Scattering Losses in a Large Luneberg
Lens Due to Random Dielectric
Inhomogeneities

By SAMUEL P. MORGAN
(Manuseript received October 7, 1963)

An approximale theoretical calculation is made of the scattering losses
due to random inhomogeneiiies in a large Luneberg lens made of dielectric
blocks. A simple model vs used in which the average index of refraction of
cach block may differ slightly from the value called for by the lens design,
and the index may vary linearly with position inside a given block. The
losses are described by attribuling an effective scatlering loss tangent lo the
lens medium. Tables and curves are given to facilitate the computation of
lolal scatlering loss as a function of block size, mean-square deviation of
average index, and mean-square index gradient within the blocks.

Manufacturing processes for foam dielectric blocks are monilored by
lesting the blocks in various orienlalions in an oversize resonant cavity. An
approximale relationship vs derived between the resulls of cavity resonator
measurements and the parameters of the theoretical model; but it is poinied
out that the assumplion of linear index variation across a single block can
be quite unrealistic in praciice. Numerical rvesulls derived from the present
theory are most likely to be meaningful if the dimensions of the individual
blocks are less than one wavelength.

I. INTRODUCTION

In recent years, large Luneberg lenses have been used as antennas for
long-range radars.! Such lenses have been built of cubical blocks of very
low density polystyrene foam, loaded with varying amounts of aluminum
slivers? in order to approximate the desired variation of refractive index
between the surface of the lens and the center. In theory each block is
perfectly homogeneous and isotropic and has a specified permittivity;
in practice, however, the blocks are not perfectly homogeneous or iso-
tropie, and the average permittivity of a block generally differs more or
less from the value called for by the designer. If the tolerances on the
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blocks are too loose, excessive power will be lost from the lens by scatter-
ing from the “misfits”; in extreme cases, scattering may also lead to
unacceptable antenna patterns. On the other hand, if the tolerances are
too tight the yield of acceptable blocks by any reasonable manufacturing
process will be reduced, and the cost of the lens correspondingly in-
creased. Considerable importance attaches, therefore, to setting the
proper tolerances.

This paper treats the problem of scattering losses in a large Luneberg
lens, due to random dielectric inhomogeneities, on the basis of a simple
mathematical model which is described in Section II. According to the
present analysis, the effect of dielectric seattering can be described by
attributing to the material of the lens an effective loss tangent given
by (1) of Section II. The expression for the effective loss tangent is
derived in Section III. Section IV discusses the relationships between
the dielectric deviations whose mean-square values appear in (1) and
the results of resonant cavity measurements on individual bloeks, and
stresses that real blocks may not be very well represented by the idealized
model. Finally, a few illustrative numerical examples are worked out in
Section V.

II. DESCRIPTION OF THE MODEL

We consider a “block” lens, that is, a structure built of cubical di-
electric blocks which are intended to approximate an ideal, spherically
symmetric Luneberg lens with a continuously varying index of refrac-
tion. The analysis is based on the following assumptions.

(i) We suppose that a nominal design for a block lens is given. We
do not attempt to decide how many different index values are neces-
sary, or how large the individual blocks can be. We merely assume that
the electrical performance of the lens would be satisfactory if all blocks
were perfectly uniform and homogeneous and had exactly the specified
refractive indices; and we investigate how much the performance of the
lens would be degraded by deviations in the dielectric properties of the
blocks.

(1) We assume that the permittivity of each block is in fact a linear
function of rectangular coordinates in the block, and that the average
permittivity (which in the linear model occurs at the center of the
block) may differ slightly from the value assigned to the block in the
nominal design.

(777) Since the lens is many wavelengths in diameter, we assume that
the power scattered out of the lens by a particular block is equal to the
power which would be scattered from a plane wave by a similar block in
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an infinite, uniform medium having the dielectric properties of the
nominal block at that point. We further assume that the scattering
pattern of a single block is so much broader than the beamwidth of the
lens that all the scattered power may be considered lost.

(iv) We assume that the deviations in permittivity are completely
uncorrelated from one block to the next, and that the direction of di-
electric gradient is uniformly distributed over all angles. The assumption
of statistical independence permits us to add the scattered power from
each block directly, instead of adding complex amplitudes and then
squaring, as we would have to do if the properties of a given block were
correlated with those of its neighbors.

