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Let &y denote the set of N-vector-valued functions of t defined on [0, =)
such that for any real positive number y, the square of the modulus of each
component of any element is inlegrable on [0, y], and let Lax(0, ) de-
note the subset of &y with the property that the square of the modulus of each
component of any element is integrable on [0, ),

In the study of nonlinear physical systems, attention is frequently focused
on the properties of one of the following two types of functional equations

g =f+ KQf
g=Kf+Qf

in which K and Q are causal operators, with K linear and Q nonlinear,
g € Ex, and [ 1s a solution belonging to &y . Typically, | represents the
system response and g lakes into account both the independent energy
sources and the initial conditions at t = 0.

It is often important to delermine conditions under which a physical
system governed by one of the above equations is stable in the sense that the
response to an arbitrary set of initial conditions approaches zero (i.e., the
zero veclor) as { — =. In a great many cases of this type, g belongs lo
Lon (0,2 ) and approaches zera as t — = for all initial conditions, and, in
addition, il is possible to show thal if f & Lox(0,0), then f() - 0ast— =,

I'n this paper we attack the stability problem by deriving conditions under
which g ¢ Loy (0,2 ) and [ ¢ Ex imply that [ & Lon(0,%). From an engi-
neering viewpoint, the assumption that [ ¢ &y is almost tnvariably a trivial re-
striction.

As a specific application of the results, we consider a nonlinear integral
equation that governs the behavior of a general control system containing
linear lime-invariant elements and an arbitrary finile number of time-
varying nonlinear elements. Conditions are presented under which every
solution of this equation belonging to &y in faet belongs to Lax(0,%) and
approaches zero as t — .
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I. NOTATION AND DEFINITIONS

Let M denote an arbitrary matrix. We shall denote by M’, M*, and
M, respectively, the transpose, the complex-conjugate transpose, and
the inverse of M. The positive square-root of the largest eigenvalue of

M*M is denoted by A{M}.
The set of complex measurable N-vector-valued functions of the real

variable ¢ defined on [0, )[(— =, )] is denoted by 3Cy(0, )[3Cy
(_ waw)]: and

Lon (0, =) ={flf£3CN(0, 00),[” fkfdt < oo}.

In order to be consistent with standard notation, we let £,(0,0) =
Lox(0,0) when N = 1. We shall not distinguish between elements of
50x(0, )[3ey( — ©,2)] that agree almost everywhere on [0,)
[(— ,»)]. The range of any operator considered in this article is as-
sumed to be contained in either 3Cy (0, ) or 3y (— = ,).

The inner product of two elements of £ax(0,),f = (fi,fo, -+, [¥)’
andg = (1,0, - -, gv)’, is denoted by (f, ) and is defined by

(f,9) = fu frg dt.
The norm of f & £ax(0, ) is denoted by | f || and is defined by
171 = &0t

The norm of a linear operator T defined on £.v(0,%) is denoted by
Tl
Let i € (0, ), and define f, by

L) = 1@ for t £ [0, %]
=0 fort>y
for any f £ 3x(0,% ), and let
&y = |f|feden(0,0),  f,&Lan(0,0) for0 <y < w=f.

The set of real vector-valued functions is denoted by ®, and I and
Ly, respectively, denote the identity operator on £iy(0,) and the

identity matrix of order N.
With A an arbitrary measurable N X N matrix-valued function of

with elements |a,.} defined on [0,), let X,v (p = 1,2) denote
{Alf | @ (t) |7 dt < (ﬂ,m=l,2,---,N)}.
0
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Let [f(1),(] denote

(Wl (O, el (), - enlfw(O,8),  fe & N 3ex(0,0)

where ¢1(w,t), a(w,t), -+, yx(w,t) are real-valued functions of the
real variables w and { for — ¢ < w < = and 0 £ { < « such that

@) ¢.(0t) = 0fortef0,2)andn =1,2, --- | N

(#2) there exist real numbers « and 8 with the property that

ee B0 Ly s

for e [0,%0) and all real w = 0.

