Perturbation Methods for Satellite Orbits

By F. T. GEYLING

(Manuseript received October 14, 1963)

The literature in astrodynamics abounds with perturbation techniques
for salellite orbils. Various formulations have been generated in terms of
orbit elements, the satellite position and velocity vecfors, or combinations
thereof. The computational effectiveness of any perturbation scheme depends
largely on the definitions used for the dynamic state variables. Some meth-
ods are atmed at long-range predictions and orbit lifetime studies, others
at short-range predictions for guidance. This paper may serve as an iniro-
duction to this field for the nonspecialist, in that it reviews the classical
vartation-of-parameters technique and discusses several engincering analy-
ses that were generated in the post-Sputnik era. It also points to some con-
nections between these relalively simple approaches and more elaborate
methods of celestial mechanies. Thus it may contribute toward a comparison
of several “professional”’ approaches whose relative merits are often de-
bated among experts.

I. INTRODUCTION

This paper is a discussion of various perturbation techniques for
satellite orbits which were investigated by the author and his colleagues
during the past few years. The effort began with a tutorial “orbit
seminar’”’ several years ago and it seemed appropriate to collect some
of this material here as a companion paper for R. B. Blackman’s ‘“Meth-
ods of Orbit Refinement.”

It is a symptom of our times that aerospace engineers are taking a
new look at the established methods of dynamical astronomy. The
orbital geometries and vehicle characteristics encountered with arti-
ficial celestial bodies often require departures from the formulations of
classical astronomy and, in fact, have stimulated several new (or at
least independent) approaches during the post-Sputnik era. The number
of publications in this time has been formidable, and in many discus-
sions the names attached to various formulations serve as passwords
for the ideas they represent. The uninitiated find themselves at a loss
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concerning the methods that stand behind these names, their degree of
originality, and their relations with each other.

In view of this situation the following article is addressed to two kinds
of readers:

(?) The newcomers in the field of orbital mechanics who seek a tutorial
survey and an introduction to some of the literature. A bare minimum
of definitions is given for their benefit; a discussion of basic order-of-
magnitude relations and ecertain intuitive notions which would strengthen
the beginner’s grasp of the physical problem had to be omitted for lack
of space but can be found in the literature."”

(77) The specialists in orbital mechanics who have not had occasion
to correlate some of the better-known contributions in the literature
and who may find this work a step in that direction. Typical issues
in such comparisons are the choice of coordinates, the accuracy and
elegance achieved by various transformations of the variables, and the
precision obtainable from series expansions of the solution in terms of
various small parameters.

The simultaneous need for conciseness of presentation and discussion
of certain analytic detail presents somewhat of a dilemma. As a com-
promise, much of the development between the explicitly quoted re-
sults is covered in a descriptive way and the reader is referred to the
literature for all standard derivations.!* Most of our discussion con-
cerns orbits of moderate eccentricity, which are representative of satel-
lite missions. However, in many places an extension to the highly ec-
centric orbits of space probes follows readily.

We begin by devoting Section II to a statement of the fundamental
equations of motion, the definition of so-called orbit parameters, and a
description of various disturbing functions. Section 1II summarizes
the classical treatment of satellite perturbations as gradual changes
of the orbit parameters. (From a general point of view, this formulation,
due to Lagrange, is derivable from the canonical systems governing the
satellite problem.) It is hoped that this covers a sufficient amount of
standard material to introduce the concepts and the parlance of orbital
mechanics.

In Section IV we examine several perturbation methods for aero-
space applications which are based on variously defined spherical and
moving Cartesian coordinates. This includes the well-known contri-
butions by Blitzer et al., Anthony et al., and Roberson. They could
serve as an introduction to the discussion of more elaborate formula-
tions by King-Hele et al. and Brenner et al. In Section V we treat one
more formulation in this general category which was specifically de-
signed for guidance studies.
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A logical continuation of this paper would cover the methods of
Breakwell et al. and Diliberto, Kyner’s averaging technique, and the
one suggested by Struble. Ultimately the hierarchy of perturbation
methods leads to the Hamilton-Jacobi techniques expounded by Brou-
wer, Garfinkel, and Vinti. These represent a very popular approach to
higher-order perturbations and the ecoupling between simultaneous
disturbances of satellite orbits.

II. PRELIMINARIES AND DEFINITIONS

‘We remember that the underlying phenomenon of undisturbed satel-
lite motion (in a central foree field, i.e. around a spherically symmetric
body) is Newton’s law of inverse square attraction. In a Cartesian co-
ordinate system this spells out to be

&= — (Gma/r’) )
i = — (Gmay/r") )
P= — (Gmaz/r’) )

where (7 is the universal gravitational constant, m, the central mass,
and we shall usually take (/m, = I for brevity. m, shall be the mass of
the earth in all our discussions, [Strictly speaking, formulas (1) to (3)
should show the sum of m, and the satellitc mass instead of just m, .]
r is the distance from the origin, and dots indicate time derivatives.
The a-y planc is usually taken to coincide with the equator, while the
positive x axis points to the vernal equinox. The above equations
simply state that each acceleration component is due to the correspond-
ing component of the gravitational attraction — the minus signs indi-
cating a direction toward the origin. The solutions of (1) to (3) are
the well-known Kepler orbits — ellipses, parabolas, and hyperbolas.

Such orbits can be conveniently described by a set of six parameters
that give the plane of the motion, the shape of the orbit and its orien-
tation in that plane, and the timing of the satellite motion along this
path. These quantities may be considered the constants of integration
for a solution of (1) to (3). A standard set of such orbit elements for
elliptic motion is illustrated in Fig. 1. They are:

a, the semimajor axis,

e, the eccentricity,

w, the argument of perigee, (4)
¢, the inclination,

Q, the nodal angle, and

7, the time of perigee passage.
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-~y

Fig. 1 — Standard set of orbit elements for elliptic motion.

The last quantity establishes a time scale for the entire motion in that
it serves as “epoch” and fixes one particular passage through perigee.
If the satellite has swept out the angle f since that passage, the elapsed
time is given by

L= = (@/h) {2 tan”” [(i T z); m‘“g]

-y sinf U
¢ EJl-{—ecosf}u

(5)

where ¢ is the time pertaining to the position 0". f is known as the true
anomaly and (5) holds for all values of this angle. If we set f = 2m
this corresponds of course to a full revolution around the orbit, and the
clapsed time interval is

T = 2= (a*/k)?, (6)

which is known as the anomalistic period. The instantaneous position
0’ can also be defined in terms of other angles, the so-called eccentric
anomaly E or the mean anomaly M, which will be defined later. They
can be related to time in similar ways.

The parameters in (4) represent a typical set of orbit elements. The
position and velocity vectors at some epoch are an alternative suggested
by (1)-(3). Most astrodynamical theories use variations and combina-
tions of all these, but from the general standpoint of analytical dynamics
most sets of six parameters (if they are independent of each other) may
be regarded as sets of canonie variables. Before we proceed to detailed
formulations we examine briefly the various physical disturbances which
cause these parameters to change in time.
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2.1 The Effect of Extraterrestrial Gravitation

If we consider the attractions from masses other than the earth we
speak of “‘extraterrestrial” gravitation. In the presence of a disturbing
body P2, (1) becomes

N Gm,x T — T
i=—==" = Gm, Lt (7)
,',.J T‘fpa :,-pd

where
m, = the mass of P,
rip =[x — 20" + (g — ,)* + (2 — )7,
the distance from the satellite to P, and
o= o'+ '+ 2,

the geocentrie distance of 1.

The corresponding equations for §j and 2 are obvious. Now it is often
convenient in analytical dynamies to express the disturbing terms in
i, 7], 2 as partial derivatives (aR2/ax), (aR/dy), (aR/az) of a disturbing
function . For the present case we would have

R = Giny, [] _ e T + y_?{:” + _ZZ,,] , (8)
Fin .
as can be casily verified.

