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TWM Applications*
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The space harmonic analysis of the dielectrically loaded comb structure
as used in traveling-wave masers (TW M) is presented. The frequency-phase
characteristics (the w-B diagrams) are computed by regarding each finger
of the comb structure as a capacilive loaded transmission line. The impedance
of the line is based on the space harmonic analysis. Compuled data are found
lo be in agreement with experimenlal resulls and, in particular, it is con-
Jirmed that the w-B relation depends very critically on certain dimensions
of the dielectric loading. The resulls of the analysis are used to derive pre-
scriptions for the design of diclectrically loaded TWM comb structures,
especially of structures with low group velocity which are suitable to pro-
vide stmullaneously large gain and large instantaneous bandwidth.

I. INTRODUCTION

The comb-type structure has been used successfully as a slow-wave
structure for traveling-wave masers (TWM).! In a TWM the small-
signal gain in db is inversely proportional to the group velocity. Gener-
ally the gain obtainable from present maser materials is small. Therefore,
a great deal of effort in developing a T'WM is concerned with deriving a
comb structure design with small group velocity at the frequency of
interest. Both the group velocity and the passband of the comb structure
can be found from the w-@ diagram. The shape of the w-8 diagram of the
comb structure loaded with “masing” crystal depends very critically on
the various dimensions of the structure as well as of the crystal. In this
paper, an analysis of the comb structure will be presented. It should
serve as a guide for a reasonably accurate determination of the dimen-
sions of the comb structure, of the active maser material and of other
dielectries which give rise to a required -8 diagram. Some additional

* This work was supported in part by the U. 8. Army Signal Corps under Con-
tract No. DA 36-039-8C-89169.
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experimentation may be needed in practice for small corrections of the
resulting w-8 characteristic.

Various tape structures with the tapes perpendicular to the direction
of signal propagation have been proposed and analyzed?#-5 in the past.
The space harmonic analysis originally introduced by Fletcher® was
used to obtain the w-8 diagrams of these tape structures. It assumes no
RF field components in the direction of the tape (TEM wave approxima-
tion); that is, the tape can be regarded as a transmission line supporting
the TEM wave in the direction transverse to the direction of signal
propagation. An impedance matching condition for the TEM lines in the
transverse plane can be derived (transverse resonance). The resulting
equation implicitly contains the -8 relation. The authors mentioned
treated only the case where the structure is immersed in a uniform di-
electrie, that is, mostly vacuum. For the TWM application, the structure
is alway partially loaded with dielectric and the TEM approximation no
longer holds. However, when the structure is nearly filled with dielectric,
as in TWM’s for a large gain and simultaneously large instantaneous
bandwidths,® one finds that the TIEM approximation can also be success-
fully used to caleulate the w-g diagram of the dielectric-loaded tape
structures. An “‘effective dielectric constant’ is then defined to take into
account the fact that the structure is only partially loaded with dielec-
tric. This approach was used in earlier calculations of the upper and
lower cutoff frequencies of the comb structure by Harris, DeGrasse and
Schulz-DuBois.” The analysis to be presented here extends their work to
cover the entire w-8 diagram.

The -8 diagram of the comb structure! and the “Karp structure’”® for
TWM applications had also been discussed previously, using the
equivalent circuit method. However, the field analysis to be presented
here gives a more detailed understanding of the structure. For instance,
the filling factor of the active erystal and the performance of the isolator
embedded in the structure are readily obtained by this analysis.

In the next three sections, the w-8 diagram of the comb structure, the
impedance of the tapes (or fingers) and the effective dielectric constant
will be derived. This is followed by a more detailed discussion of various
properties of the comb structure, including the techniques available for
reducing the bandwidth of the passband, higher-order transmission
bands of the structure and practical design considerations. The calcula-
tions are usually compared with experiments, and they are found to be
in good agreement.

The impedance of the finger and the effective dielectric constant are
defined as a function of 6, the phase angle between adjacent fingers. The
phase angle 6, or equivalently the phase propagation constant 8, are
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related to the frequency w by the w-8 relation which is obtained from the
transverse resonance matching condition. Only the ruby-loaded comb
strueture is treated here up to and ineluding numerical details. It is
easily possible, however, to extend the same type of analysis to other
types of tape structures. This is particularly easy since both the im-
pedance and the effective diclectric constant are evaluated here as
funetions of 8 and not of «.

II. THE w-3 DIAGRAM

Let us consider first a comb structure without dielectric loading
(empty comb). The open end of the fingers has fringing electric fields
terminating at the surrounding conductors. The effect of these fields can
be expressed by a capacitance (' (Fig. 1) which in general is a function
of 8, C = C(8), where 8 is the phase angle between the adjacent fingers
and takes values from zero to = radians over the passband. It will he
assumed that the RI" electric and the magnetic fields vanish in the
direction of fingers (y direction) except at the finger tip. Then the finger
can be regarded as a TEM transmission line with a characteristic im-
pedance K and supporting a wave propagation in the y direction with
velocity ¢, the velocity of light in free space. K is a function of 6, K =
K(8). At the finger tip (y = &), the impedance looking in +y and —y
directions must have the same magnitude and the opposite sign; there-
fore there exists a matching condition

| . wh
= K(6) tan 2, 1
oC(gy ~ KO) tan 2 (1
According to this equation, the grounded finger presents an induetive
reactance at the finger tip. The length of the finger A is therefore limited
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Fig. 1 — Cross scetions of the comb structure.
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(m — 1)w < wh/c < (m — 3)m, m=1,23 ---. (2)

For a given 0, one can find the frequency from (1), provided the func-
tions K(6) and C(8) are known, and in this way the -8 diagram (or
w-6 diagram) may be derived. For m = 1, the finger acts essentially as
a quarter-wave resonator and (1) gives the lowest passband for a given
geometry of the comb structure. For m = 2, the finger behaves as a
three-quarter wave resonator and the next higher passband appears.
Thus the comb structure provides a series of passbands separated by
stop bands.