(712) Yo lw(t)t](n = 1,2, .-+, N) is a measurable function of { when-
ever w(t) is measurable.

The symbol s denotes a scalar complex variable with ¢ = Re[s] and
w = Im[s].

We shall say that a (not necessarily linear) operator T with domain
D(T) C 3n(0,%) is causal if an only if for an arbitrary § > 0,

(Tf)(t) = (Tg)(t) a.e.on (0,8)
whenever f,g ¢ D(T) and f({) = g({) a.e. on (0,8).

II. INTRODUCTION

In the study of nonlinear physical systems, attention is frequently
focused on the properties of one of the following two types of funetional
equations

I+ KQf (1)
Kf+ Qf (2)

in which K and Q are causal operators, with K linear and Q nonlinear,
g € &, and f is a solution belonging to &y . Typically, f represents
the system response and ¢ takes into account both the independent
energy sources and the initial conditions at ¢ = 0.

It is often important to determine conditions under which a physical
system governed by one of the above equations is stable in the sense
that the response to an arbitrary set of initial conditions approaches
zero (1.e., the zero vector) as { — =. In a great many cases of this type,
g belongs to £,y(0,%) and approaches zero as t — <« for all initial
conditions, and, in addition, it is possible to show that if f & £.4(0,% ),
then f({) — 0ast — o,

q

q
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In this paper we attack the stability problem by deriving conditions
under which g £ £2x(0,% ) and f & &y imply that f & £25(0, ). From an
engineering viewpoint, the assumption that f & &y is almost invariably a
trivial restriction.

As a specific application of the abstract results of Section III, we con-
sider, in Section IV, the following integral equation which governs the
behavior of a general control system containing linear time-invariant
elements and an arbitrary finite number of time-varying nonlinear
elements:

g(t) = f(t) + | k(i = =)ylf(r), 7]l dr, t=0 (3)
0

in which k & Ky N Kax , ¥[+, -] is as defined in Section I, and g & £45(0,% ).
We prove that every solution f of (3) belonging to & N &y in fact belongs
to £ox(0,%) and approaches zero as t — o if, with

(\%
=)

K(s) = j:n E(t)e ™ dt for ¢

(7) det [Iy + 3(a + B)K(s)] # 0foro = 0
(1) 3(8 — ) sup Af[ly + (e + B)K (iw)] 'K (iw)} < 1.

An analogous result is proved for the integral equation

g(t) = Ylf(), 0 + fo k(t — 0)f(r) dr, = 0.

For N = 1, the key condition (i) possesses a simple geometric interpre-
tation: it is satisfied if and only if the locus of [K(iw)] " for —o <
w < = lies outside the circle of radius (8 — «) centered in the complex
plane at [—5(a + 6),0.1

In Section V we consider two direct applications to nonlinear differ-
ential equations. One of our results asserts that if / is any real-valued
function of ¢ defined and twice-differentiable on [0, ) such that

d’f df _
@‘Fﬂcﬁ‘i'\b[f:t] =4
for almost all ¢ & [0, ), where g ¢ ® 1 £5(0,¢ ), ¢[+,*] is as defined in
Section T with N = 1 and @ > 0, and a is a real constant such that
a> VB — Va then f e £(0,) and f({) > 0ast— .

t For some earlier results concerned with frequency-domain conditions for the
stability of nonlinear or time-varying systems, see Refs. 1-4.
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III. KEY RESULTS
Assumption 1: 1t is assumed throughout that

(7) K is a linear causal operator with domain ©(K) such that

Lox(0,%) C D(K) < 3Cy(0,)

(7) K maps £2x(0,0) into itself, and is bounded on £:x(0, )

(#7) Q is a (not necessarily linear) causal operator with domain
D(Q) < 3x(0,20).
k. The following two theorems are the key results of the paper.
Theorem 1: Let f ¢ D(Q) N &y such that Qf ¢ D(K) N &y, KQf ¢ &y , and
g = [ + KQf, where g € £an(0,% ). Let f not be the zero-element of &,
and let yo = infly |y > 0, || f, || = 0].