We see that the ratio of the second term in (7) to the first is of the
order my’/m.r," = k. Typical values for « in the planetary system are
equal to or less than 107", Its smallness is vital to the entire rationale of
a perturbation technique.

2.2 The Iffect of the Earth’s Oblaieness

The potential field for the nonspherical earth ean be represented to
various levels of accuracy by a series of spherical harmonies. If we
restrict ourselves to terms with rotational symmetry about the polar
axis, we obtain the following disturbing function

2
. Gm.R [.f

3 (1 — 3sin’p)

3

(9)

=
==

+f.] (3sing — 5sin’ ) + ]

where
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R = the earth’s equatorial radius,

¢ = the geocentric latitude of the satellite,
J = 1.6239 X 107, and

6.04 X 107"

Il

H

This two-term series is sufficiently accurate for our purposes.

2.3 The Effect of Atmospheric Drag

The resistance encountered by a satellite from the atmosphere is a
subject of considerable uncertainty and continued research. For one
thing, the density of atmospheric gases as a function of geographic
location, altitude and time is not well known; moreover, the laws of
interaction between a satellite and this rarefied medium are incompletely
understood. Doubts exist as to the transition from a continuum be-
havior of the atmosphere to the gas-kinetic regime and the extent to
which electric interactions play a role. Nevertheless, the classical drag
law yields useful results in many cases and we shall concentrate on it.
We let

Fon= —(CpAd/2)pva (10)
where

F, = the total drag force on the satellite
A = the frontal area of the satellite
('p = the drag coefficient
p = the atmospheric density
v, = the satellite velocity relative to the atmosphere.

The monotonic decay of p with altitude covers approximately ten
orders of magnitude within typical satellite altitudes and remains the
subject of extensive study. The relative velocity v, is simply the difference
between the satellite’s inertial velocity vector v(i,7,4) and the rotational
velocity of the atmosphere V = 7o cos ¢, where o can usually be taken
as the earth’s angular motion (the diurnal rate) and V always points due
east. One is frequently justified in employing an approximate vector rep-
resentation of (10):

Fo (Cpd/2) po(V — v). (11)

For typical earth satellites this force is at least two orders of magnitude
smaller than the central attraction, ie., x < 107"
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24 The Effect of Radiation Pressure

As the reader knows, solar illumination exerts some pressure on
every satellite. The magnitude of this force depends on the reflectivity
and geometry of the satellite and, strictly speaking, on the distance
from the satellite to the sun. It frequently suffices to represent this dis-
turbance as a constant force 8 per unit mass and to note that it is many
orders of magnitude smaller than the central gravity force.

III. PERTURBATIONS IN THE ELEMENTS

The six orbit elements [see (4)] were constants for the case of central
inverse-square attraction. However, if any additional forces act on the
satellite these parameters will be subject to change. To emphasize their
time dependence we might write them as a(t), e(t) ete. In fact, their
numerical values at any time ¢ describe the ellipse the orbiting body
would follow if all perturbations vanished as of that instant. This
trajectory is obviously tangent to the actual flight path at ¢ and is
known as the “osculating” orbit. The relation between the satellite
position in the osculating orbit and in the =z, ¥, z frame follows from the
geometry of conic section trajectories:

= laEl- e_ce )f [l1 cos f + [» sin f]
a(l — ¢ .
y = T eoos] [my cos f + mg sin f] (12)
1-¢ .
2 = lag_#zs)?[n; cos f + ma sin f]
where Iy, lo, - -+ ns are functions of 7, w, and Q. Henee x, y, z are repre-

sentable as functions of a, ¢, i, w, Q, f. [As mentioned with (5), we
could also work in terms of the independent variable £ or M instead
of f.] However, the complete definition of the osculating orbit also entails
that

&= af (aezwﬁf)
y = 3—? (agiwan) 4 (13)

z'= (aezwﬂf) f
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where a, ¢, 7, w, Q, 7 are treated as constants. In other words, the ve-
locity as well as the position in the osculating orbit are representative
of the actual motion. This is the full extent of the “condition of oscula-
tion.”

A large part of classical celestial mechanics has been based on the
concept of osculating orbits, and during the post-Sputnik era Lagrange’s
classical treatment of the perturbations in these elements has been
exploited ad ultimo. Its inclusion in this article is justified mainly by the
need for completeness in an introductory survey such as this. It also
serves as a point of reference for the nonclassical “‘perturbations in the
coordinates” in the next section and for the Hamilton-Jacobi techniques
frequently used by astronomers.

In essence, the Lagrange method consists of transforming the basic
equations

£ = — Gmx G_R‘:
' 3 ox

Gm.y aR
.o , R 14
i p ay (14)
) Gm.z , oR
“T i + 9z

to six first-order equations in the orbit elements and approximating
their solutions by quadratures. Remembering that these parameters
represented the constants of integration for the IKepler problem, (1)-
(3), we note that the transition to a(t), e(t), -+ is nothing but La-
grange’s “variation of constants” designed to accommodate the terms
[@R/a(x,y,2)] in (14). In the process of transforming (14) by means of
(12) we avoid the occurrence of second derivatives of the orbit elements
by demanding that

@—@ie

dt at’ "
ox dx dr 91 |, Ox ar . dx .
i+ B+ B2 L T+ a4+ =0 15
it it natwe Tat e’ (15)

ete. This of course results in the reduction of the system of three second-
order equations (14) to six first-order equations. Equations (15) are
simply a restatement of (13), the condition of osculation.

In principle, (14) could be transformed by a straightforward substi-
tution of (12). In order to simplify the algebra, however, one may
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symmetrize these equations to a form where all the labor reduces to the
evaluation of such quantities as

dr 9 ox ("'L)+ (ﬂ; dy Ay ag)
dex; aa, r')a, dai dai da;  Oarj des

dz 0z az
+ (—-a— - % i) = ai, al,

da; da; 3.’!‘-_,' da;

(16)

withi, 7 =1---06

The shorthand symbol that we have adopted for this expression is
known as a Lagrange bracket, and «; and «; stand for any two of the
orbit elements. These brackets have the properties

[ai , ai] = 0, lai, a;] = — e, ai (17)
and

d
(‘]T[ [G'!' 3 a’:'l = 0!
which make them useful devices in numerous manipulations of analytic
dynamies. With their help the equations (14) become

. 2a"9R .
i = === (18)
o a(l =€) 61? 1/1 =N oR .
¢ ke ar e ( ka ) 9w (19)
di oR
dt [i\u(l — e ) sin 7 I: —J GQ:I (20)
Q= on (21)

[ka(1 — e-}] sin i 01

1 — 1ol ¢ cot 1R
o _ (1 —eylpan ar o
¢ ( ka ) e |:60 1 — ¢ Bi] (22)

and a corresponding equation for 7 which will be discussed a little later.
The five equations given here deseribe the changing geometry of the
satellite orbit. All six equations together are known as Lagrange’s
planetary or “variational” equations.

In (18)—(22) we assumed that the perturbing forces were conserva-
tive, i.c., expressible as (aR/dr), (aR/ay), and (8R/dz). In some
situations, as for example in the case of drag, this is not so. Under these
conditions it is convenient to represent the disturbing force by com-
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ponents S, T, N which are in the radial direction, the direction of in-
creasing true anomaly, and normal to the orbit plane, respectively. The
derivation leading to (18)-(22) can be repeated with the appropriate
modifications to yield a set of differential equations with S, T', N in the
right-hand sides. For example

i=2 I:L(la:‘ 9):‘ [Sesinf+ T (1 4+ ecosf)],ete. (23)

These are known as Gauss’s form of the planetary equations. We note
that they contain the true anomaly as an independent variable. More
will be said about this presently.