When the comb structure is partially loaded with dielectric as in Fig.
1, there appear components of RF fields in the y direction, and the finger
no longer behaves as a TEM line. However, when the structure is al-
most completely loaded with the dielectrie, the fields are again approxi-
mately TEM waves in the y direction. We will adopt this TEM approxi-
mation for the loaded structure and modify the impedance K and the
propagation constant w/c of (1) by a factor v/e(68). () is called the
effective dielectric constant and it will be defined more rigorously in Sec-
tion TV. Then the dispersion equation for the loaded comb can be ex-
pressed as

1 _ KO . ehVe®) 3)
wC'(8)  +/e(8) c
for the ease where the structure is loaded with dielectrie of uniform thick-
ness from y = 0 to y = h as in Fig. 1. For simplicity K(8), C(8) and
¢(8) will be abbreviated as K, C and e from here on. The TEM approxi-
mation offers a further advantage, since it enables one to analyze the
various “finger tip loadings” in a simple way.

Tt turns out that, in practical realizations of the comb structure, the
fringe capacity C' is always small, so that whv/¢/c is close to (m — })=
withm = 1,2, 3, --- . Hence (3) can be simplified by defining a quan-
tity Ah through

w+/e(h + AR) fe = (m — §)m (4)
Substituting (4) into (3) and using the fact that Ak <k, one obtains
Ah = (KCc/e€) (5)

where it should be noted that Ah is also a function of 8. Equation (4)
becomes

(2m — 1) } =\ (h + K_C”) (6)
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where N = ¢/f is the [ree-space wavelength. For the empty eomb, the
w-B diagram can be obtained from (6) by letting ¢ = 1. Equation (6)
states that, in the passbands, the finger length % plus the correction due
to the fringe capacitance at the finger tip should be (2m — 1)A/4 when
measured with the scale v/e.

1II. IMPEDANCE OF THE FINGER, K(6)

The admittance of a single finger as a TEM line is a somewhat ab-
stractly defined quantity. One considers transmission lines having the
cross section shown in Fig. 1(b), but without dielectric and infinitely long
in the Zy directions, or alternatively suitably terminated. On this set of
identical transmission lines one considers waves of equal amplitude
traveling, for example, in the +y direction and phased by 6 between
adjacent lines in the +z direction. Under these conditions, the admit-
tance of a single finger is defined as the ratio of current to voltage on a
finger and is a function of 8.

Consider a comb strueture as in Fig. 1, but without the dielectric and
with the structure divided into three regions as shown. Then the current
on a finger is the sum of the current on the surface of the finger in region
1 (between the fingers) and the current on the surface of the finger in
regions 2 and 3. Thus the admittance of the finger is the sum of two
admittances:

YV(8) = Y(8) + Ya(6) (7)

where Y1(8) is the admittance due to the current on the surface of the
finger in the region 1 and Y.(#) is the admittance due to the current on
the surface of the finger in the regions 2 and 3.

The current on the finger can be found by a line integral of the RT
magnetic fields, which in turn can be found by matehing boundary con-
ditions in the 2-z plane.

The potential on the mth finger may be written as

-[vm — Ive—jmﬁ (8)

where 6 is again the phase angle between the adjacent fingers and may
vary from 0 to 7. Then, as will be shown in Appendix A, the potential
along the z axis between the mth and the (m + 1)th finger can be ex-
pressed as

V(oz) = Ve imve l:g(z) L-Usg — jf(2) sin :f] (9)
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where g(z) and f(z) specify the symmetric and the antisymmetric part
of the potential distribution respectively. g(z) is also the potential dis-
tribution when 8 = 0, and f(z) is also the potential distribution when
g = . It should be added that the representation of the f-dependent
potential distribution by a combination of §-independent symmetric
and antisymmetric functions, g(z) and f(z), is at best a good approxi-
mation or, to use a more appropriate term, a guess. The representation
is strictly correct only for 8 = 0 and § = =. However, it is bound to be
a good approximation near # = 0 and near § = « where one of the func-
tions dominates. The calculations show that the detailed shape of the
potential distribution assumed is of little influence in the midband re-
gion near 8 = 7/2 and in fact up to 6 = . It is in this sense that the
expression into a symmetric and an antisymmetric part, which is a power-
ful tool in other electromagnetic problems, is justified here.
The RF electric field on the z axis becomes

E. =0, mL-——IL;E<z<mL+L—_—l
2 2
(on the fingers)
l (10)
Ez=—‘?9—z, (-m+%)L—§<z<(m—|—%)L+§l

(between fingers).

The E, field in region 2, E.., may be expressed by a space harmonic or
generalized Fourler sum

E.= > F,sinhg, (W — a)e Pt (11)
where 8,L = 6 + 2nw, W is the height of the waveguide as shown in
Fig. 1, and F, is the amplitude of the nth space harmonic component.
Tach term of the sum is the electric field of a TEM solution to Maxwell’s
equations, and the z dependence, exp (—jB.z), assumes periodicity of
the resulting field pattern from finger to finger as required by (8). The
as yet unknown amplitude coefficients F, are determined by letting
x = 0in (11) and equating the resulting expression with the field on the
z axis (10). Thus,

Ve —j(m+}6 f(m+§)n+m2) , g .8 e
" Lsinh W U g cos 5 — jf sing | dz (12)

where ¢ = dg/dz and f' = df/dz. The current on the surface of the mth

Fo=

m+LyL—(1]2)
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finger facing regions 2 and 3 can be found from the line integral of
the z component of the RI" magnetic field there, and finally ¥, becomes

[ sin ﬁﬁ—"(Lz_ )
1" =
L .= ) Bn(L Bu(L — 1)

(L+1)[2 w+nie
I:cos —f " sin Baz dz + sin ~f S cos Baz dz]
(

L-—1)2 (L—-1)/2

Y.(8) = 2V, coth 8, W

(13)

where ¥y = 437 mho.
In the case of constant-field approximation, as has been assumed by
Iletcher,”

1
(22/1) — (L/1).