(v) We approximate the scattering from a cubieal block by the scatter-
ing from a spherical “blob” of equal volume and similar dielectric
properties. This is certainly as accurate as the other approximations
involved in the model, and it reduces the mathematical problem essen-
tially to one which has already been solved in the theory of tropospheric
scattering.?4

Under the foregoing assumptions and approximations, it turns out
that the power lost by scattering from random dielectric inhomogeneities
in a medium built of eubical blocks may be represented by an effective
loss tangent:

tan s = 3 L&M) 0 gy 4 1040AmD ) (1)
No* 9 ng*
The symbols on the right side of (1) are defined as follows:
ng : nominal refractive index of a given block;

Any : difference between average index of a given block and nominal
index;

Any : difference between average indices of the “heaviest” and “light-
est” halves of a linearly-varying block (the direction of index gradient
need not, of course, be parallel to any edge of the block);

x = 2many/N, , where A, is the vacuum wavelength;

a = 0.620/: radius of a sphere whose volume is equal to that of a
cube of edge [;

wolw), er(2) : funetions defined by (30) and (31), tabulated in Table
I, and plotted in Figs. 1 and 2;

( ):average over the neighborhood of a given block.

It must be emphasized that (1) is not applicable to the effects of
systematic deviations from the ideal Luneberg lens structure. For ex-
ample, one might be tempted to apply it to caleculate how large the
individual blocks could be, if each block were perfectly uniform and
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had the index of refraction called for by the ideal Luneberg law at its
center. In that case the index of the part of each block nearest the center
of the lens would be systematically too low, while the index of the
farthest part would be systematically too high. This would violate the
assumption of block-to-block randomness, on the basis of which we
added the scattered power to obtain (1). The equation therefore cannot
be used to deduce the allowable coarseness of the nominal design. It
can only tell us the effects of random variations in a nominal design
which is believed, on other grounds, to be satisfactory.

III. SCATTERING BY A ‘‘SOFT’’ SPHERICAL BLOB

In this section we shall compute approximately the power scattered
out of an incident plane wave by a “soft” spherical blob, that is, a
spherical region whose permittivity differs but little from the permit-
tivity of the uniform surrounding medium. This kind of scattering is
often called Rayleigh-Gans scattering and has an extensive literature.®
We shall briefly derive the specific results that we need.

Consider a blob of radius a, centered at the origin of the spherical
coordinate system (r,8,¢). The permittivity of the blob is taken to be

E(r) = €& + 61(1'), (2)
where ¢ is the permittivity of the surrounding medium, and
| e(r)/e] < 1. (3)

For an anisotropic blob &(r) would be a tensor function, but we shall
not consider this additional complication. A linearly polarized plane
wave, whose electric field is given by

E(r) = Ejexp (—ifk' 1), (4)

is incident upon the blob. Here E; is a constant vector, k' is a unit vector
in the direction of propagation, and 8 = 2m/\¢, where Xy is the wave-
length of a free wave in the surrounding medium. The time dependence
fwt :

e™" is understood throughout.

According to the basic Rayleigh-Gans approximation, a typical
differential volume element dr’ at 1’ scatters as if it were immersed in a
uniform medium of permittivity ¢ and had an electric dipole moment

dp = iwe(r")E(r)dr’". (5)

We wish to describe the scattered field at the point r = kr in the far
zone, where k is a unit vector in an arbitrary direction. For this purpose
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we define” the magnetic radiation vector N. The contribution to N
from a typical scattering element is

dN = exp (i8k-r’) dp = iwe(r")Ey exp [i8(k — ¥')-r'] dr/, (6)

so the total magnetic radiation vector in a given scattering direction is
Nk — k') = ingf a(r') exp [i8(k — k') -r') dr’, (7)
v

where the integration is taken over the whole spherical scattering volume
V.

So far the dependence of the ‘‘dielectric deviation” &(r’) on position
has not been specified. We now introduce the assumption that (r’)
is a linear function of position with a mean value which possibly differs
from zero. In symbols,

61(1") = € I:Hu + %n'r’] y (8)

where ay and a; are real numbers whose magnitudes are small compared
to unity, a is the radius of the sphere, and n is a unit vector in an arbi-
trary direction. The expression (7) then becomes

Nk — k') = iweaE ]V [auly + ;1] (9)
where
I, = Il [‘ exp [i8(k — k') -r'] dr, (10)
I, = &117' l, n-r’ exp [i8(k — k')-r'] dr’, (11)
and
V = 47a®/3. (12)

We are at liberty to choose any convenient coordinate system to
describe the seattering problem. We take the z-axis in the direction of
propagation k’ of the incident wave, and the w-axis parallel to E, . The
angular coordinates of the seattering direction k are denoted by (f,0).