It is possible to show that the planetary equations, especially in the
last form, lend themselves to an alternative derivation which appeals
to intuition. It is based on the idea that any continuously acting per-
turbation may be interpreted as a sequence of infinitesimal impulses
whose cumulative time response can be represented by a convolution
integral. This approach leads to equations like (18)—-(23) without the
manipulations involving Lagrange brackets.®

Inspection of (18)-(22) shows that their nonlinear right-hand sides
preclude an exact solution except for very special forms of E. Unfor-
tunately, none of the perturbations encountered in nature fall into this
category, One therefore resorts to a process of successive approxima-
tions.

Assuming that all disturbances represented by £ are small in relation
to the central attraction (i.e.,

k(zyz) _
(a(l,J,Z))/ OR kK L1,

as discussed in Section IT) we consider the solution for the undisturbed
motion, i.e. the Kepler problem, as a ‘“zero-order’” approximation to the
actual case. Let its parameters be denoted a”, ¢'” -.-. If we insert
them into the right-hand sides of (18)—(22), thebe equations reduce to
quadratures yielding a first approximation to the effects of R on the
orbit. These results are denoted a'’, ¢ --- and known as “first-order”
perturbations. We observe that (a(l)/a(m), (e /e™), -+ = 0(x). In prin-
ciple, this process can be repeated indefinitely by substituting a*™" - --
into the right-hand sides to integrate for ™ --- . The limit is usually
reached when the results for a, e - - - have settled or human endurance
is exhausted. (The latter constraint may be eventually eliminated by
computer routines for symbol manipulations.) The convergence of this
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process to the exact solution has been established by Poinearé and is
of fundamental interest to the mathematician. Suffice it here to say
that the “smallness’” of perturbations discussed in Section 1T should be
such as to justify the iterative process.

When the right-hand sides of (18)—(22) are written out explicitly
for any particular case, they tend to become awkward because a trans-
cendental angle-time relation like (5) enters. Sinee the geometrie de-
scription of a perturbation B (or S,T,N) usually involves an angle like
one of the anomalies very directly, it is convenient to use one of them
as independent variable. The time relation which interconnects the
anomalies for an osculating orbit (Kepler's equation) can be stated in
terms of the eccentric anomaly FE, the true anomaly, f/ and the mean
anomaly M as follows:

e g g g 1 — e\ f:,_e(l—cz)!sinf
I esin IY = 2 tan [(_*1 T e) tﬂnEz T Fecosf (24)

= (k/a)'(t — 1) = M.

. T o . 3 4
This may serve as a definition of £ and M. The quantity (k/a’)! = n
is referred to as the “‘mean angular rate.”

If we work in terms of the true anomaly, we ean write the left-hand
sides of Lagrange’s equations as

_ da df ote
df dt’

where an expression must now be found for f. If we choose to consider f

as the true anomaly in some osculating orbit valid at time (,, then it
can be related to time by (24) in terms of the unperturbed elements

a” = ay, ¢” = ¢ ete. We eall it an “unperturbed” anomaly and
designate it by /. I'rom (24) one finds
k !
o _ | . cos )2 5
f [ﬂ.n'{(l - Pu_)&] (1 + “ (OHf ) (2))

which transforms (18)—(22) to

W Teq 28T ,
da _ _z[an (].'ili E’n):| (1 4 €0 COS f(n))—-

da" OR
df© 7’

o ete. (26)
When integrated, these expressions represent first-order perturbations
in terms of the unperturbed anomaly, i.e., "' (f'"), ete.

They suggest the following procedure for generating a first-order
satellite ephemeris: if {, is the starting epoch we evaluate a (') ete.
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between the limits fo* and f;'”. The time {, at the upper limit follows
from (24) in terms of ay, e --- . Using £, and @ = ao + a®(f,"),
ete., in (24), we find f;, the true anomaly for the new osculating orbit.
Changing the notation from @ to a;, ete., and J; to f;”, we can now
repeat the procedure for the next integration interval. The “updating”
of orbit elements in the right-hand side of (26) amounts to a partial
allowance for higher-order perturbations, while the recaleulation of f
at the beginning of each step represents essentially a first-order pertur-
bation of the true anomaly.

Instead of doing the latter by discrete increments, we can work with
a “perturbed” anomaly by differentiating (24) with proper allowance
for the time dependence of a, e and 7. Using (25) one finds that

a _ ] _,_ 20=d (aR) a(l — &) aR

df® ~ JO T ° 7 k(1 + e cos [)? \da " ek(1 + e cos )2 e
a'(l — &) , !
+ m[(l + cos f) ta.n§ o
— (2 - D sing— 1= ez)”infwsf:l
1+ ecosf

% [a(l —&)ok 1 (1 - eﬁ)*@]
ke ar e ak dw

where (8/2/da) means that & is to be differentiated with respect to the
semimajor axis wherever the latter appears explicitly but not when it
is contained in n. This avoids the occurrence of a term with (¢ — ).
An expression analogous to (27) can be derived in terms of S,7,N; see
for example Ref. 7, p. 4. Now, it is immaterial in a first-order approxi-
mation such as (27) whether we consider f or " as the independent
variable in the right-hand side. Let us assume the former and use the
symbol df/df'"” = »(f). Then (26) becomes

da® =2 [an’(l — )] 2 R
.d—f =l (1 + ey cos f) (—,’?u, ete. (28)

The integration procedure now runs between consecutive limits fo,
fi, -+ f;, with updating being required only in the orbit elements.
The corresponding epochs ¢; are of course computable by substituting
a;,e; -+ f;into (24). The relative advantages of integrating the per-
turbative equations in terms of f @ or f depend on the problem at hand.
As we shall see later, the choice between an unperturbed or perturbed
independent variable is available in most perturbation methods.

Up to this point we have restricted our discussion to the first five
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orbit parameters, which describe the geometry of the osculating orbit.
Wherever 7 appeared, as in (24), we assumed that it would be avail-
able from a suitable sixth equation. This parameter is needed to corre-
late the independent variable, such as f, with time.
An equation for r, corresponding to (18)—(22), can be obtained by
the process outlined before, which yields
2¢° 0R | a(l — ¢') aR
Sl LA SRR 20
T Lk da + ke de (29)
Sometimes it is convenient to work with the slightly different parameter
x = —nr. The differential equation for it reads

laR 1— ¢ aRk

x = —2(a/k) = — e(ak)? Fr (30)

[A superficial comparison of these two equations gives the startling
impression that (30) is obtained by multiplying (29) with —n, thus
neglecting the 7 term that should appear. This term is really absorbed
in the difference between (dR/da), and (8f2/da), , as implied by the
two equations; i.e. partial derivatives of £ with respeet to the semimajor
axis, holding 7 or x constant as required.]

One could transform (29) and (30) to f (or E) as independent
variable and pursue the quadrature as we did before. However, since
aRt/oa involves df/da (or ak/da), we notice from (24) that this in-
troduces the factors tan™ {[(1 — /(1 + &) tan (f/2)] (or E)
into the integrands for " (or x'"). They ean be quite awkward.

Several devices have been developed to eircumvent this difficulty.
According to one approach we transform (29) from 7 to M = n(t — 7).
The necessary compensating factors arise theneby which eliminate all
aperiodiec terms. Transforming the integrated equation back to 7, we

have
3 A S (0)
iy = Ty + L0, — ng) + [M] ,
]l. Jpg (o)
3k 1 — e oR
0) 4} o 9o .
(1 4 eycos f) { S + o0 (kan)! 9eo (31)
‘7(1‘1.,/!.)} ((”f)} ]f (0
where
= (].:‘/(71'1}#’ My = (I'\'.f‘ﬁ'u:{);, T = To + T]“), i = + (11(“,

and (9/2/day) has the previously established meaning. Equation (31) can
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be obtained in terms of the perturbed anomaly f if it is understood that
a;"" in the quadrature and in @ is obtained by (28) and if the integrand
of (31) is multiplied by 1/».