The integration in (13) can be readily performed. For the case where
L — 1= L/2and d = [ (square finger cross section),

g

4
; (14)

Y, (8) ) = sin '6"—
i'n = 2sin 5 ‘HZ_:Q (=" B.L coth 8, W. (15)
+

Y1(8) becomes, in the same constant-field approximation

YII(B) _ d . 26
Voo = 4Lsm 5 (16)

The impedance of a finger K(8) = (Y,(8) + Y2(8))™" in the constant-
field approximation is plotted in Fig. 2 in dashed lines as a function of
8/7 for W/L = 1.25 and 0.75.

The constant-field assumption does not take into account the singu-
larity in the field at the corner of the finger. It will be shown later that
the calculated w-g diagram using the impedance thus obtained disagrees
severely with the measured one for # < 0.57. Harris et al.” used the con-
stant-field approximation for region 1 only and assumed the field pro-
duced by an infinitely thin tape for regions 2 and 3. This will be referred
to as the thin-tape approximation. The calculation used conformal map-
ping and it is applicable directly only for § = 0, /2 and . The thin-tape
approximation assumes a 180° singularity at the corner of the finger and
thus exaggerates the actual 90° singularity there. A further difficulty in
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Tig. 2 — The impedance of the finger vs 8. It is assumed that L — I = I = d.

this approach is that the fields on the boundaries between the rcgions
2, 3 and the region 1 are not matched.

A third alternative would be to base the calculations on experimental
data. The potential distribution functions g(2) and f(z) in (9) may be
measured directly with a large scale two-finger model in an electrolytic
tank. This is probably the most reliable method, although data are ob-
tained with only limited accuracy and only numerically. In addition,
the data are applicable directly with good accuracy only for ¢ = 0, .

The second (thin-tape) approximation will be used here, and it will
he extended to cover the whole range of 8. With the thin-tape approxi-
mation, the functions g and f, which specify the potential distribution
along the z-axis, for # = 0 and = respectively, can be found by Schwarz-
Christoffel transformation. They have a quite complicated form involv-
ing elliptic functions, and therefore the integrals in (13) are difficult to
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evaluate. I'ortunately, at 6 = 0, 7/2 and =, K(8) can be found directly
by Schwarz-Christoffel transformations without resort to (13). One can
arrive at a good approximation of ¥.(6) for the whole passband of the
structure from (13) and the knowledge of Y, at § = 0, /2 and = with-
out evaluating the integral. The procedure is described in Appendix B,
and the result is shown in Fig. 2 with solid lines for various values of
W/L. Both the constant-field and the thin-tape approximations give
about the same K(6) for 6 = /2 but there is a large difference near
6 = 0. It will be shown later that K(8) resulting from the thin-tape ap-
proximation yields a reasonably good agreement with experimental data.

IV. THE EFFECTIVE DIELECTRIC CONSTANT e(f)

If the comb is not entirely immersed in an isotropic medium, some
RF field components appear in the direction of the fingers. The TEM
assumption which has been used in Section IT no longer holds. However,
if the medium is only slightly nonuniform, the TEM assumption is still a
good approximation. Fortunately, TWM’s designed for high gain and
large instantaneous bandwidth are so heavily loaded with an active
crystal that the TEM approximation is reasonably valid and may be
used in the structure analysis. In this section, an effective diclectric
constant is defined. It is a function of § — that is, of the details of the
RI" electric field configuration. At a particular value of 6, the effective
dielectric constant of €(9) is defined as the dielectric constant of a uniform
medium filling the same comb structure, which results in the same total
charge per comb finger as that produced by the true, incomplete dielec-
tric loading (this definition is meaningful only for heavy dielectric loading
such that the TEM approximation holds). It is obvious that this quantity
() is a very helpful one for the analysis.

Referring to Fig. 1, a slab of dielectric of thickness D is placed in the
regions 2 and 3. Its dielectric constant is assumed to be isotropic and
equal to e. TEM-type solutions of Maxwell’s equations are assumed in
regions 2 and 3, both inside and outside the dielectric slab. The com-
ponents of the field vary as

exp (8.0 — jhky — jB.2]

where £ is the plane wave propagation constant for the respective media.
Boundary conditions have to be matched at x = 0, D and W in the y-z
plane. The constant-field approximation expressed in (14) is explicitly
used for the boundary condition at r = 0.
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Then the charge per unit length on a finger is given by

(L—1)]2 —d
Q=2 Budz + 2 [ Eade (17)
—(L-=1)]2 Y0
where [, is the x component of the electrie field in region 2 at o = 0
and F., is the z component of the electric field in region 1. An effective
dielectric constant €(8) is now defined by requiring the same amount of
charge @ to exist on the finger as if the whole structure were immersed
in a medium of dielectric constant e(8). The resulting formula can be
given for combs with rectangular fingers; however, for simplicity, only
the result for equally spaced square fingers (I — [ = d = L/2) is given

here

. BaL\*
. = sin
sin 5 + 3 ";m (—1) 5L
4

v (] + e coth 8, (W — D) coth 8.D

j j 18)
1 + ¢ coth B.(W — D) tanh 8, D) tanh 8,0 (18)

e(0) = N’ 2
0 1 & s
sing +5 2 (=" —7— | coth g
4

The result of machine computations of €(4) using (18) and assuming a
dielectric constant of the loading dielectric of e = 9 (approximately the
value of ruby) is shown in Iig. 3(a), (b), and (¢). To facilitate other
computations which will be discussed later, the square root \/¢(8) is
shown in these graphs rather than e(8). For a fairly complete loading
(D/W > 0.8), e(8) approaches 5 near § = . Near 6 = 0, e(0) varies
widely, depending on D/TV. This can be understood by noting that near
6 = m the RF fields concentrate near the fingers and hence ¢(8) is little
changed by a change in the width of the air gap near the waveguide wall.
On the other hand, near # = 0 more of the fields reach the waveguide
wall. Thus the width of the air gap there affects the magnitude of ¢(0)
more drastically than that of ().