In order to evaluate the integrals 7o and 7, we take advantage of the
spherical symmetry of the scattering volume and introduce a new set
of angular coordinates (x,a), with the new polar axis x = 0 along the
vector k — k', The plane « = 0 is defined by the two vectors k — k'
and n, so that the angular coordinates of n in this system are (xo,0).
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Noting that |k — k' | = 2 sin 46, we have by a straightforward integra-
tion,

2 T a
I, = Ilf f f f exp (2iBr' sin 36 cos x)r"* sin x dr' dx da
0 0 [i]

L (13)
T = @ (28a sin 39),
where
Go(u) = (3/u°)[sin u — u cos ul. (14)
Similarly,
I, = Ezl?j:' for fon[sinxgsinxcosa + cos xo €0s x|
X exp (2i8r" sin 36 cos x)r" sin x dr’ dx de (15)
= (1(2Ba sin 36) cos xo,
where
Gi(u) = (3/uh)[(3 — u*) sin u — 3u cos ul, (16)

and xo is the angle between n and k — K.
From (9), (13), and (15), the only component of N is the one parallel
to the incident electric field, and it is given by

N, = iwelV[aG(28a sin 36) + aGi(28a sin 36) cos xol.  (17)

The scattered power per unit solid angle is®

¢ = % | N, [*[cos’ 6 cos’ ¢ + sin® ¢, (18)
0

where n0 = /uo/e is the characteristic impedance of the medium. The
total scattered energy is obtained by integrating ® over all directions
in space.

Ultimately, we are going to assume that all directions n of dielectric
gradient are equally probable, and it will simplify the subsequent calcu-
lations to carry out the averaging over n first. We obtain

2x T
1 f | N2 * sin xo dxo da
4 o Jo (19)
— W B Va2 0,2 (28a sin 30) + 1a’Gi*(2Ba sin 30)].

If &(8,) is the result of the preliminary averaging over n, the average
power scattered per unit volume of the spherical blob can be written
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in the form

1 2x pw - 3 BEDE \ ,
V.’; ,/[; @ sin 6 db dp = B Baseo(z) + arer(2)], (20)

where*
r = Ba = 2ma/\, (21)
and
3 T
wlx) = % f Gy (22 sin 30) (cos® § + 1) sin 6 do, (22)
0
eir(a) = %f G4 (2 sin 20) (cos® 6 + 1) sin 6 dé. (23)
B 0

On the other hand, the average scattered power per unit volume may
be written in terms of the incident power density Ey' /27 and an effec-
tive attenuation constant «, or an effective loss angle 4, as

2 2
2a k), 2 tan & Ky

—, 24
2no N 2no (24)

Comparing (20) and (24), we obtain for the effective loss tangent,
tan & = Y[3ac’ee(x) + ale(x)]. (25)

Since the dielectrie deviations deseribed by the constants ag and a, are
assumed small, and since the index of refraction of a dielectric medium
is just the square root of the relative permittivity, the refractive index
of the sphere described by (2) and (8) is approximately

n = ng [1 - ;) + aln-r:l .

2a (26)

The relative deviation of the average index of the sphere from the sur-
rounding value ny is

Ang _ W
ng 2’

(27)
and the relative difference between the average indices of the “heaviest”
and “lightest’” halves of the sphere is

Any
Mo

2 ke [“ ar cosf o . 3a,
. 9 = __, 2
Srai/3 fu fo l, =5, — " sin dr df de g (28)

* The parameter x defined by (21) has nothing to do with the coordinate z,
which will never appear in the same context.
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Substituting (27) and (28) into (25) and averaging over a random
collection of blobhs gives

16 ((Anl) ) o), (29)

tan § = 32— 277 ((Ana)®)
ﬂ.[)2

wol2) + 5
which is just (1) of Section II.