3.1 Oblateness Effects

We briefly illustrate some results from Lagrange’s method. In the
well-known example of oblateness perturbations, the first-order solu-
tions for a, e, and ¢ turn out to be entirely periodic and not very in-
teresting.® The remaining elements, however, exhibit secular terms.
Using only the J-term of (9) we find from (21), (22) and (31)

= JR*

Q=0 — m (COS T:a) (f]_ - fo) + periodic terms (32)
0 - ©0

. . JR' 3 ...
W = wy — (COS ’&o)(ﬂ] - Qu) + m(l - §Sll’l2 1,0)

- (33)
(i = fo) + m X p.t.
. m_mo_JR
N Ts " e (l — e’
X {11 + e cos )* [1 — 3 sin® 4y sin” (wo + f)]}72
(34)

n ﬂl (1 = ed)* (@ — wo) + (cos i) (& — )]

R 3
— m (1 — Essin2 iu) (fi — fo) + pt.
where f, fi, fo represent the unperturbed anomaly. (We have omitted
the superseript zero for convenience.) Equation (32) confirms the well-
known secular behavior of the node. It turns out to shift westward for
0 < 7 < w/2 and eastward for 7/2 < 7y < m. At 7 = =/2 it remains
stationary, as would be expected from symmetry.

The secular component of v, according to (33), reduces to the well-
known term

JRY(5 cos’ 4y — 1)
20!02(1 - 302)2

It represents an advance of perigee for 0 = 4, < 63°26" and for 116°34" <
7o = . For 63°26' < 7, < 116°34’ perigee regresses, and at the “critical”
angles 63°26 and 116°34’ it is reduced to periodic motions (as far as
the first-order analysis indicates). We note that the periodic terms in
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(33) contain e, in the denominator, and we expect »” to behave un-
stably for near-circular orbits (as one might expect for geometric
reasons). Indeed, this singular behavior can be expected also in other
examples, according to (19), (22) and (31). Furthermore, some diffi-
culties will arise with small values of i, according to (20) and (21).
These cases of near-circular and near-equatorial orbits can be accom-
modated by redefining the orbit elements in various ways. While such
modified elements are less accessible to a geometric interpretation, they
do not encumber the calculation of perturbed satellite positions as a
function of time. For the sake of brevity we must forego additional
details here.

3.2 Luni-Solar Gravitation

We omit a discussion of d,, since it shows periodic perturbations
only. Substitution of (8) into (19)—(22) and (31) yields

~ _ l5mpao3€oh1h2 2 }{ -1 [(1 - eﬂ)* f)] &
&= e T (1 — ¢")* {tan TTe La,u2 L (35)

+ p.t.

where
hy = L, + muy, + nz,
he = Ly + moy, + noz,

3
3o

5
merp V1 — ef

—1 1 — €y } f /1
-{tan [(m) tan §]}fu + p.t.

5, — g 4 3ol + %) (1), + (1 = o) () )
' 2m.ry® sin 4(1 — eg?)!

_ ] f1
-{ta,n_1 [(i—_i_-—zi;) tan %]}; + p.t.

@ = wy + cos (2 — Ql)

=1+ (1 + 4802)}11’12‘ - (1- enz)hzhu]

(36)

=2
[

(37)

3mpaﬂa o2 g2 2
M (1= e) = he’ = 151 (38)

A 1—(30!__ f:lfl
{t-d-]l [(m) tan "2 ‘o + p.t}.

+
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. N 1 — et . = .
T1 = To _..._" + (——Ti)— [ClJl - W + (Ql - QU) cos ?’0]
n Lo

T (1 _ n_.n> n 3Gm, (1 — )’ (ty — 1)

iy 2ngr 2 (1 + ep cos fo)?
PO . 7Gm
'[‘."p - -3(.’11 [6{0)] fu + hz Slnfn)ZJ + Qm_ﬂ:ﬁ (39)
2 2
-[2 + 3¢ — @;- (1 + 4e) — %—i (1- e[,”):l
7',, Tp

I ATSPAY ARG
-t '[(—“) s -]} t.
{ n 1 Te .1112 f,,+p

The subscripts 7 in (36) and (37) denote partial differentiation with
respect to the inclination. The secular term of e® is a significant feature
of our present results. It indicates that even near-circular satellite orbits
can experience an unstable buildup of eccentricity due to luni-solar
perturbations. The rate of this perturbation is proportional to the factor
m},ags/mcrps and is usually very small; moreover, the coordinates z;,
Y, 2p of the perturbing body are really time-dependent, which would
modify the first-order result. Nevertheless, a long-period change of the
eccentricity due to luni-solar gravitation has been observed in some
satellite orbits.

The explicit form of the periodic terms in a™ and ¢ contains the
factor 1/¢, , while ", & and 7 contain 1/(sin é). Again this necessi-
tates the use of specially modified elements for low ¢, and 7y . One set of
elements which is particularly suited to the problem of interplanetary
perturbations is due to Strémgren. He utilized the fact the @, 7, « are
nothing but a set of Euler angles orienting a system of orbital coordi-
nates with one axis through pericenter, one at f = x/2, and one normal
to the orbit. The rotation of these axes with respect to inertial space
conveys the same information as the perturbations of @, 7, w. The idea
is akin to Roberson’s method for anticipating secular terms in the
perturbation of coordinates (Section 4.3 and Ref. 15).

) )

3.3 Higher-Order Analyses

The preceding examples are indicative of results to be found in the
vast literature on perturbations in the osculating elements. We have
merely covered the gist of this approach and several ideas which will
be useful in the appraisal of other methods. Some of the better-known
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contributions in terms of osculating elements are contained in papers
hy Krause, O'Keefe, Kozai, and Iszak.

In principle the quadratures (18)-(22) and (31) could be evaluated
iteratively to generate higher-order results. This procedure rests directly
on Poinearé’s convergence proof, and a formal technique based on this
approach is commonly attributed to Poisson. In several aerospace
publications this has been done to obtain second- and third-order secular
terms for oblateness effects. The algebraic labor is considerable, though
typical secular terms such as (40) and (41) tend to be reasonably com-
pact (see Refs. 7 and 9):

@ O R'e

Ag® = UM vl —‘1':..‘-26[ i _ 2
a Sai(l = o) (1 — 3 sin” 4 sin” 6y) [1 4 ey sin (wo + 6)] (40)

X (5sin® iy — 4) cos (wn + )

OrJ R sin 24,

A = T T P S LY sin 2w — (5 sinfd, — 4
‘Lu";l(]. - 802)4 ‘l-g ! ! 1( ! )

0 . \ 41
[Le)* sin 2wy — o cos wilcos B, + 1 cos 30,) (41)

— ¢y sin wy(sin 6, — 3 sin 36,)]}.

These results represent sceular inerements over a 2« step in 6, the cen-
tral angle measured from the node, where 6, is the initial value of 8.
Considerable emphasis must be placed in the derivation of such expres-
sions on checks from the conservation of energy and angular momentum
and duplicate execution of the algebra. (One likes to think that more
claborate explicit expressions will be attainable with the advent of com-
puter algebra.) A notable contribution in this arca was made by Merson,*
who presents second-order secular terms for J and first-order secular
terms for the next four higher harmonies of the earth’s potential. He
also advocates the use of “smoothed” elements which reduce the ampli-
tude of first-order periodic terms that might otherwise be inimical to
prediction accuracy.

IV. PERTURBATIONS IN THE COORDINATES

We turn now to a description of satellite motions directly in terms
of the position and velocity veetors. While these are dynamically equiv-
alent to the instantaneous orbit elements, we note that the time de-
pendence of the dynamic state variables in this form reflects the anom-
alistic motion as a primary effect. Therefore the long-time, secular
changes of the orbit may not be obtainable with the same clarity or pre-
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cision as in terms of the osculating parameters. On the other hand, the
position-time history gives a direct account of the satellite motion in
space and is useful for many aerospace applications. This prospect has
stimulated several engineering analyses in recent years.