Suppose that {f,, 0 < y < «} C D(Q) and that there exists a real or
complex number x such thal

(1) on £ax(0,%), (I + 2K)™" exists and is causal

(i) || (1 + oK) 7K || sup | Yo)y — s | (Qf'h)}] Bl <1,

Then f & £ox (0,0 ) and
[Fl= (1 =n" [ (IT42K)Tg],

in which
r= | (I+ 2K) 7K || sup I (anil)}] afy || )
¥>Vo y
Theorem 2: Let f ¢ D(Q) N D(K) N &y such that Kf ¢ &y, Qf € &, and
9 =Kf+ Qf

where g £ £2x(0,0 ). Let f not be the zero-element of &v, and let yo =
inf {y |y >0, [ f,] =0}

Suppose that {f,, 0 <y < =} C D(Q) and that there exists a real or
complex number = such that

(1) on Lan(0,2), (21 + K)™' exists and is causal

Then f ¢ Lan(0,0) and
[fl=Q =97 | GI+K) g,
i which

“ (qu)u — xfu ” .

— o -1
¢ = [ G+ K7 sup ===
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3.1 Proof of Theorem 1

It is convenient to introduce the operator P defined on 3Cx(0,% ) by
Pf = f,, where y is an arbitrary real positive number.
From g = f+ KQf, we clearly have

g, = Iv + PKQ/J.
Since K is eausal,
g, = I, + PKPQ/.
Similarly, since Q is causal,
g9, = [, + PKPQFf
= f, + PKPQf,.
Thus,
¢, = P(I + 2K)f, + PKP(Q — zD)j, .
Since on Lax(0,% ), (I + xK)™" exists and is causal,
P(I + aK) "P(I + «K)f, = [y,
and hence,
f, = —P(I+ 2K)'PKP(Q — 1), + P(I + 2K)7'g, .
It follows that
£, < | P(I+ 2K)"'PK ||| PQf, — af, | + | P(I+ «K)7'g, ||
Moreover, in view of the causality of (I + mK')”l,
P(I + 2K)'PK = P(I +2K)'K,
and hence, using the fact that P is a projection on £ox(0, 0 ),
[ P(I+2K)7PK || = || (I+ «K) K.
Similarly,
| (L 4 2K) g, | = || (T + 2K)7g .
Thus, with r as defined in the statement of the theorem,
FAESAFA RS E S o]
or
£ = @ =n7"1T+2K) g



NONLINEAR FUNCTIONAL EQUATIONS 1587
Sinee this inequality i1s valid for arbitrary positive y, it follows that
ff £2N(O,w) and

[Fl= (@ =rT [ (X+2K)g].

3.2 Proof of Theorem 2

The argument is essentially the same as the one used in the proof of
Theorem 1.
We have, with P as defined in the proof of Theorem 1,

9, = PKf + PQf
PKP/ + PQP/ = PK[, + PQJ,
= P(aI + K)f, + P(Q — aI)f, .
Using the fact that on £.4(0, ), (2I 4+ K)™' exists and is causal
fu= =PI+ K)'P(Q — 2D)f, + P(aI + K)7g,.
Thus, with ¢ as defined in the statement of the theorem,

Il = allfl + 11 I+ XK)7g |,

or
10 =97 | GI+K) g

This inequality is valid for arbitrary positive y. Hence f ¢ £2x(0, ) and
I7l= =7 [ I+K) gl

Remark: A moment’s reflection concerning the proofs of Theorems1 and 2
will show that by simply reinterpreting the symbols, analogous results
can be obtained for other function spaces.

IA

3.3 Conditions under Which the Hypotheses of Theorems 1 or 2 Con-
cerning x Are Satisfied

The following theorem asserts that the hypotheses of Theorems 1 or
2 concerning x are satisfied in certain special but very important cases.
The implications of the theorem are of direct interest in the theory of
passive nonlinear electrical networks.