The functions ¢o(2) and ¢ (2), which were defined by (22) and (23),
may be expressed either as infinite series or in closed form; thus,

(=)"(4a)™ (0 — n + 2)
eo() Z_: 2n(n + 1)2(2n)!

b , « sindx 7
=% T2 Tow e LT o) (30)
1 1 .
+ (@ — ﬂ) Cin 4z,
= (VT (g) P (g — 9 _9
(@) =2( )" (4) (?12 n + )(n
n=32 2n(n + 1) (271)! n + 2
3
T ﬁw + st (81:'* B Z) Cin 42 (31)
3 11 3 3
—+ (W - 64@") cos 4o + (814 — m) sin 4z,
where
Cinx = f L cosi :OS Lat. (32)
0

The functions go(2) and ¢,(x) are tabulated in Table I and plotted in
Figs. 1 and 2 (note the difference in scale of the two figures).

1V. RESONANT CAVITY TECHNIQUES FOR TESTING DIELECTRIC BLOCKS

In practice, the dielectric blocks are tested in an oversize resonant
cavity’ before being assembled into the lens. A typical eavity is shown
in Fig. 3; the cavity dimensions are I X 20 X 3[, and a cubical bloek of
edge [ is placed with one face against the center of one of the long sides
of the cavity. If the block were perfectly uniform and isotropic, a single
measurement of resonant frequency would suffice to determine its
permittivity, with the aid of an experimental or theoretical calibration
curve which could be derived once for all. The dissipation, which we are
neglecting in the present paper, could be deduced from the change in Q
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of the loaded cavity. Actually the frequency shift when a cubical block
is placed in the cavity depends on the orientation of the block. Twelve
orientations altogether are possible for a block in the location shown
in Fig. 3, and from the measured frequency shifts one attempts to deduce
something about the nonuniformity and/or anisotropy of the given
block.

Ideally one would like to have a simple correlation between the re-
sults of eavity resonator measurements and the total power scattered
by a given block in the lens. In a real block, however, the permittivity
is a (possibly tensorial) funetion of position, having in principle an
infinite number of degrees of freedom. A single measurement of fre-
quency shift yields a weighted average of the dielectric deviations,
according to (33) below. On the other hand, the total power scattered
by the block in the lens is a different and nonlinear functional of the
dielectric deviations, given by (7) and (18) of Section III. In the general
case it is obviously impossible to write the scattered power as a function
of the results of any finite number of resonant cavity measurements.

In order to make any sort of connection between cavity resonator
experiments and the performance of blocks in the lens, one has to adopt
some model of the dielectric deviations in the blocks, deseribe the model
in terms of a small number of parameters, express the parameters in
terms of the results of cavity measurements, and finally calculate the
scattered power as a function of the parameters. The parameters which
have been used in the present work are the quantities Any, and An,
defined in Seetion I1. It is assumed that each block is isotropic but
nonuniform, with a small constant gradient of the refractive index (or
the permittivity) in an arbitrary direction. We now consider how the
parameters of such a block might be deduced from cavity resonator
measurements.

The average index of the block is taken as the mean of the twelve
measurements corresponding to the different orientations of the block
in the oversize cavity; An, is the difference between the average index
and the index called for by the lens design. The theoretical dependence
of resonant frequency on the permittivity of a uniform block in the
cavity can be computed numerically using the Rayleigh-Ritz variational
procedure.

The difference An; between the average indices of the “heaviest’” and
“lightest” halves of the block cannot be determined quite so directly,
since the direction of dielectric gradient is not necessarily parallel to
any edge of the cube. An experimentally measurable quantity, however,
is the “‘half-block spread” H, i.e., the difference between the maximum



TaBLE I — THE SCATTERING FUNCTIONS ¢o(2) AND ¢ ()