To the analyst with a general background in mechanics it would seem
quite natural to approach a system of equations of the type (14) by
standard perturbation techniques. Thus one could assume the pertur-
bation series

() = 20 + k() + 2P + -
y() = ) + ™) + ST + - (42)
E(l’) _ z([n(t) + K,Z(n(t) _|_ Kﬂz('-’)(t) +

Il

and determine successively higher-order terms from the appropriate
governing equations, following essentially Poisson’s procedure. The
traditional Encke method pursues this line of attack. However, Cartesian
inertial coordinates have not enjoyed as much popularity as spherical
ones, which seem more compliant with the geometry of satellite orbits.
In the following, therefore, we shall concentrate on reference frames of
this general type.

4.1 Perturbations in Equatorial Spherical Coordinales

A rather well-known perturbation analysis for oblateness effects is
that due to Blitzer, Weissfeld, and Wheelon.' It uses the conventional
equatorial spherical coordinates, r, ¢, ¢ (see I'ig. 2) in terms of which
the equations of motion read:

F— 1 —rcos o = _1% — 3‘”'— [ — sin®g]  (43)
L 2
c% () + 1 sin g cos oy’ = ZJ:R Sin ¢ cos ¢ (44)

I
e

(ot o) (45)
t

Here we have considered the first aspherical term in the earth’s poten-
tial only. Since this is a zonal harmonic and does not contain ¢, the last
equation has a vanishing right-hand side. Then a first integral of this
equation

r cos” ¢y = p = const., (46)
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Fig. 2 — Equatorial spherical coordinate system.

representing the conservation of angular momentum about the polar
axis, permits a change to ¢ as independent variable, In addition, it is
convenient to introduce the definitions

1/r = u, tan ¢ = N, and [1/(r cos ¢)] = . (47)

Equations (43) and (44) now become

o Je TR [ l 2}
VAW = pare P rareplire Ts] @

and

2J kR’ Su
S” S = = 71 Ga\s 49
* P (L4 58%)° (49)
where “primes’”’ denote differentiations with respect to ¢. In this form
they are readily accessible to a perturbative procedure. We let

S=8"+ > J8"

n=1

w=u"+ Z Jh (50)
n=1

W = ”-rln 4 Z Ju”-(m.
n=1
Now we note that ¢ in (46) was understood to represent the actual,
i.e. perturbed, longitude of the satellite at all times. In order to make
the connection between this perturbed independent variable and the
time we find that
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1 (Ydy 1 [* 1 w
mum s =g (-2 )

— t(O) + i Jnt(n)

n=1

(51)

ie. the time itself evolves as a perturbation series, In the zero-order
solution of (48) to (51) the right-hand side of (49) vanishes and we get

S = A sin (¢ + 6), (52)

where A and & are integration constants. On the right-hand side of
(48) we retain the first term after substitution of S, Then W follows
in a straightforward manner. Substituting it into (51), the usual trans-
cendental expression for time in Keplerian orbits results. It is somewhat
obscured by the fact that its argument is given in terms of the longitude
rather than one of the anomalies. We record the simplified form of these
results for cireular orbits, where ' = 1/ry :

W = L+ atsint 9 + ) (53)

\

o =T 2 an (1 + A tan (¥ + 8)] ( (54)

T 2p {<1+A2>%

It is important to note that the expressions (52) and (53) represent
Keplerian (in fact circular) motion only for the unperturbed case: i.e.,
if (54) represents the entire time equation and no higher-order terms
as in (1) exist. For any perturbed motion, where ¢ is perturbed in
relation to time, the zero-order terms of course retain the Keplerian
forms (52) to (54), but they do not actually represent Keplerian motion.

If we now proceed to the first-order solution and retain only terms of
0(.J) in (48) and (49), we find

SO7 g _21532__‘8@_ (55)

7 1+ 8T

¥
Vo

and
wor Lo = :3]&‘8(0)%::
pll + 87T (56)
i 3kR*"" 1 _ 2
A+ ST Li T sor 8l

Since the right-hand side of (55) contains only zero-order quantities,
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we begin our solution there and the result is

O KR*A sin (¢ + 8) 4 cos (¢ + 8)

piry A1 4+ A?sin® (¢ + 6)] 1 4+ A2

1
{ﬁ tan ' [v/1 + A2 tan (¢ + 8)] (A7)

_ sin 2(y + 8) }
1+ A%sin® (¢ +68))°

Here we do not show a complementary solution, since it is of the same
form as 8" and ean be absorbed with the constants A and 6. We could
now substitute (57) into (56) to find W™ and then use (51) to calcu-
late the time. However, the inverse tangent in ' constitutes a secular
term, which is considered an objectionable feature for some applica-
tions,

This disadvantage can be avoided by inserting an additional trans-
formation between ¢ and the argument of S, Instead of using ¢ + &
for the latter let it he

o=MN + 6 (5H8)
where
AN=1+4 2 J\ (59)
n=1

and the A, are constants. This deviee is commonly attributed to Lind-
stedt.” To obtain the zcro-order solution we need only substitute ¢ for
the angular arguments in (52) and (53). However the equation for S"
changes significantly, viz.:

_ ;)A.Rﬂs(ﬂ)u([))

where the primes now denote differentiations with respect to . Thus we
find

SO 4 g — 20877 (60)

FR* (A% cos e — 1 — A7)
PPArg(1 4+ A?)(1 4+ A*sin’ o)

’ngA‘l -1 2 Jz'
Pl + A7) tan [(1 4+ A7)* tan 0'}}.

The appearance of the free parameter A, in this result gives us the

(61)
— cOS o 1)\1.-10' —
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opportunity to suppress the secular term. Thus, if we choose
kR?

= i+ A ()

A

(61) becomes

kR?A cos o _ 2

— ’p——zﬁl(l T A% {tan” [(1 4+ A")" tan o] — o}. (63)

Here we have again omitted all terms of the same form as S The net

contribution from the terms in braces is c¢yclic and has the period 2 in o.
According to (58) and (62) this amounts to a period of

JER®
2 [1 ~ A A Az)}] (64)

in ¢. In effect, Lindstedt’s transformation distorts the independent
variable to absorb the secular effect. We shall see more of this later.

In principle we eould transform (56) to o and solve for W in a straight-
forward manner. However, to simplify the algebra, a redefinition of W
will be convenient. We may backtrack to the explicit form of (48) in
terms of S, u, and o.

[] + S(O)I]EH(I)” + 2[1 + Sm)ﬂ]S(D)S(O)’u““
+ [’S(ﬂ.‘r"2 + S(U)2 + l]u(l)

_ n’i?RE )2 1 __'g (65)
IR S WAL

_ 2[8(0)8(1) + S(n)rS(ur _|_ S(n)ﬁ)\]]u(m

m
S

and take
W = (14 89w, (66)
Then we obtain®
ER%WT1 — 287
prA?

W{l)” + W[I) —

2u” () gt (07 1)/ ()72 (67)

where A = (1 4+ A*sin® 0)*.
Substituting (63) and ignoring the complementary solution for W™ we

* Note that the formulas (36) and (38) in Ref. 9 contain several misprints.



PERTURBATION METHODS 869

_ — kR’
3:03?‘[.2(1 + Az)sAa

+ A*(9A" + 24 — 7) sin® ¢ + 5A4* + 24* — 3).

Now it only remains to find a relation between ¢ and time. From (46)
it is clear that

[44%(A* — 1) sin' & (68)

1 f‘” s 3 1 f do
— = = S = % 9
T S R ¢ e PO
which we expand up to 0(.J). This results in
tm) = p(l+u-42)‘f tﬂﬂ71 [(] + Az)} tan 0’] (70)
and
m 1'02 "1 270 rr(1) 24 sin § Sm]
=" - — W — - |d
A R L L

o2 1 bk
_ ILR To {( + A ) [A2 Sin 25’ + 12(1 + A2)%U]

TP 4+ AT 124°
p (14 47 a1

2
+ [2 — 34" + %z ((1 + A? sin® ¢ — cos® a)]

stan ' [(1 4+ A% tan a']}

and completes this analysis of near-circular orbits.