V. PROPERTIES OF THE COMB STRUCTURE

With the knowledge of K(8), C'(6) and e(f), one can calculate the
w-B diagram of both the empty and the loaded comb structure. The
caleulation reveals a number of interesting properties of the comb strue-
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ture and also suggests various techniques for narrowing the passband
of the structure.

5.1 Emply Comb Structure

As a maser structure, the comb is always loaded with one or more
dielectrics. However, the study of the empty comb is of some interest to
us, since it offers the possibility of checking the accuracy of our im-
pedance calculations by measurements.

The fringe capacitance C(8) for § = 0, and # = = has been measured
in the electrolytic tank. Values for C'(0) and C'(x) are shown in Fig. 4.
They were obtained by resistance measurements on a large scale model
of a comb finger in a tank. The values are plotted versus the distance
between the finger tips and the opposite waveguide wall, s. The data are
valid for fingers of square cross section, L/2 X L/2 = 0.040 X 0.040 inch,
spaced center-to-center by L = 0.08 inch and contained in a housing of
width 2W + L/2 = 0.240 inch (aspect ratio W/L = 1.25). It should be
mentioned here that these data can be applied to dimensions other than
those indicated if one observes two facts, IFirst, if all linear dimensions
are scaled simultaneously by some factor, the capacity is scaled by the

0.1
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Fig. 4 — The fringe capacitance at # = 0 and @ = = vs the spacing between the
finger tip and the waveguide wall for the case where L — [ = [ = d = 0.040 inch.
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same factor. Second, experience has shown that the fringe capacity is a
very slow function of the ratio W/L; no noticeable errors were found
when these capacity values were used for W/L values ranging from 0.75
to 1.5. Unfortunately, C'(8) for # other than 0, »/2 and = cannot be
measured in a simple tank model. However, some indication of how C(8)
changes with 8 may be obtained experimentally. One would start with a
measured dispersion curve of an empty comb; one would assume that the
values K(8) in Fig. 2 for the thin-tape approximation are sufficiently
accurate; then (1) offers a possibility of evaluating experimental values
of €(0). In practice it turns out, however, that this approach does not
yield values C'(8) of sufficient accuracy to determine the exact shape of
the C'(6#) function.

In Fig. 5, caleulated dispersion curves of several empty comb struc-
tures with dimensions as shown are given in solid lines. The calculation
is based on K(8) of Fig. 2 using the thin-tape approximation. C(8) is
assumed to change linearly with 6 from 6 = 0 to § = x. Measured points
of the dispersion curves are also shown in Fig. 5. The measurements and
caleulation agree well.

One case of a dispersion curve calculated by using K(6) from the
constant-field approximation is also shown in Fig. 5 by the dashed line.
It deviates considerably from the measured points for 8 < 0.5 .

One may conclude that both the impedance of a finger caleulated by
using the thin-tape approximation and the assumption that C'(8) changes
linearly with 6 are sufficiently accurate for the present analysis.

The passband of the empty structure can be narrowed by reducing the
width of the waveguide housing 21V 4 d. Then the impedance values
K(8) at 8 = = approach each other more closely and so do the Ah
values at @ = 0 and & = «. From (6), one readily sees that a narrower
passband results,

5.2 Loaded Comb Structure

In this section, the discussion is restricted to the case of dielectric
loading on both sides of the comb. Both loading slabs are parallelepipeds
of equal thickness D. Both slabs cover the full finger height from the
root to the tip, i.e., the height h of the fingers is also that of the loading
slab. In addition, a comb of equally spaced square cross section fingers
(I — 1 =1 =d) is assumed.

Sinee (3) is only an approximation and also sinee the dielectric con-
stant of ruby is neither a sealar nor exactly 9, one cannot expect to
obtain a close quantitative agreement between the measured and the
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Fig. 5 — Calculated and the measured w-8 diagram of the empty comb. L — [ =
1 = d = 0.040 inch.

calculated w-8 diagrams. However, the effects of various loading dimen-
sions on the w-8 diagram are correctly predicted by the theory, and the
present analysis provides a reliable basis for an initial choice of design
parameters.

It will be convenient to define f(x) and f(0) as the frequency at which
6 = x and 0, respectively. For a forward-wave structure (df/d6 > 0),
f(=) > f(0), and for the backward-wave structure (df/df < 0) f(=) <
J(0).
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In Fig. 6, calculated dispersion curves are shown for W/L = 1.25,
K{(x)C(mw)e/h = 0.05 and various values of D/W. The frequency scale
is normalized to fo(wr), where fy(7) is the frequency of the empty comb
(D/W = 0) at 8 = 7. Without loading (D/W = 0), the structure is a
forward-wave structure. Relatively thin slabs of ruby loading (see the
curve for D/W = 0.2) make it a backward-wave structure of a compara-
tively wide bandwidth. This can be understood by observing that the
RI' fields near # = = are more concentrated near the fingers than the
RT fields near 8 = 0. Hence, the RT fields at # = 7 see more of the pres-
ence of the thin ruby slab than the fields at # = 0. In this way f(x) is
reduced while f(0) remains essentially unchanged. Further increases in
the width of the loading (see the curves for D/W = 0.4 and 0.6) reduce
the bandwidth of the backward-wave structure. This happens because
the RF fields near # = 0 begin to interact with the dielectric slab, while
the fields near # = 7 are almost completely contained in the initial thin
slabs. This again changes the frequencies at # = = and 0 to a different
extent and thus reduces f(0) more than f(=).