x ¢y (x) ¢, (%) x @y (%) ¥ (%)
0.0 0. 0.
0.1 0.00029512 | 0.00000024 6.1 2.8440 0.85496
0.2 0.0023328 0.00000746 6.2 2.8966 0.87218
0.3 0.0077182 0.00005556 6.3 2.9492 0.88947
0.4 0.017795 0.00022784 6.4 3.0016 0.90692
0.5 0.033547 0.00067025 6.5 3.0638 0.92456
0.6 0.055637 0.0015960 6.6 3.1057 0.94243
0.7 0.083883 0.0032751 6.7 3.1574 0.96048
0.8 0.11828 0.0060134 6.8 3.2088 0.97869
0.9 0.15805 0.010125 6.9 3.2601 0.99697
1.0 0.20225 0.015896 7.0 3.3113 1.0153
1.1 0.24975 0.023547 7.1 3.3624 1.0335
1.2 0.29940 0.033205 7.2 3.4136 1.0515
1.3 0.35009 0.044880 7.3 3.4649 1.0694
1.4 0.40087 0.058451 7.4 3.5164 1.0871
1.5 0.45105 0.073672 7.5 3.5680 1.1045
1.6 0.50021 0.090192 7.6 3.6197 1.1219
1.7 0.54820 0.10758 7.7 3.6715 1.1391
1.8 0.59515 0.12537 7.8 3.7234 1.1564
1.9 0.64140 0.14311 7.9 3.7752 1.1737
2.0 0.68742 0.16039 8.0 3.8269 1.1910
2.1 0.73375 0.17689 8.1 3.8784 1.2085
2.2 0.78091 0.19243 8.2 3.9298 1.2261
2.3 0.82932 0.20695 8.3 3.9811 1.2439
2.4 0.87929 0.22054 8.4 4.0322 1.2617
2.5 0.93092 0.23338 8.5 4.0831 1.2796
2.6 0.98416 0.24580 8.6 4.1341 1.2975
2.7 1.0388 0.25812 8.7 4.1850 1.3154
2.8 1.0944 0.27073 8.8 4.2359 1.3331
2.9 1.1507 0.28396 8.9 4.2870 1.3507
3.0 1.2072 0.29809 9.0 4.3381 1.3682
3.1 1.2634 0.31328 9.1 4.3893 1.3855
3.2 1.3190 0.32061 9.2 4.4406 1.4028
3.3 1.3739 0.34702 9.3 4.4920 1,4200
3.4 1.4278 0.36537 9.4 4.5434 1.4371
3.5 1.4809 0.38443 9.5 4.5947 1.4544
3.6 1.5333 0.40393 9.6 4.6460 1.4716
3.7 1.5851 0.42357 9.7 4.6972 1.4890
3.8 1.6367 0.44308 9.8 4.7482 1.5064
3.9 1.6883 0.46225 9.9 4.7992 1.5240
4.0 1.7401 0.48094 10.0 4.8500 1.5416
4.1 1.7923 0.49907 10.1 4.9008 1.5592
4.2 1.8450 0.51667 10.2 4.9515 1.5768
4.3 1.8981 0.53382 10.3 5.0023 1.5944
4.4 1.9517 0.55069 10.4 5.05630 1.6119
4.5 2.0055 0.56743 10.5 5.1039 1.6293
4.6 2.0594 0.58424 10.6 5.1548 1.6466
4.7 2.1133 0.60127 10.7 5.2058 1.6639
4.8 2.1669 0.61864 10.8 5.2568 1.6810
4.9 2.2201 0.63640 10.9 5.3079 1.6982
5.0 2.2729 0.65456 11.0 5.3590 1.7153
5.1 2.3252 0.67307 11.1 5.4100 1.7324
5.2 2.3772 0.69182 11.2 5.4610 1.7496
5.3 2.4288 0.71070 11.3 5.5119 1.7668
5.4 2.4803 0.72955 11.4 5.5627 1.7842
5.5 2.5318 0.74827 11.5 5.6135 1.8015
5.6 2.5833 0.76674 11.6 5.6641 1.8190
5.7 2.6350 0.78491 11.7 5.7148 1.8364
5.8 2.6869 0.80278 11.8 5.7654 1.8539
5.9 2.7391 0.82036 11.9 5.8160 1.8713
6.0 2.7915 0.83772 12.0 5.8666 1.8886

688
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Fig. 1 — The scattering funetion ¢o(z).

and minimum of the twelve measurements of apparent index for each
block, taken in all possible orientations. Intuitively one feels that the
half-block spread of a linearly-varying block must be approximately
proportional to An,. To get an estimate of the proportionality factor
we proceed as follows.

First let the cavity contain a uniform, isotropic block of permittivity
e . Let the corresponding resonant frequency he fy and let the electric
field be Eq(x,y), perpendicular to the broad faces of the cavity. If the
relative permittivity is nearly unity, then E, is nearly the field of the
lowest mode in the empty cavity. Coefficients of the expansion of E,
in terms of the modes of the empty cavity can be obtained numerically,
if desired, for any given permittivity by the Rayleigh-Ritz method.