Throughout the foregoing discussion we have used a perturbed
coordinate, y or o, as the independent variable. In principle, we could
have done without Lindstedt’s device, and we could have used the un-
perturbed longitude ¢'” as the independent variable. This approach
has the attractive feature that the zero-order solution (in terms of ¢'*)
represents true Keplerian motion. The perturbed longitude could be

. 0
expressed in terms of ¢'” as

Vo= T (72)
n=1
However, if one develops the governing differential equations for S
and W he discovers that they are completely coupled for this par-
ticular example. This approach, therefore, loses its practical value.
In conclusion we note that, in spite of various transformations, the
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final results (63), (68), (71) of this analysis scem rather awkward,
considering the fact that they represent the relatively trivial first-order
oblateness perturbations of a near-circular orbit. This is of course due
to the choice of spherical equatorial coordinates to represent the motion
in a nonequatorial orbit. That disadvantage was eliminated in other
formulations, to be considered next.

4.2 Perturbations in Orbital Spherical Coordinates

As the title of this section indicates, it is more natural to use the
plane of unperturbed motion as the fundamental plane for inclined
orbits. A typical analysis in this category is that by Anthony, Fosdick
et al."™'" The coordinates r, 8, g of their reference frame (see Fig. 3)
take the place of », ¢, (7/2) — ¢ in Fig. 2. The angle o = (w/2) — ¢
(Fig. 3) is introduced occasionally for trigonometric simplifications.

The left-hand sides of the equations of motion of course are not al-
tered by this change of coordinates, but the right-hand sides (represent-
ing oblateness perturbations) aequire the forms shown in (73) to (75).
As usual, we introduce v = 1/r and p = " = 6/u" and change the
independent variable from ¢ to 6. We note that 6 is the perturbed cen-
tral angle in the nominal orbit plane. Thus, the equations of motion
become

(pu) + pu(p” + sin® B) = (k/p)Il + JRW (1 = 3 cos’ a)] (73)
(po') — psinBcos B = (—I.'JRQu/p)[(sinzi sin® 6
— cos” 1) sin 28 (74)
+ sin 2¢ cos 28 sin 6]
(psin®B)’ = (—kJR'/p)[sin’ i sin” B sin 20

+ 1 sin 2¢ sin 28 cos 6]

(75)

where primes denote derivatives with respect to 6. We subject this
variable to the first-order Lindstedt transformation

(1 + Jn) (76)

Il

T
and use the “ansatz”
w = u"a) + Ju'" (o)
p=20"0) + Jp"(0) (77)
8 = (/2) + J8" (o).



PERTURBATION METHODS 871

Fra. 3 — Orbital spherical coordinate system.

Without an excessive loss of generality we may assume a horizontal
launch at the node and, by the definition of the 6 plane as nominal
orbit plane, the initial veloeity vector vy lies in it. Thus, at ¢t = 0: r =
ro, 7 =0,8=m/2,8 =0,and § = v,/ry. In general, v, will be such as
to produce an elliptic orbit. The zero-order results are

PO = ran
and
w'" = (k/ri'v’)[1 + e cos o) (78)
where
e = (rao/k) — 1

and has the form of a Keplerian eccentricity. As in Seection 4.1, the
zero-order solution (78) will represent Keplerian motion only for the
unperturbed case, i.e. when ¢ = 6 = 8", Now the first-order solutions
follow in a straightforward manner:

pV = (=E/2ra’) (R/r0)* sin’ i {1 + 4e¢ — e cos ¢ — 3e cos 3o

. (79)
— cos 2q
w? = (FR/ru™) 1 + 3¢ + sin®i(— } + 4e — 3¢°)
— 3(&* + sin® 1) cos 26 — e sin® 7 cos 3o (80)

2 . 9 .
— o'ge sin” 7 cos 4o

— 1 4+ ¢ — sin’ i(3 — e + 3¢°)] cos o},
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where we had to select the Lindstedt parameter as

A= (BRYr'n®) (3 sin” 4 — 1) (81)
to avoid a secular term in (80). Finally

22 : .
g = k& sin 2 [(1 4 2¢) sino — o cos ¢ — $esin 20].  (82)
2rytvet
It is clear that the secular term which was absorbed by the Lindstedt
parameter has to do with the apsidal precession. In the absence of addi-
tional Lindstedt parameters we have no countermeasures against the
secular term in (82), which reflects the nodal regression. (Note that the
latter was counteracted by the Lindstedt transformation of Section 4.1,
since it was the only secular effect to be considered for near-circular
orbits.)

The time equation for this example ean be written in a straightforward
fashion. From the definition of p it follows that

(1 =J™) o

t — b =
1 0 o Py

where ¢y and o, correspond to the time limits £ and ¢, . An expansion
to first-order terms yields

i de
@ 4 Ji = f —
o P U
(83)
o1 1 p(n u
—_ J j;u p(u)u(ogz )\1 + ;ﬁ + 2{@] dO’.
This leads to
10— 7oV { —esin o
TR (1 —e)(1 + ecosa)
(84)

2 tan~! 1—891~ a ||
ta—art [\ree) "2,

which we recognize as being of strictly Keplerian form but in terms of
the perturbed angle ¢. Similarly
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o R’ {sin a(4 — ¢ + 3¢ cos o)

Toly

I:I +§e+%;cg+%ea

(1 — e)2(1 + e cos 0)?
* ((Jl(’ — 3+ de+ 3" — %’fa) sin® ’L]

. sin o
(I —e*)(1 + ecos o)

+ (322 — 5+ e — %rf"') sin’® 1]

2014 e)' + de'sin’ i), [(1 — g)* a} o
(1 —¢")f an S \re) e

The set of results (78) to (85) gives a reasonably convenient descrip-
tion of first-order oblateness perturbations which might be useful in the
targeting and guidance of space vehicles. Extensions to near-parabolic
and hyperbolic trajectories follow quite readily. As in Seetion 4.1, we
note that the analysis might have been exceuted in terms of an unper-
turbed independent variable, viz. 8'" instead of 6, and in that ease the
zero-order solution would represent true Keplerian motion.

The inclusion of secular perturbations in the independent variable o
serves the same purpose as the definitions of “mean clements” intro-
duced by Breakwell et al., by Hansen, in the von Zeipel method, and in
modern averaging techniques. The Lindstedt transformation is not the
most powerful device in this eategory hut it can be extended to absorb
secular effects in more than one coordinate. This will be illustrated in
the next seetion in terms of “secular rotations” of the reference frame.

[2 — e + 3¢ (85)

4.3 Perturbations in Rolating Spherical Orbital Coordinates

The idea of using suitable coordinate transformations with arbitrary
parameters to neutralize secular trends was exploited in a more general
way by R. E. Roberson.” His approach uses the orbital coordinates r,
0,6 [= (w/2) — B], in agreement with Section 4.2, but assumes that
the entire reference frame will be subjected to three monotonie rota-
tions, corresponding to three Fuler angles, such that the satellite motion
relative to this reference frame exhibits only periodie perturbations.
This kinematic outlook on secular trends forms an interesting parallel
to several elassical procedures. Roberson himself makes some illuminat-
ing comparisons between engineering analyses such as Refs. 9, 10, and
12 to 16 and traditional formulations in terms of mean variables. He
restricts his analysis to first-order perturbations, realizing that a con-
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sistent higher-order theory would have to include contributions from
other physical effects and various coupling terms. Some of his remarks
seem quite perspicacious in comparison with the other aerospace litera-
ture of that time.

The angular velocities stipulated for the reference frame must of
course depend on the secular effects that need to be absorbed. In the
presence of several physical disturbances the different angular motions
of the coordinate system can be superposed to first order, and the re-
sultant motion of the reference frame will suceeed in neutralizing all the
secular effects simultancously. This seems intuitively obvious and can be
demonstrated in a straightforward fashion."