At a still greater dielectric slab thickness (see the eurve for D/W =
0.9) the structure is forward with a fairly narrow band and finally, with
complete loading (see the curve for D/W = 1.0), it is forward with a
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Fig. 6 — Caleulated w-g dingram as the thickness of the dielectric is changed.
It is assumed that L — { =1 = d, W/L = 125, K(x)('(x)c/h = 0.05, and e = 9.
The frequency secale is normalized to fo(m), the frequency at # = = for the empty
comb.
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somewhat wider band. The explanation is again based on the fact that
increasing the dielectric width reduces the lower cutoff frequency while
leaving the upper one the same.

The most important aspect of this behavior is seen by comparing the
curves for D/W = 0.6, 0.8, and 0.9 in Fig. 6. It is apparent there that
the transition between backward and forward structure does not involve
backward-wave structures of gradually decreasing bandwidth, and then
forward-wave structures of initially very narrow and eventually wider
bandwidths. If this were so, it would be very easy to design comb struc-
tures with extremely high slowing of the group velocity. Instead, it is
seen that the transition from backward to forward-wave structures
takes place via intermediate structures showing “fold-over.” By this,
we mean a structure which for some range of 6 is forward, whereas it is
backward in the remainder of the @ range. It has been pointed out? that
such a situation leads to instability and oscillations in a traveling-wave
maser amplifier in spite of the incorporated isolator. Thus, for all
practical applications, the oceurrence of fold-over has to be avoided.

It may be added here that dispersion curves of combs with other di-
mensions vary in a similar fashion as the thickness of the dielectrie slab
is varied. It is of interest, however, to find out how the onset of fold-over
is related to the comb geometry, i.e., to the ratio W/L, and to the finger
end capacity. Here it is particularly desirable to have analytical data
which indicate what choice of the W/L and D/W ratios and of the finger
end capacity will result in the greatest slowing of the group velocity
near the center portion of the passband, but still avoid fold-over. For this
purpose, a number of dispersion curves normalized to f(m) were calcu-
lated and are shown in Fig. 7. One notices that fold-over takes place
rather abruptly for D/W < 0.9 for all cases. In addition, one sees that
the minimum group velocity [«(df/d6)] attainable near the center of the
passband without fold-over decreases by reducing W/L and Ah(w) /h.
The group velocity near the center of the passband is more or less ar-
bitrarily defined as

2 20(f lecoae — f l6—0.3¢)
=L 0.4 (19)

Uy

It is shown as a slowing factor S = ¢/v, in Fig. 8 vs W/L for D/W = 0.9
and for different values of Ak(w)/h. The largest slowing is obtained for
the smallest W /L. It should be pointed out, however, that our present
caleulations were not carried out for W/L ratios of 0.5 or smaller, al-
though such values would increase the slowing still further, Values of
W/L < 0.5 appear unsuitable for practical maser designs for various
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reasons, among them the difficulty of incorporating an isolator into a
comb structure with such dimensions. Larger slowing results also from
reducing Ah(w)/h. Ah(w) can be varied over a narrow range by varying
(', which is a function of s, the distance between the finger tip and the
opposite waveguide wall. For the comb geometry used for measuring the
fringe capacity, C(w) does not appreciably decrease for s beyond
s > 0.040 inch. More generally, this would be done if s exceeds a value
comparable to the finger “diameter.” This therefore sets a minimum for
Ah(w)/h at a given operating frequency.

To illustrate the significance of Tig. 8, consider two TWM’s A and B
with exactly the same dimensions except that the finger length A of A
is twice that of B. This difference in & makes the operating frequency of A
about one-half of that of B. For the time being, assume also that the
magnitude of the magnetic @ of the active crystal is independent of fre-
quency. With the values W/L = 1.0 and Ah(x)/h = 0.02 for A, Fig. 8
shows that SL/A(w) = 3.2. For B, Ah(w)/h = 0.04, so that SL/\(x) =
2.5. The db gain of a TWM is proportional to fS/Q. , which in turn, for
constant Q,, , is proportional to SL/X(7). Thus one should expect that
the db gain of maser A is larger than that of maser B by a factor 1.28
(= 3.2/2.5). In practice, however, | @, | usually increases toward lower
frequencies, so that the gain of the lower-frequency maser 4 tends to be
lower.

Tt should be added that the slowing itself, S, is inversely proportional
to a scale factor L/\(w) where A(w) = ¢/f(w) is the free-space wave-
length of (). Thus for combs with a given period length L, the slowing
is greater for lower frequencies. It follows that the slowing factor S is a
meaningful parameter in comparing different comb structures only if
they have essentially the same period length, L, and operating frequency
range, f.

Consider another hypothetical case. Suppose the fringe capacity
vanishes, C'(7) = C(0) = 0, so that Ah = 0. Experimentally, this situa-
tion could be realized by a A/2 ladder structure where fingers of twice
the comb structure finger length are anchored at both ends in a wave-
guide enclosure. Without dielectric loading, this case would be that of the
Fasitron structure (see Ref. 7) which is characterized by a zero pass-
band. With dielectric loading, however, a finite passband results never-
theless. This is due to the variation of ¢(4) with 6, and in particular the
difference between e(7) and €(0). Under these circumstances one might
expect that the bandwidth is smaller and hence the slowing greater than
in the case of a structure with finite fringe capacity and finite Ah. This
is indeed the case. There is no curve shown in Fig. 8 for the parameter
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Al = 0, but it is obvious that this ecurve would lie above that for
Ah(m)/h = 0.02.