Tu any case, if the permittivity of the block is now taken to be ¢ + ¢,

2.0
/
1.5 T /‘/
- /
8
~ 1.0 - —
-— /
AN
/
0.5 4
o]
o] 1 2 3 4 5 6 7 8 9 10 11 12
I

Fig. 2 — The scattering function ¢;(z).
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T'ig. 3 — Oversize resonant cavity for testing dielectric blocks.

where ¢ is an arbitrary small dielectric deviation, it is well known® that
the shift in resonant frequency is given approximately by

el dV
y_ _Jaa -

{. - - -
0 zfeEde

The upper integral in (33) is taken over the volume of the block, since
& vanishes elsewhere. The lower integral is taken over the volume of
the whole cavity, with e = ¢ in the block and e = ¢, (free space) else-
where. Equation (33) could be generalized to apply to anisotropic
media if desired.

Let us define the effective index deviation An, to be equal to the
uniform deviation which would give the same shift from the frequency
associated with the nominal block. From (33),

fAnEnz dV
Ang =" (34)
f By av

where An is the pointwise deviation from the nominal value and both
integrals are taken over the volume of the block. We shall consider two
cases: (a) a linearly varying block with the index gradient parallel to
one edge, and (b) a linearly varying block with the index gradient
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parallel to a body diagonal. In the present calculation we shall take
E, to be the field of the lowest mode of the empty cavity; the extra labor
involved in using a more accurate field would not be justified, because
of the erudeness of the approximations which have already been made
in treating the scattering problem. If the origin is taken at the center
of the cavity, so that the block fills the space 0 = = = I, |y | = 4,
| 2| £ 3!, then the electric field is in the z-direction and is proportional to

@
By = cos o cos o (35)

If the index gradient is in the x-direction and An, is the difference
between the average indices of the heaviest and lightest halves of the
block, then

An = fﬂ (4 — (36)

The maximum effective index deviation is

z_\nl [ 1 8 T
[ — — da
0 ( x) cos’ 2{ dx 4An,

An, = 7 = oo (37)
2
fu cos’ i ’ du
corresponding to a half-block spread of
H =" 0811an, . (38)

When the index gradient is parallel to a body diagonal of the block,
the caleulation is a little more complicated. We shift the origin to the
center of the block, so that the block occupies the space |z’ | £ }l,
[y | = 3L, |2 | = 3, and write the electric field as

r(l + 1) H'.rr_.l]_'

Iy = cos 57 T (39)
Let the index deviation be
¢ + 2
An = —es = % , (40)
where ¢ is a constant and
;L" + y.' + 2'

vi o T (1)
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is the equation of a plane normal to the diagonal 2’ = y’ = 2’ and at a
distance s from the origin. The area of the part of the plane which lies
inside the cubieal block can be shown by a little geometry to be

3V3EAE — &Y, 0<s = /3

A(s) = 134/3 2
(s) 3‘\‘,)/3 (%\/;—gl_s)z, %l/‘\/ =s§1\/3l (42)

The difference between the average index of the heaviest and lightest
halves of the block is

Any = = (43)

vl Q
fﬂ csA(s)ds = ml.
0 48

From (34), the effective index deviation is

17 ’ K 1
j f f C(L + 1 J + Z) 082'"-(3’ + 2l) 21ry d’U dy dz
- 21

LH f,qf W(x + l) ”;Z; da’ dy' d7 (44)

26;_ _ 32/.\1%;
V3 13x2°

where we have used (43) to express ¢l in terms of An, . It follows that
the half-block spread is

An, = —

64An1

3. = = 0.499An, . (45)

H =

It is reasonable to expect that, whatever the orientation of index
gradient in a linearly varying block, the proportionality constant relat-
ing An; to H will lie between the values given by (38) and (45). When
in the present approximate treatment it is necessary to express An; in
terms of H, we shall take an intermediate value of the coefficient and set

H ~ 0.625An, , An; =~ 1.6H. (46)

In view of the universal temptation to substitute numbers into any
formula which appears to be written in terms of measured quantities,
it must be emphasized that the linearly varying block model used in the
foregoing analysis is known to be incorrect, at least for sufficiently large
blocks produced by current manufacturing techniques. Iixperiments
in which 2-foot cubes of loaded polystyrene foam were sawed up into
smaller cubes and individually measured have shown the presence of
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marked short-range fluctuations in permittivity which contribute very
little to the half-block spread. If the properties of a typical block do
not vary linearly but in a more complicated way with position inside
the block, it is difficult to know what, if any, significance to attach to
the “effective scattering loss tangent’ given by (209).