Theorem 3: Let f be as defined in Theorem 1 [Theorem 2]. Suppose that
(7) there exist a nonnegative constant ky and a positive constant ks such
that

Re Qfu,fy 2 kil IF, 1QAIF Sk |fP for0<y< w
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(i7) K maps La2x(0,) nto ilself such that there exisis a nonnegative
constant ¢ with the property that
Re (Khhy = ¢ k|
for all h & Lan(0,0),
Then the hypotheses concerning x of Theorem 1 |Theorem 2] are satisfied
if etther:
ky >0 and ¢ = 0,

or

kh=0 and ¢ > 0.

3.4 Proof of Theorem 3

Lemmas 1, 2, and 3 (below) imply that for real positive @ the oper-
ators (I + 2K) and (2I + K) possess causal inverses on £av(0,% ) and

e < 20K — o) + @ | K
| (14 2K)7'K|* < (1 + z [ K|)?

1
xlr + 2¢)

| I+ K)'|* <

With x real and positive,

I (Qf)y — af IF = 1 Qfy — fy
QS IF = 2 Re (Qf,, fu) + 2° 11, I
< (ks — 20k + 2°) | 1]

It is a simple matter to verify that if (ki 4+ ¢) > 0, there exist positive
values of  such that

Ie

lIA

2K —e) + 2K, o P
z(1 + = “ K “)2 (iﬁz 2uky + @ ) < 1,

and there exist positive values of x such that

]ﬂg —_ 2.’1'k1 + 3172

2(z + 2¢) <1l

Hence, it remains to prove Lemmas 1, 2, and 3.

Lemma 1: Let T be a bounded linear mapping of £an(0,%0) into itself
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such that there exists a constant e, > — 1 with the property that
Re(Tf) z eI

for all f & o5(0,0). Then (I 4+ T) possesses an inverse on Lay(0, ).
Proaf:

Sinee ¢; > —1, it is evident that there exists a positive constant k,
such that

Re (I4+ TV, = k|| fIF

for all f & £.5(0, = ). This, together with the boundedness of T, implies
that (I 4+ T) ' exists (see Ref. 3, for example).
Lemma 2: Let T be an invertible bounded linear mapping of £ax(0, % ) into
itsell such that T is causal and Re (Th,h) = 0 for all h & £.5(0, ). Then
T ' is causal.
Proaf:

A bounded linear mapping A of £:4(0, ) into itself is causal if and
only if*

Re f (AN dl = — | Al [o”f*fru

for all real y = 0 and all f ¢ Lox(0,% ). Thus, to prove the lemma it

suffices to point out that the causality of T implies that

v
Re f (Tg)*s dt = Re (Tg, , g,) = 0,
0

for all real ¥ = 0 and all g ¢ £.5(0, % ), and hence that

v
Ref KT 'hdt =0
o

for all real ¥y = 0 and all i & £ax(0, ).

Lemma 3:1 Let T be a bounded linear mapping of £2x(0, %) into itself such
that (I + T) 7s invertible and there exists a real constant c. with the property
that

Re(Tf,)) = e || S|

for all f & Lox(0,0). Then, for e =2 —1%,

t Lemmas 1 and 3, and their proofs, remain valid if £:x(0,%) is replaced with
an arbitrary Hilbert space with inner produet (-,-) and norm |[|-]|.
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[(I+T)'T| =0 - QCu+DA+|THT
and, for ¢z > —3,
[@+T) ) = (1+ 20)7"

Proaf:
In order to establish the first inequality, let ¢ = (I + T) 'Tf and,
using the fact that ¢ = f — (I + T)7'f, observe that

(.90 = (i) — 2 Re(Tz2) — (2,2),
where z = (I + T) /. Since
2Re(Tz2) + (z2) = (2 + 1) || 2|
and
lzll 2 @X+T) TNz @+ 0TD A
it follows that
g9 =1 — (2e + D+ [ T DKL
for all f, g € Lax(0, ) such that g = (I + T) 'Tf. Thus
@+ T7T| <0 - e+ A+ [T

The second inequality follows directly from the fact that if ¢ =
I+ T,

I71F = llgl*+2Re(Tg,) + [ Tg I’ = (1 + 2¢2) | g "

IV. APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS

In this section our primary objective is to prove the following two
theorems.

