 1, - .- |

3(s — 1), and to show that these, together with ¢;, -+, ¢,_;, satisfy
the conditions of Theorem 2. For &k =1, --- | (s — 1), set

1 = class of all {j: (¢ — 1)N/ny -+ me < j < iN/ny -+ i,
=1, mma - ngl.

It is evident that the II* are successively finer partitions, i.e., that

nm <™ k=1, s = 3).
Also, since TI*“™" consists of the nyns - -+ ni_s, sets

e (k= Dngesny < ) S knyagn s k=1, - mng - -+ iy

it can be seen that

" = Ayt L 4 < N/l
and henee that the middle stage condition (#7) in Theorem 2,

My = 7Y,

is satisfied.
The remainder of the proof, in which the requisite covering properties
of the ¢, are demonstrated, is based on some auxiliary results.

Lemma 5: Fork =2, -+ 3(s — 1), and 1 =7 = N/nn,4. the following
identity holds

—1
Aﬁ-.t = @k ( u Ai:-+l.t)
i-1< b <i
nj

t=i—-1
N
(med )
and the sets on the right are disjoinl for different 1.

Proof: Since

e (Apgr) = (n:n =t (mod N/ngy), 1 =n = Nj

the union on the right in the lemma is the set of all n that are =¢ (mod
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N/ni41) for some ¢ with (¢ — 1)ne < t < @nx . Consider such an n, with
say

) t
z —l< st
n=_£+t, ¢ <m-_l
Nie41 01 < 1.
Then
n=m IN + (i = D+ u,
MMt

with 0 < w = ng, and so
L Ak-ﬁlh'!(w:i.-*:ﬁ-+|)+i—1)
or
nedp, with t= (¢ — 1) (mod N/mngs).

Sinee the representation of n in terms in / and u is unique, the lemma
follows.

The practical or physical import of the lemma is this: In any stage
k41,1 <k = 3(s — 1), the ith block of ni switches is connected by
the link pattern ¢, to exactly those .4, switches (in the kth stage) whose
number t = (i — 1) (mod N/n,n,41).

Definition: For 1 £ i < n,and2 £k =m = 3(s + 1)

i

By =U {Ak,,: { = r(mod nins - - - my_y) for some » with (¢ — 1)

IIA
=,

NaMg - - - Ng—1
where nang - -+ np_y is taken = 1if k& = 2.
Lemma 6: Forl €7 <nmand2 =k <m
-1
Bik = €k (B.',A-+1).

Proof: We show that the right-hand side contains the left. Equality then
follows from Lemma 5, since B; x4, will always be a union of sets of the
form

U Ak+1.f-

i-1< L gj
ny
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This is because ¢ = r (mod u) if and only if t + 1 = (r + 1) (mod u),
if 0 £ » < u. Consider then an n e By . There isat = 1 congruent to an

r (mod nyns - -+ ny—y), with

1—1<

A

- =

Notlg - -+ Ny

such that n e A, ,. The latter fact implies that
(t— 1 < n =ty

Now ¢i(n) € Aryry, where n is congruent to = (mod N/ngyy), so we can
represent n in the form

n = ﬂ + T.
Nk
Hence
(t— D < aN + r = tng.
Rpt1

Writing ¢ = lnna -+ ngy + #, with
(2 — D)oy~ gy < 1 = tnafy » -+ Myt ’
we see that

gy e (= D < 7 =2 gy -+ ne + g

where
aN
g=l- —
Tyla - - - Ty
It follows that 7 is congruent (mod nyns - - - ny) to some integer p in the
region
(2 — Lina - e < p £ ing --- ny,

and thus ¢r(n) € B; ., completing the proof of Lemma 6.
Now if k& = m, the defining condition that { = r (mod n; - - - n,—;) for
some r with

(f. - l]“ﬂ Tt Mgy <r g i”’ﬂ R [ P

used in the definition of By, ean be put into a slightly different form.
In this ecase we must have

1 =t =N/ =mns -+
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and so ¢ can only be congruent to r by being equal to r, that is
(2 — 12 Ay <t =2 Ny
Hence it can be seen that
{Bim,i=1,---,m) = II".
Applying Lemma 6 (m — 2) times we find that
(B ,i=1,---,m) =@ '~ @n (I
= @(¥).

Now n = ¢ (mod N/ns) if and only if ¢1(n) € Ao, t =1, --- , N/n2.
Also, by definition of By,

Big = U A‘u.

t=i(mod ny) °

Let ¢i(n) € Bia, ¢i{n) € Ay, . Then n has the form

n=ﬂn1—|—t= (ﬂ-i-b)nl-l—i,
NqTo Nhe
son =1 (modn).Since | Biz| = | Bim | = 02 -+ 0w = N/ny, it follows

that By is the ¢; image of N/n,; integers each of which is congruent to ¢
(mod n,). Since each such integer must be in a different Ay, it follows
that ¢ covers II; from ¢, (¥').

The remaining conditions in Theorem 3 can be demonstrated in es-
sentially the same way; one has merely to identify the sets in question,
and use Lemma 5 and an analog of Lemma 6. The details will be omitted.
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