V. NUMERICAL EXAMPLES

We shall use the present theory to compute some numerical examples
of scattering loss in Luneberg lenses, in order to get an idea of the size
of the numbers involved, even though we have just observed that the
linearly varying block may in many cases be an unrealistic model.

If we assume that the probability distribution of An, is uniform
between — (A7) max and + ( Anp)max , and that H is uniformly distrib-
uted between 0 and H.. , then expressing An, approximately in terms
of H by (46), we find that (29) becomes

2 2
(Aﬂ‘ﬂ) max Hmux

tan 6 = o eola) + 1.5 _RDT‘PI(-T}; (47)

where
x = 2rang/N, , (48)
a = 0.G201, (49)

and A, is the vacuum wavelength.

In a companion paper,” numerieal formulas have been given for the
attenuation of electromagnetic energy by a uniformly illuminated Lune-
berg lens in which the loss tangent of the lens material is any linear
function of the refractive index. In the reference cited, the loss tangent
was supposed to be due to dissipation, but it can equally well be due to
scattering so far as the effective power loss is concerned. It is assumed
that the loss tangent can be written in the form

tané = An + B, (50)

where A and B are constants determined by passing a line through the
values of tan & corresponding to the surface and the center of the lens,
or by a least-squares fit to more than two points if desired. Then, for
example, the fractional power loss in a lens of radius R, whose focal
point is at a distance 0.1/ outside the surface, is given by

AP R

b =3, 13464 + 13.13B]. (51)
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In the following examples we shall assume that (Ano)max and Hmux
are constant throughout the lens. For any given ratio of block size to
wavelength, it is simple to calculate tan & at the surface of the lens
(n = 1) and at the center (n = 1.36) from (47), and then to determine
the values of 4 and B in (50). Finally the fractional power loss may be
written in the form

AP R

— = — 2 2
Pu h;; [FO(AnO)max + Flenx ]- (52)

The dimensionless coefficients Fy and F; are given as functions of I/\, in
Table II, and are plotted in Fig. 4.

As a first example, consider a lens 40 wavelengths in diameter, made
of one-wavelength dielectric cubes. If we take

R/\, = 20,
Ux, = 1,
(Ang)max = 0.005, (53)
Huae = 0.020,
then (52) and Table 1T yield
AP/Py = 0077 or 0.35 db loss. (54)

The loss would be the same if the frequency were doubled and the block
size halved, while the lens diameter and the values of (A%g)max and
H .ox Were held constant.

TaBLe 1I—THE Funcrions /o AND 17

1y Fo F1 1 Fo 7y
0.0 0. 0.

0.1 0.248 0.007 1.1 22.06 9.553
0.2 1.544 0.160 1.2 24.42 10.69
0.3 3.625 0.765 1.3 26.76 11.89
0.4 5.798 1.777 1.4 29.06 13.12
0.5 7.960 2.837 1.5 31.36 14.31
0.6 10.23 3.833 1.6 33.67 15.47
0.7 12.59 4.848 1.7 35.97 16.65
0.8 15.01 5.906 1.8 38.25 17.84
0.9 17.42 7.075 1.9 40.53 19.02
1.0 19.73 8.344 2.0 42.82 20.19
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Fig. 4 — The functions Fy aﬂd Fi.

As a second example, consider a lens with

R/\, = 40,
/N = 2, (55)
(AR max = 0.005,
Hmax = 0.020.
The loss computed from (52) and Table II is
AP/Py = 0.37 or 2.0 db loss. (56)

This would correspond to the lens treated in the first example if it were
used at double the frequency with no alterations in physical structure.
Of course it is hardly legitimate to apply (52), which was derived on
the assumption that the scattering loss is a small perturbation, to predict
a loss of 2 db. We can conclude from (52), however, that to reduce the
scattering loss in the second lens to 0.35 db, it would be necessary to
hold H . down to 0.0065 if ( Ang)max Were still equal to 0.005.

Finally we note that the examples just given refer to blocks whose
dimensions are comparable to or greater than a wavelength, and for
which the assumption of linear index variation is very likely to be in-
valid. If the formulas were applied to blocks of fractional wavelength
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size, as can easily be done using Table I or Table II, the half-block
spread might be a more significant parameter, since very short-range
fluctuations scatter so little energy, and the computed results might be
more meaningful. The working out of additional numerical examples,
however, is left to the reader.
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