Theorem 4: Let k £ X, and let
t
o) = SO + [ k= i), Adr, 120
where g & Lax(0,) and f ¢ ® N &y . Let

K(s) = fw E()e™ dt, a=0.

0

Suppose that
(3) det [1y + 3(a + B)K(s)] = O0fore =20
(%) 3(B — a) sup MLy + 3a + BK(iw)] 'K(iw)] < L
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Then f e £an(0,2).

Theorem 4: Let k ¢ X,y and let
g(t) = fol k(L — o)f(r) dr + 9lf(1), 4, 120
where g & Lax(0, ) and f ¢ ® N &y . Let
K(s) = fﬂw E(e ™ dt, o2 0.

Suppase that
() det [s(a + B)1y + K(s)] # 0 fore =0
(77) 3(B — ) sup Al[3(a + B8)1y + K(iw)]™"} < L.

Then f e Loy(0,0).

4.1 Proof of Theorems j and 5
In Theorems 1 and 2 let Q denote the operator defined by
(Q)(t) = ¢lgHt], 0=t< =

where ¢ is an arbitrary element of ® N 3Cx(0,%). This operator maps
@ N Lax(0,2) into itself and possesses the property that for any real x

[Qh — wh |l = ntx) [h],  he® ) Luy(0,=)
where
n(x) = max [(x — a), (B — 2)].
Thus, with K defined on £.5(0,% ) by?
Kh = fof k(b — () dr, ke Law(0, @),
condition (#7) of Theorem 1 and the corresponding condition of Theorem
2, respectively, are satisfied if there exists a real x such that
(I + K)7'K || n(z) <1,
and
[ I+ K) " n(x) < 1.

Lemmas 4 and 5 (below) imply at onee that if the assumptions of
Theorem 4 (Theorem 5) are met, then hypotheses () and (%) of Theorem
1 (Theorem 2) are satisfied with @ = (e 4+ ). It can be shown® (with the
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aid of Lemma 4) that this choice of x is optimal in the sense that if there
exists a real z such that (I + 2K) possesses a causal inverse on £ax(0, )
and

| (I 4+ 2K)7K]| 9(z) < 1,
then [I + %(a + B)K] possesses a causal inverse on £2x(0,% ) and
| (T4 aK)7K || n(2) = | I+ 4« + 8K K| 93(« + 8)].

This choice of z is similarly optimal with regard to the statement of the
conditions in Theorem 5.

Before proceeding to the statement and proofs of the lemmas, it is
convenient to introduce a few definitions.

4.2 Definitions

With r an arbitrary positive constant, let S, denote the mapping of
Lax(0, ) into itself defined by

(S'rf)(t) = 0: te [OJT)
= f(t — 7), telr,=)

for any f & Loy (0, = ).
Let

Lon(— o0, @) = {flfeﬂcﬁ(—w, oo),f_:f*fdt < m}.
W e take as the definition of the IFourier transform of f & Loy(— 0, ):
f = lim. [ : (e ™" dt,
and consequently,
2 [:f*fdt = [:f*fdm.
By the Fourier transform of an f & £ox(0,% ) we mean simply

lim. f " e dt.
0

4.3 Lemmas 4 and 5

Lemma 4: Let A be an invertible linear mapping of £.x(0,) into itself
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such that for an arbitrary f & Lax(0, )
AS.f = S.Af, > 0

Then A7 is causal.
Proaf:

Suppose that, on the contrary, A possesses an inverse on Lon(0,0),
but that it is not causal. Then there exist elements 21, 20 € Lax(0,0),
and a § > 0 such that (1) # 0 on some positive-measure subset of
(0,6), and Az, = S;z,. Since A is assumed to possess an inverse, there
exists a unique 23 £ Lax(0, %) such that z, = Az; . Thus,

AS&E':; = SaAZ:; = S;zg .