Measurements of dispersion curves of several comb structures loaded
with alumina (e = 9.3) were made and they are shown in I'ig. 9. Those
parts of the dispersion curves where § = /2 depend very little on W /L
and D/W. The fold-over takes place at D/W between 0.85 and 0.90,
The maximum slowing factor near the center of the passband which is
attainable without fold-over increases with smaller W /L. These general
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Fig. 9 — Measured w-g diagrams of loaded eomb structure. L. — 1 =1 =d =
0.040 inch.
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features agree with the results of the calculation. There is a deviation
of typically about 4 per cent near # = m, and of about 10 per cent near
§ = 0 between the absolute values of measured and calculated frequen-
cies. These discrepancies are not too disturbing, however, since (3) is
only an approximation; the fringe capacitance data derived for an empty
comb change when the comb is loaded up to the tip of the fingers, and the
dielectric constant of alumina is not exactly 9 as used in the calculations.
The slowing factors calculated from these measurements are also shown
in Fig. 8 as circled points. The measured slowing factors are about 30
per cent smaller than those caleulated, but the dependence of S on W/L
is correctly predicted by the theory.

VI. TECHNIQUES FOR REDUCING THE STRUCTURE BANDWIDTH

Since a structure with smaller bandwidth gives a larger slowing factor
and thus a larger maser gain, the bandwidth of the structure should be
kept as small as possible. It is necessary, of course, that the structure
bandwidth exceed the required instantaneous or tunable design band-
width of the maser amplifier by some reasonable, safe margin. This
restriction was not important until recently. In earlier phases of travel-
ing-wave maser development, it was difficult to design comb structures
for sufficiently high slowing without running into the fold-over condition.
More recently several techniques were developed which make it possible
to design loaded comb structures with almost arbitrarily narrow band-
widths, down to structure bandwidths of only twice the instantaneous
amplifier response.® These techniques were derived both by experimenta-
tion' and by the theoretical considerations reported in this paper. They
include the following: (z) Near the tip of the fingers, the ruby may be
shaped as in Fig. 10(a) or (b) by a step or bevel undercut. (i) A strip of
dielectric material of a high dielectric constant may be added next to
the finger tips as in Fig. 10(c). (z¢z) The thickness of the comb fingers, d,
may be reduced (see Fig. 1). These three techniques may be applied
either independently or together to reduce the bandwidth of the struc-
ture.

By shaping the dielectric near the finger tip as in Fig. 10(a) and (b),
the effective dielectric constant e(f) is reduced. The reduction is not
uniform across the band, but (#) is more drastically decreased for § near
0. Thus, for a forward-wave structure where the lower cutoff frequency
oceurs at 8 = 0, the lower cutoff frequency increases without much
change to the upper cutoff frequency. The bevel shape of Fig. 10(b) can
be considered as a series of small steps, as indicated by the dashed line.
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I'ig. 10 — Techniques of “shaping” and “K34 loading” near the finger tip to
reduce the bandwidth.

The dielectric shapes of Fig. 10(a) and (b) are approximately equiv-
alent in their role of narrowing the bandwidth.

The finger tip loading may take the form shown in Fig. 10(c). A thin
slab of dielectric material with high dielectric constant is imbedded in
alumina or ruby near the finger tip. In our experiments, a ceramic with
¢ = 34 manufactured by American Lava Corporation was used. This
material will be referred to as IX34. This type of finger tip loading in-
creases the effective dielectric constant e(#) near 8 = = faster than near
@ = 0. For the forward-wave structure, this means that the upper cutoff
frequency can be decreased faster than the lower cutoff frequency, and
thus a narrowing of the bandwidth results.

Let A’ be the length of the stepped dielectrie (Fig. 10a) or K34 (Fig.
10¢), C* be the capacitance looking toward the finger tip at the plane
A-A, € be the effective dielectric constant of the section 7', and D’ be
the thickness dimension as shown. The capacitive impedance looking
toward the right side at the plane A-4, 1/w(”, can be found by regarding
the section A’ as a TEM transmission line with the characteristic im-
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pedance K(6)/+/¢(6) and a propagation constant w+/¢'(6)/c and
terminated by C at the end. If the electrical length of the modified sec-

tion of finger line (which has the physical length ') is small compared to
a quarter wavelength,

tan w\/z’(e) b w\/:’(e) B,

and if the fringe capacity loading at the finger tip is small,
K(8)
— >
WC ’\/ E’(ﬂ)
then the effect of the stepped dielectric can be expressed by an effective
capacity C’

("~ C[l + (h'/KCc)] (20)

which effectively terminates the regular TEM finger transmission lines
of length A-h’. From (6) and (20) one obtains the following formula,
which contains implicitly the «-3 relation

n -~ \/6(9)( pop Ko d = 1’). (21)

For the stepped ruby as in Fig. 10(a) where D > D', (¢ — €)/4/e
is negative. This quantity can be calculated from Fig. 3 and it is shown
in Fig. 11 in solid curves. Measured values are also shown as circles.
The measurements and calculations of (¢ — ¢)/+/¢ agree well except
near # = 0. In practical design work, it is often convenient to keep one
of the cutoff frequencies unchanged while shifting the other cutoff fre-
quency by shaping the dielectric. This requires a large ratio of

| (¢ — €)/v/el

at the two cutoff frequencies. In Fig. 11, the curves for D/W = 0.95
and 0.4 < D’/W = 0.6 satisly this requirement. As a special case of
stepped ruby, the value D’ = 0 may also be considered. This corresponds
to a ruby loading of rectangular cross section which does not cover the
full finger height . Then ¢ becomes unity and the value (1 — €)/4/e
is also plotted in Fig. 11 in the top curve marked D'/W = 0.0. Since the
ratio (1 — €)/4/e at both cutoff frequencies, that is at § = 0 and at

= 7, is not large, the reduction of the ruby height does not appear a
promising way to narrow the bandwidth of the comb structure.

For K34 loading, (¢ — €)/4/¢ becomes positive and can be evaluated
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from measured data with the help of (21). Two of the measured curves
of (¢ — €)/+/e are shown in Fig. 11 in broken lines. (¢ — €)/4/e is
larger near # = « than near 8 = 0. For the forward-wave structure this
causes the upper cutoff frequency to decrease while leaving the lower
frequency almost unchanged.