In Fig. 4 the angles & and 7 define a mean orbit plane, in that each of
them manifests a secular rate. Now the satellite position is given in
terms of the orthogonal system %, #, Z, which displays a secular variation
with respect to the node (and this corresponds to the third Eulerian
rotation). Let the three sccular rotations be denoted &2, «(di'/dt),
o where « is the perturbation parameter. They will in general be
functions of €, 7 and the characteristics of the perturbation source.

Turning to the problem of first-order oblateness perturbations, we set
« = J and assume the appropriate form for the perturbing potential.
Now let

9 = 6, +f' = 6, +j-w; + me, (86)

where f = 0 at ¢t = 0. We adopt J as independent variable and let de-

z

Fia. 4 — Rotating spherical orbital coordinates.
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rivatives with respect to it be denoted by primes. Assuming that the
secular rates are constants, we let

8 =09" + J0vF
i = _itm + Jimf (87}
o + Jo'"7.

S
Il

As usual, the equations of motion are transformed by means of

w=1/r and p = 7'2j' (88)
and we find:
(pu')" + pu[(8’ — Q7 cos 6 sin 4)*
+ (cos s + @" cos § + 2 cos ¢ cos »)? (89)
— (/)1 4 3JR(1 — 3sin’g)] =0

[p(8" — @ sind cos 0)]" + pl(1 + @)% sin 6 cos 6
+ (1 4+ &")Q2"(sin 6 cos » cos ¢ + cos 8 sin ) (90)
+ 2% sin ¢ cos » cos ¢] + (JERGu/p) sin ¢ cos ¢ cos » = 0
[pcosd (0 cosd + Q" cos ¢ cos v)]
+ pl(1 + &")Q" sin 6 cos 6 sin @ cos 0
+ Q"% cos 6 sin @ sin & cos » cos ¢ (91)
— §'Q" sin ¢ sin 0]
+ (6JER*u/p) sin ¢ cos 6 sin 7 cos 0 = 0,

where ¢ is the latitude and » is defined in Fig. 5. We have made a slight
digression from orderly progress in this step by setting i = 0. This is
prompted by previous experience with this problem — viz., that no
first-order secular perturbations oceur in 7 — and would have developed
from the later caleulations in any event.

Using the forms
w=u"+ Ju"
p=7p"+ Jp® (92)
8 = Js"
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Fig. 5 — Definition of ».

we reduce (89)-(91) to equations of 0(1) and 0(J). The zero-order
solution is of course

0 0
3" = ) p“ = const.,

93
and 1w = (k/p"1 + e cos (f — @)l (98)

As in previous examples, we see that this will represent Keplerian
motion only in the absence of perturbations, i.e. if f = /' and &% =
o™ = 0, yielding an inertial reference frame. We assume that the con-
stants of integration (p'”, ¢, ) are chosen such that (93) with f = 0
yields the satellite position and velocity at ¢ = 0.

Proceeding with the solutions to 0(J) in the usual fashion, we re-
quire that

. 3JI2R? cos 1@
v = — o (94)

in order to avoid a secular term in 8" and
6" = (3R /2p"") (5 cos” 1" — 1) (95)

to avoid one in %" These of course reflect the nodal and apsidal pre-
cessions. The complementary solution for p" introduces one constant
of integration, and the complementary solutions for 3" and «" have
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the form
A sinf + Beos]. (96)

Since the zero-order solution already accounts for the dynamic state of
the satellite at ¢t = 0, the first-order solution encounters homogeneous
initial conditions as far as they do not reflect the rotation of the reference
frame. Thus at f = 0:

) 1 1

u(l — 6() — 0, u( ] =0
a . «(0)

87 — Q" sin 7' cos 6, = 0,

and

(l/j(m)mu(l)n(mp(m 4 uw)?pm) 4 ﬁ.‘_m

- (0 e .
+ 0" (cos i — sin i sin 6,) = 0.

(97)

These govern the first-order constants of integration. [A little reflection
shows that the forms (96) for " and u'” can be interpreted geometri-
cally as constant changes of @ and 6 to 0(.J). Roberson anticipates this
by introducing such constants in (87) and using them in place of two
of the integration constants for 8" and «'”. However, nothing seems to
be gained by this artifice and, if anything, it distracts from a systematic
procedure.]

Finally, the time equation follows as usual in terms of f to 0(J).
Roberson proceeds to invert it, though the computational gains do not
seem to justify this algebraic labor.

So much for our sketch of Roberson’s procedure. Its extension to
higher-order analyses is fairly obvious. At every level of refinement,
0(J™), three coordinate rotations may be introduced — which are com-
mensurate with the three degrees of freedom of the satellite problem
whose secular trends we are trying to neutralize.

For “medium-range” prediction formulas it seems an open issue
whether the rationale described in this section and traditional astro-
nomical devices (like the “auxiliary ellipse” used by Hansen or the von
Zeipel transformations based on Hamilton-Jacobi techniques) offer a
computational advantage over the straightforward development of the
Poisson method for successive higher-order terms. With the advent of
computer algebra the latter technique may be quite satisfactory for
many applications. However, for ‘“long-range” predictions and life-
time studies it seems advisable to employ the aceredited astronomical
techniques of “‘extracting” secular effects and anticipating long-period
terms in one way or another.
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V. MOVING RECTANGULAR ORBITAL COORDINATES

We close this article with a formulation which calculates the posi-
tion offsets for a satellite from its unperturbed orbit in an explicit
form.”™" Instead of reckoning the perturbations in terms of the quan-
tities 7, 6, 8 or 8, which are defined relative to the center of the
earth, we now consider a coordinate system whose origin is the nom-
inal satellite position 0’ on the unperturbed orbit (see IFig. 6). The
latter may be defined by the initial conditions at time {,, viz. 1o
and v,. We establish an orthogonal triad about the moving point 0’
with £ in the radial direction, » in the direction of anomalistic motion,
and ¢ normal to the orbit plane. In the guidance engineer’s language

Fic. 6 — Moving rectangular coordinates centered at nominal satellite posi-
tion.

these represent offsets in altitude, range, and cross-range. Any non-
vanishing coordinates in this system are the effects of errors in the
initial conditions or of geophysical forces. It is clear that this description
of the perturbed motion can be quite useful in guidance studies, e.g.
to exhibit the relative motion between a space station (given by 0°)
and a transfer vehicle (located at £, 7, ¢) in a homing maneuver. In the
subsequent discussion f will always represent the unperturbed true
anomaly in the nominal orbit and 6 = « + f the unperturbed central
angle.® No Lindstedt transformations or perturbative coordinate rota-
tions will be employed to develop this theory into a more sophisticated
prediction scheme. Instead, we concentrate on the geometric interpre-
tation of various results.

* We depart from earlier notations by omitting the superseript (0) from un-
perturbed quantities for simplicity.
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The equations of mohun (an be derived by the standard Lagrangian
or Hamiltonian formalism,"” and their linearization to 0(&, n, ¢) yields

£ — 29" — E— 2[E+ e(& — n) sin f]/(1 + e cos f)

- _a(*l]—i)y/ 1+ e cosf)* (98)
7"+ 28— — [— 9+ 2e(y 4 &) sinf]/(1 + ecos )

_ a,j(lk— ')’ 0+ eeosy (9
A e = 2¢esin f]/(1 4 e cos f)

= - le_ 2 7e/(1 + ¢ cos gyt 100)

where primes denote derivatives with respect to f and V is the perturba-
tive potential, which exists in addition to the central body term —k/r.
The subseripts of V' denote partial derivatives with respect to £ n,or .