Clearly, Sszy +# 2, , which contradicts the assumption that A possesses an
inverse. This proves the lemma.

Lemma 5: Let w & Xyn and let U be the mapping of £.5(0,%) into itself
defined by
U= [ ult= ), Te a0, ).
Let
U(s) = [n w(t)e ™ dt, = 0.

Suppose that det [1y 4+ U(s)] # 0 for ¢ = 0. Then

() (I 4+ U) possesses an inverse on Lax(0, %)

(@) || (T+U)7U| = sup M1y + Uliw)] " Uliw)]
X+ U)7 | < sup Allly + U(iw)] ).

Proof:
Consider first the invertibility of the operator (I + U) defined on
cEzN( — 0,0 ) I]y

A+ T =+ [ ult =), fe (=, o).

The assumption that w ¢ X,y implies that the elements of U (tw)
approach zero as [w| — =, and that they are uniformly bounded
and uniformly continuous for @ & (— =, % ). Thus, det 1y 4+ U(iw)]
approaches unity as | w | — =, and is uniformly continuous for
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we (— o= ). It follows that det [1y + U(iw)] = 0 forall  implies that
inf | det [1y + U(iw)] | > 0,

and hence that
sup Al[ly + Uiw)|} < .

Let § denote the Fourier transform of an arbitrary ¢ ¢ Loy(— =, 2 ).
Then,

-’:uc .‘j\'*[lm + ("(?:w)r'.[h' + U(im)l_lé dw

lIA

[ Rl + UG d

1A

sup A*{[1y + Ulie)]™] f 75 do < =,

and hence, by the Riesz-Fischer theorem, there exists an f ¢ Loy(— 0,2
with Fourier transform

§=[ly + Uliw)]'§.
This establishes the existence of (I + T) ™"

Since det [1y + U(s)] # 0fore = 0, and U(s) — 0as | s | — = uni-
formly in the closed right-half plane, every element of [y + U] is
analytic and uniformly bounded for ¢ > 0. Thus, (I + T)~' maps

If | fe Lan(—o0,), f(t) =0 for t <0

into itself,”"" and henee the operator (I 4+ U) defined on £:x(0,%) pos-

sesses an inverse.
To establish the first of the inequalities stated in the lemma, let

f & £ay(0,) and let
g=(I1+W7US.
Then, with § and f, respectively, the Fourier transforms of g and f,
§ = [lv + Uliw)] "' UGiw)f.
Thus,

g = [ JUG) Ty + U)o+ Ul U )] d
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IIA

[ : A{[Ly + Ulio)]"UGe) | do

1A

sup A%([Ly + Ulie) UG [ 7 ds

from which, using Plancherel’s identity,

Lol < sup Allly + UG UG 7]

Thus,
[ (I+0)7U || = sup Af[ly + U(iw)] " Uiw)}.
By simply repeating thisargument with (I + U)'Uand [1y + U(iw)] -

Ul(iw), respectively, replaced with (I + U)™ and [1y + U(iw)]™, we
find that

[ (T4 07| = sup A{[ly + U(iw)] ™).
This proves the lemma.

4.4 Remarks

It can easily be shown that conditions (z) and (47) of Theorems 4 and
5 are satisfied if « > 0 and

K(iw) + K(iw)*

is nonnegative definite for all w.