The upper cutoff frequency of the forward-wave structure can also be
reduced by using thin rectangular fingers (i.e., d < L — 1). () of the
comb structure with fingers of square eross section was shown in Fig. 3.
It was also shown that D/1V = 0.9 --- 0.95 is usually the best choice to
reduce the bandwidth of the passband and yet avoid fold-over near
# = 0. For this value of D/W, one notices in Fig. 3 that ¢(0) > e(mr).
In order to reduce the bandwidth further, one may increase e(w) so that
it approaches (0). This ecan be done by reducing the dimension d of the
fingers. Since the fields between the fingers are almost negligible at
6 = 0, the thickness dimension of the fingers does not affect ¢(0). On



1058 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

the other hand, near @ = = the fields see more of the ruby with thin
fingers than with square fingers; thereby e(w) increases.

In Fig. 12, v/e(r) vs d/(L. — 1) using the expression given by Harris
et al.” is shown. Three measured points are also indicated. The expression
of e(7) in Ref. 7 assumes a uniform field hetween the fingers. This ap-
proximation is less justified as the fingers become thin, although it should
be qualitatively correct even for d/(L — 1) < 0.5.

Both the K34 loading and the choice of finger thickness affect the fre-
quencies near # = 7. Band narrowing by thin fingers has the additional
advantage that the filling factor improves somewhat compared to the
use of K34 loading and of square fingers.

All the three techniques described here can be combined to narrow the
passhand very effectively in such a way that fold-over is still avoided.

VII. HIGHER-ORDER MODES

It has been shown in Section II that there exists a series of higher-order
passbhands for a comb structure.

Let us compare the first and the second modes of operation from two
different approaches. Iiquation (6) shows that for a given 6 the free-space
wavelength of the first mode is three times longer than that of the second
mode when all of the dimensions of the structure are kept the same. Thus
the perecentage bandwidth of the passbands is approximately the same
for all modes. By using a frequency scale for the first mode which is
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Fi1a. 12 — The square root of the effective dielectric constant at @ = x for “‘thin
fingers.” It is assumed that ¢ = 9.
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one-third that for the second mode, the «-8 diagram of the first and the
second modes should coineide. This is indeed verified from measured w-3
diagrams of the first and the second modes of the structure designated as
A in Fig. 13.

On the other hand, when W/L, D/T and s are kept unchanged while
the length of the finger & is made three times longer, the passband of the
smaller structure operating in its first mode will be in about the same
frequency range as that of the larger structure operating in its second
mode, However, the bandwidth of the smaller structure in the first mode
is larger than that of the larger structure in the second mode. This is due
to a larger Ah/h for the structure with the smaller ii. A structure B with
a finger length of one-third that of structure A was built, and the w-3
diagram of its first mode is also shown in Fig. 13. One notices that the
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Fig. 13 — Comparisons of the first and the second passbands of the loaded
comb structures. The fingers are 0.040 x 0.040 inch in cross section and [ = 0.040
inch.
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first mode of B has a larger bandwidth than the second mode of A. The
larger slowing factor associated with the smaller bandwidth is one of the
advantages of higher-order modes, but it is not an essential factor, since
there are more efficient techniques of reducing the available bandwidth.
However, the higher-order modes may be advantageous when the re-
quired microwave [requency of the passband is so high that it becomes
difficult to fabricate comb fingers of a quarter-wave electrical length,
provided the waveguide modes which may propagate in such a struc-
ture ean be suppressed. Then the larger strueture would permit reduced
mechanical tolerances.

VIII. DESIGN CONSIDERATIONS

Since the gain of the maser increases as the bandwidth of the passband
of the structure is reduced, it is preferable to design a structure having
the narrowest bandwidth compatible with the requirements on the useful
bandwidth of the maser.

The choice of various dimensions of the structure to obtain a given
center frequency and to approach the narrowest bandwidth possible
without fold-over will be discussed here.

From the curves in Fig. 8, a small value of W/L is preferred. Other
design considerations may dictate the smallest permissible W/L value.
In all our experiments, for example, a period length L. = 0.080 inch was
chosen. For W/L smaller than 0.7 it would seem rather difficult to in-
corporate a high-performance isolator into the structure. Thus W/L ~ 0.7
is a compromise optimum value.

With given dimensions of the empty comb and without ruby shaping
near the finger tip, the bandwidth is reduced by gradually reducing D/W
until fold-over sets in near ¢ = 0. This happens at about D/W ~ 0.9.
Fold-over appears more readily if additional “ruby shaping” is applied
to the structure. Thus D/W should be larger than 0.9 in order to allow
for some latitude in ruby shaping. From our experience D/W = 0.95 is
a suitable value.

For the step in the ruby near the finger tip (Fig. 10a), D'/W may be
taken between 0.4 and 0.6. Then | (¢/ — ¢)/4/¢| at 8 = 0 is large, and
the ratio of its magnitude at § = 0 and 8 = = is also large.

The frequency near the # = = end can be easily controlled by using
thin fingers. The curve in Fig. 12 may serve as a guide in the choice of a
suitable finger aspect ratio d/(L — ).

The final parameter yet to be determined is the length of the fingers,
h. For an initial design, one may use the midband value of v/e(x/2)
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from T'ig, 3. Then
A
h~ —
W e(r/2)

where N\ is the free-space wavelength of the given center frequency.
The three techniques discussed above for narrowing the bandwidth affect
primarily the frequencies near 8 = 0 and 8 = , 1.e., close to both cut-
offs; but the frequencies near § = =#/2, i.e., close to midband, remain
nearly unchanged.