The solution of the homogeneous set (98) and (99), where ¥V = 0,
represents a complementary solution for the cases where ¥ # 0 and
will be needed to satisfy the initial conditions. For an elliptic nominal
orbit this solution has the form

1 - Je k .
iy =3 () o]

k i
—deacosf — ((1 o) ) sin f

7= — 5(1%((1"—(2)”) (1 + ecos f)(t — 7)

+ 8¢ asin f M — or ((——]‘ﬁ-—-) (102)

Il

£
(101)

1+ ecosf 1 — eHa

a(l — ¢)

. S - — ¢/

(1 4+ ecosf) + @y e

2

¢ = (l_a(—lul—%s)f) [67 sin & — 82 sin % cos 6)]. (103)
This result can be adapted to hyperbolic, parabolie, and near-parabolic
orbits without much trouble. The constants of integration éa --- & are

of course just a set of numbers to be determined from the initial condi-
tions, but the symbols we use for them indicate the parameter changes
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of the nominal orbit that they represent. Alternatively, these constants
could be given in terms of & - - {/, the perturbations of the position
and velocity at fo. That form is more descriptive for various guidance
applications. Thus we find for nominally circular orbits

£ =2 + 48 — (20 + 3&) cos (f — fo) + &' sin (f — fo)  (104)
n=m — 2& — 3(n + 28)(F — fo)

+ 2(2nd + 3&) sin(f — fo) + 2& cos (f — fo)
¢’ sin (f — fo) + focos (F — fu). (106)

(105)

¢

(Since a nominal perigee does not exist for this case, we assume that
the angle w, whose existence is still implied by the notation f, has some
arbitrary value @ Without loss of generality we can set fo = 0 so that
0 = @.)

In a guidance application & - - - {’ might represent the errors result-
ing from a position and velocity determination or a corrective thrust
maneuver and (104) to (106) would then describe the “run-out” as a
function of time. In an “orbit sensitivity’’ study these expressions can
be used to demonstrate the effect of & - -+ & on the orbit parameters.
In a homing maneuver the same expressions would represent the rela-
tive motion between the two vehicles attempting a rendezvous. In
principle, two relative position measurements X: £ =, { at separate
times suffice to determine all the constants in (104) to (106), and a
corrective maneuver could be planned to drive the residuals to zero at a
specified instant or by successive approximations.

Particular solutions of (98) to (100) can be found in a straightforward
manner if ¢ = 0. For e # 0 we construct these solutions as power series
in e, for lack of a better expedient. We consider the series to 0(e) and let
them be denoted by

E=§1+§2+€_ij
n=m+mted g =123 (107)
f=b+th+te2h

where

EqnfL = the complementary solution (104) to (106)

Em.f2 = a particular solution representing ¥ to 0(x)

fughy = solution reflecting e- (£, 71, §1) on the right-hand sides of
(98) to (100)
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fagahs = solution reflecting ¢+ (&, 4., &) on the right-hand sides
Jagshy = solution reflecting e-(Ve, V,, Vi) on the right-hand sides.
The following explicit general forms can be given for these solutions:

b= @) [ =2 [ Pydr+ 2 oss [ Pueossar
+ cusj'f Vesinfdf + 2 siuf_/ V, sin f df
—sin [ Pecossar
7 = (d'/1) [3 ff v, df df + 2 f Vodf — 4 sin f f Pycosfdf (108)

~ 2 sinff Vesin fdf + 4 cos ff V, sin f df

-2 msff e cos f rlf:[

&= (a'/k) [(-ns_ff Vesin fdf — sinff Ve (fUSfdf:l
where we take fy = 0 for the lower limit of all quadratures.
fi = (ny — 28/) sin f — (o + 2&) cos I — 3(n' + 2&)
Msin f
g = T0n + 28) sin [ + (g — 2&") cos f — 3(n/ + 28 (10Y)
feos f — (&//2) cos 2 — (n' + 3&) sin 2f
o= — (&/2) — (&//2) sin 2 — (&0/2) cos 2f.

The terms fo, g2, and /iy arc obtainable from expressions analogous to
(108) but with the following substitutions:

) sinf — 2& cos f for (—a’/k) TV

208 — m
2(q 4 E) sinf + 7. cos f for (—a’/k)V, (110)
28 sin f + § cos f for (—a’/k)V;

and fiyg:hy follow from (108) if we substitute
(4a’/ 1)V i ne for (—a®/k) Ve . (111)

Since the differential operators for all of these partial solutions are of
the form
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E” _ 217! . 35

N+ 2% (112)
g.-” + g—,
no explieit complementary solution of 0(e) is provided: i.e., the con-
stants & - - - o’ will be used to satisfy the i.c.’s to all levels of accuracy.

These will differ from zero only if the nominal orbit is taken to differ
from ro and vy at .

Specific results may now be obtained by the above formulas, which
lend themselves to a geometric interpretation of perturbed satellite
motions. For the oblateness effect one finds

£, = (JR'/a)[—1 + sin® i(§ + § cos 26)]
(JR*/a)[(2 — 3 sin® 4)f + % sin® ¢ sin 26] (113)
(JR*/2a) sin 2i[f cos 6 — % sin 0].

2

{o
The terms in 26 reflect the doubly symmetric distortion of the orbit
due to the oblateness of the gravitational field. The constant term in
£ and the secular term in 7. reflect the additional mass of the equatorial
bulge. Combining (113) with (104) to (106) into a complete solution,
we observe that the constant term in £ is

Aa = (JR/a)[—1 + $sin’d] + 20/ + 4&

and the secular term in g (114)
adg = fI(JR/a)(2 = 3 sin®d) — 3(n' + 28],

which represent the differences between the nominal circular orbit
and the mean circular orbit resulting from the perturbations. Since
Aa = 0 and A9 = 0 do not yield linearly independent conditions for
£, and ny’, we cannot effect a launch so that the radius and the mean
angular rate coincide with the nominal ones (determined for a spherical
earth) unless sin 4 = 4/2/3. On the other hand, it turns out that we
can preserve the nominal inclination of the orbit by choosing {o = 0 and

¢/ = (JR*/2a) sin 2i cos 6, . (115)
Now, if we designate Af; = [fa]s=0", we find for the nodal regression
= .1 2
Q= A}fqu I (E) 008 (116)
sint 2ra’ é

and this agrees with the well-known result.



PERTURBATION METHODS 883

In the case of drag perturbations one replaces V, V,, Vi of (110)
by the appropriate components of (11):

Fi=0
Fo= — (Codpy/2m)[(k/a) — oa cos i](k/a)! (117)
Fe= — (Cpdpy/2m) o sin i(ka)t cos 6
and finds
E o= (2d°/k)F,f
o= (d'Fy/k)[4 — 4/ (118)
G0 = (a’I'e/4)(2f tan 8 — cos 6].
Noting that
e (119)

we have agreement with standard results for the orbital precession
due to diurnal winds.
If we extend this drag analysis to 0(¢) we find

fo+ 1s
gr + g5 = (@17/20)[6f sin [ 4+ 9 cos [ — 3% cos f]
(120)

hy + hy = [@'F/ (4 cos 0)][5 cos (0 + 2f) — 4 cos @ — [sina

(a'F,/28)[& sin f — [ cos [ — 3f* sin f]

— [sin (@ 4+ 2/)],

which are simple enough to permit a further extension to cases where
po = p([) is variable around the orbit. The details are straightforward,”

It is of course understood that any of these results should be ac-
companied by &mf if a general solution is desired. This, however,
adds nothing to the characteristics of a particular perturbation. The
formulas (104) to (106) and (108) to (111) can also be applied to a
variety of other effects such as luni-solar perturbations and radiation
pressure.

The motivation behind the results of this section was to give a geo-
metrically tangible account of perturbed satellite motions over a frac-
tional period or just a few periods. This may be useful in various tar-
geting, intercept, and rendezvous operations. On the other hand, the
formulations of Sections 111, 4.2, and 4.3 form the beginnings of ephem-
eris computing techniques and orbit lifetime studies. These subjects
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have been pursued further in several higher-level methods (see Section
I), some of which deal partly with the elements and partly with co-
ordinates and make occasional use of contact transformations. They
may be considered a stepping stone to full-fledged astronomical pertur-
bation analyses, about which there exists an extensive literature.
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