A moment's reflection concerning the proof of Theorems 4 and 5 will
show that those theorems remain valid if ¥[f(¢),f] and f, respectively, are
replaced with (Qf)(¢) and f ¢ D(Q), with the understanding that

(a) Q is a causal mapping of a subset D(Q) of &y into &y such that
Qh & £av(0,) whenever h ¢ D(Q) N L2x(0,%), and there exist real
constants o and 8 (8 > «) with the property that

[Qh — $(a+8)h || = 3(B—a) A

forall h e D(Q) N Loy(0, ).
(b) if h e D(Q), {h,,0 <y < =] C D(Q).

4.5 Conditions under Which f(t) — 0 ast — o

Theorem 6: Suppose that the hypotheses of Theorem 4 are salisfied, that
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g(t) > 0ast — =, and that k & Koy . Then f(t) — 0 ast — =.

Proaof:
Observe first that the N-vector-valued function with values

Ylie)t, 0=t < =,
is an element of ® N £,x(0,% ). Thus it suffices to show that if A ¢
‘BEN(O’DO):
t
f k(t — 2)h(s)dr -0 as t— oo.
0

In terms of K(iw) and h(iw), respectively, the Fourier transforms of
k and R,

t o0
f 3(t — h(r) dr = ‘if K (iw)h(iw)e™ de.
0 21!' )

Since k & Kav , it follows that the modulus of each element of the N-
vector K (iw)h(iw) is integrable on the w-set (— =, ). Thus, by the Rie-
mann-Lebesgue lemma

t
fk(t—r)h(r)d-r—ao as [ — .
0

This proves Theorem 6.
It is obvious that essentially the same argument suffices to prove the
following corresponding result relating to Theorem 5.

Theorem 7: Suppose that the hypotheses of Theorem 5 are salisfied, that
g(t) — 0ast— =, and that k ¢ Koy . Then Y[f(1),t] —» 0 ast — =.
V. APPLICATIONS TO NONLINEAR DIFFERENTIAL EQUATIONS

Theorem 8: Let A be an N X N matrix of real constants, let ¥[-,-] be as
defined in Section I with a and B, respectively, replaced with & and 38, and
let f denote a real N-vector-valued function of t defined and differentiable
on [0, ) such that

g+ Af 4+ 9lf =g

for almost all t £ [0, ), where g ¢ ® (N Loy (0, ).
Suppose that
(i) det [sly + 3(& + B)lx + A] #= Ofore = 0
(#) 3(B — &) sup Al[(iw)ly + 3(& + B)1y + A7} < L.
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Then [ e Lon(0,2) and [(1) - 0ast — =,
Proaof:

Clearly, f £ &t N &y . Using the well-known expression for the solution
of an inhomogeneous system of linear first-order differential equations
in terms of the solution of the corresponding matrix homgeneous dif-
ferential equation, and regarding

g+ &+ B)f — ¢lfdl

as the “forcing function,” we find that f satisfies

¢
e—mc—l-f e "l )dr
o

t

_ J' {.{) + j; o B(t—'r){‘p[f(r), T] _

for t € [0,%), in which B = (& + 3)1y + A, and ¢ is a real constant
N-vector.

In view of (7), the matrix ¢ ™ is an element of &;x N K.y . By the
argument used in the proof of Theorem 6,

[

(4 + é)f(r)} dr

t
fciu(lﬂg(r)d-r—>0 as {— =,
o

a property which is obviously shared by ¢~*‘c. Thus, using the fact that

_.1 (B_ d) é‘l’fa(w,” - ?(&+ 8w < ;])l(.@— &)

2 w 2

(n= 1s2:"':N)

for all ¢ £ [0,) and all real w # 0, the theorem follows from a direct
application of Theorems 4 and 6 [—4(3 — &) and 3(8 — &), respec-
tively, play the roles of @ and 8 in Theorem 4].