Following the suggestions given here, one should arrive at a first-order
design for a TWNM which will perform fairly close to the theoretical ex-
pectation. Experience has shown that a small additional amount of fine
adjustment is needed in order to have the traveling-wave maser perform
according to the specifications. This may involve control of the center
frequency, adjustment for more or less slowing in order to obtain the
design gain, or adjustment of the curvature in the «-8 diagram so as to
realize a flat gain-versus-frequency characteristic. The theoretical data
provided in this paper make it rather easy to determine the appropriate
design modifications.
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APPENDIX A

The Potential Distribution on the z Axis

Consider the coordinate axes shown in IFig. 14. The potential on the z
axis for —(1/2) < z < (I/2) can be expressed as

X

‘ (m)th (m+1th

Fig. 14 The coordinate system used in Appendix A.

noje—
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V(6,2) = Vi(8)g(z) + Va(8)f(2) (22)

where 1,(8) and V,(8) are those parts of the potential which are sym-
metrical and antisymmetrical with respeet to the z axis, respectively,
and g(z) and f(z) deseribe their variation along the z axis. They are

defined so that
l l
. (_5) _y (7) _ (23)

DY

Substituting (23) and (24) into (22), the potentials of the mth and
(m 4+ 1)th finger become, respectively,

A =V, =V, (25)
A = vV (26)
From (25) and (206),
Ve = Ae " cos (6/2) (27)
Ve = —jAe ™ sin (6/2). (28)

Then (22) becomes
V(8,z) = Ae " g(z) cos (0/2) — jf(z) sin (6/2)].  (29)

Assuming the fingers to be infinitely thin, g(z) and f(z) can be found
from a Schwarz-Christoffel transformation. This transformation is de-
seribed in Ref. 7. The result can be given in closed form for the derivatives

= dg/dz and " = df/dz:

cos =%
W - (30)
L 1/3111 57 ~ 0.5 7 V2
g 1
L,‘/sm-~—0.)18541 (31)

where it is assumed that /L = 0.5. In deriving (30), an elliptic function
has been approximated by a sine funetion. This approximation becomes
better with larger W /L. The origin of the z coordinate for (30) and (31)
is the same as originally indicated in Fig. 1, which differs from that shown
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in Fig. 14. It is seen that an infinity oceurs both for ¢" and 7 at the finger
corners, z = =+1/2.

APPENDIX B

Impedance of a Finger Based on the *“Thin-Tape” Approximation

It was shown in Section IIT that the admittance of a finger can be
found by adding the admittance between the fingers Y, , and the admit-
tance between the finger and the waveguide V. Y, ean be expressed in
terms of the potentials f and ¢ along the z axis of Fig. 14. f and g are the
potentials at 8 = 7 and # = 0, respectively. We shall assume f and ¢
to be those obtained by conformal mapping of the thin-tape geometry,

By separating the term with » = 0 from the remaining summation,
(13) may be rewritten in the following form

.0
. sin — - o e
:0) 0 4 oth (6 %) X = [sin Q) f 1" cos . a

Yy 9 L 12 L
)
o " 0z = ;
! H ~ n-fr
+ cos 5 f—uu g sin L(F_z] + ”;w (—1) (32)
=0
. f nw
sin (I + —2—) (-111 B) 9 mf’ vos (0 + 20wy % ds
— = |sin= | = 208 =
[/} nr 2) L J-qe T L
ite
for
L—l=1=d
where

r=10 for n>0
r=1 for n <0.

The terms involving ¢ are omitted exeept for n = 0, sinee usually ¢" < .
The coordinate origin used in this equation is at the position shown in
Iig. 14.

Let V., Yyand Yy be Yo(68)/Yoat 8 = 0, /2 and , respectively.
These quantities can be obtained directly by conformal mapping. V',
and ¥, are shown in Ref. 7. Y, is obtained by a similar procedure and
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Fig. 15 — The impedance K () of a finger at 8 = /2.

the result is shown in Fig. 15. For 8 other than these three values, (32)

should in prineiple be used to find Y,(8). Fortunately, Y»(8) can be ex-

pressed approximately in terms of ¥, and ¥ » or ¥y in an interpolation

formula, and thus the tedious evaluation of (32) can be avoided.
Letting & = 0 and then 8 = 7/2 in (32), one obtains,

1 Lz e
Y, = W[;mf dz +L./ 20 dz] (33)
Yu = 8“;8 coth 7];:/ (‘\lll ﬁ) % [[:if' cos —;r—zdz
8
12
# [0l B o 2
a0

nm /2

sin (T—Sr ) 12 .
. sm - I’ cos (g + 2n7r) T dz.
8 2

We shall assume that approximately

/2 i/2
fdz = f cos E ? dz (35)

—112 —1/
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. f nmw . T nw
sin (1 + 7) sin (§ + 5
- = forn £ 0 (36)

[ nw T, nw
ity Y
t/2 z e T 2
7”2f’ cos (6 + 2nr) T dz = ‘/:mj" cos (ﬁ -t 2n1r) 7 dz, (37)
forn = 0
P 12
ros fz I 2:[ LA
‘[”2 g sin dz = ol g zdz (38)
Then (32) becomes
sin ~ sin 4 sin
Py = 2y e w78 =W\ 2W
}3(9) = . }M + Cnih ef - (‘0“] TZ-E T
sin — - Gl
4 4 8
(39)
sin b
L0 i W\( 6 .4 4{”” oo
sin 5 Y, + 5 (rmh 0 —E)(m.i smé) 7 g zdz.
4

The last term of (39) is small compared to the other terms, and it can
be found by numerical integration of ¢’ in (30).

One notices that Y,(6) of (39) becomes ¥, and Y 5 when # = 0 and
0 = =/2, respectively. One may estimate the error involved in (39) by
letting § = 7 and compare it with Yy obtained by conformal mapping.
For W/L = 1, Y.(=) obtained from (39) gives a value 10 per cent smaller
than that obtained directly by conformal mapping. The admittance of a
finger which is the sum of ¥; and Y, thus has an error of about 4 per cent
at 8 = «. For other values of 6, the error would be even smaller.
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