5.1 (eneralization of an Earlier Theorem Concerning a Linear Differential
Equation with Periodic Coefficients"
Theorem 9: Let y[-,-] be as defined in Section I with N = 1 and « and B,

respectively, replaced with & and B. Let f denote a real-valued function of
t defined and twice-differentiable on [0, =) such that

d&f . df _
(Tﬁ-l-aer\b[f,i]—g

for almost all t € [0, ), whfrr ge® N £,(0,) and a is a real constant.
Thenif & > 0anda > VB — V& fe £00,) and f(t) — 0ast — o.
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Proaof:
Proceeding as in the proof of Theorem 8, we find that f satisfies

b + fu'k(z — 2)g(r) dr

(& + B)f(r)} dr

| =

—FO+ f k(t — ) (WLf(r), 7] —

for t € [0, ), in which & is a solution of

Eho dh 1, e

and & & Ky N 3 with
w0 -1
K(s) = f k(e dt = [32 + as + % (a + 6)] , e = 0
0

With « = —2(8 — &) and 8 = (8 — &), condition (¢) of Theorem
4 is obviously satisfied, while condition (Z) reduces to

13— &) <inf|3(&+ ) — o + daw|.

It is a simple matter to show that this inequality is satisfied if & > 0
anda > V3 — V& Hence f £ £:(0,0).

Since h(t) — 0 ast — o and, by the argument used to prove Theorem
6

3

t
fk(t—'r)g(r)d-r—i'o as t— o,
o

Theorem 6 implies that f(¢) — 0 as ¢ — . This completes the proof of
Theorem 9.

VI. FINAL REMARK

Some of the results and techniques of this paper are useful in establish-
ing sufficient conditions for the existence and uniqueness of solutions of
functional equations of the type that we have considered. The reader
familiar with the contraction-mapping fixed-point theorem has probably
recognized this fact.

REFERENCES

1. Popov, N. M., Absolute Stability of Nonlinear Systems of Automatic Control,
Avtomatika i Telemekhanika, 22, Aug., 1961, pp. 961-978.



10.
11.

NONLINEAR FUNCTIONAL EQUATIONS 1599

. Kalman, R. E., Lyapunov Funections for the Problem of Lur’e in Automatic

(,untrol Proc. Natl. Acad. Sci., 49, Feb_, 1963, pp. 201-205.

. Bungmrnn Jr., J. J., An Extension of the Nyquist-Barkhausen Stability Cri-

terion to Linear Lumped Parameter Systems, IEEE-PTGAC, AC-8, No. 2,
April, 1963, pp. 166-170.

. Youla, D. C., Some Results in the Theory of Active Networks, Polytechnic

Institute of Brooklyn Research Report No. 1063-62, Aug., 1962.

. Sandberg, I. W., On the Properties of Some Systems That Distort Signals—I,

B.S.T.J., 42, e])teml er, 1963, p. 2033.

i. Sandberg, 1. W Cund]tmns for the Causality of Nonlinear Operators Defined

on a Function Space, to be published.

. Bochner, 8., and Chandrasekharan, Fourier Transforms, Princeton University

Press, PrmPefun N.J., 1949, p. 99.

. ‘Nundberg‘ LW, A Note on the Application of the Contraction-Mapping Fixed-

Point Theorem to a Class of Nonlinear Funetional Equations, to be pub-
lished.

. Paley, R. E., and Wiener, N., Fourier Transforms in the Complex Domain, pub-

lished by the American Mathematical Society, Providence, Rhode Island,

p. 8.

Titechmarsh, E. C., Introduction to the Theory of Fourier Integrals, Clarendon
Press, Oxford, 2nd ed., 1948, pp. 125 and 128.

Sandberg, I. W., On the Stability of Solutions of Linear Differential Equations
with Periodie Coeflicients, to be published in the SIAM Journal.



1600 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

ERRATA

On the Theory of Linear Multi-Loop Feedback Systems, I. W. Sand-
berg, B.S.T.J., 42, March, 1963, pp. 355-382.

On page 361, the expression (y,+#-), which appears twice, should
be replaced in both positions with (y1 + #»), in which #. denotes the value
of ¥ when 3, = 0.

On page 377, the left side of the first equation of Section 9.4 should
be det Fy, , not det F ;.



