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A pair of coupled nonlinear differential equalions is given which de-
scribes the reduction of gain in a traveling-wave maser due to high-power
signals. Integrals in closed form are oblained for two cases of interest. The
first applies to pulsed optical amplifiers where no replacement of stored
energy occurs dwring a signal pulse. The resull ¥s a pulse sharpening
phenomenon; i.c., the leading edge of an input pulse is amplified by the
original full gain while later parts of the signal experience reduced gain.
The second case 1s that of steady-state gain saluration in the presence of a
continuous pumping process. The results describe the observed gain com-
pression of microwave ruby traveling-wave masers.

1. INTRODUCTION

This paper presents earlier considerations concerning the gain process
in traveling-wave masers in cases where the signal energy, over an ap-
propriate period of time, is comparable to the energy stored in the maser
material. The results were communicated several years ago in reports
with limited circulation.!## The studies were prompted originally by
the development of mierowave masers, in particular the ruby comb-strue-
ture traveling-wave maser.* Here gain saturation is of interest primarily
in a negative sense: it i3 a condition that should be avoided in system
applications. The maser may handle input signals up to some typical
saturation limit which depends on the tolerable gain compression, the
signal duty ratio, and the low-power gain. Thus the situation of drastic
gain reduction due to saturation is largely of academic interest. It may
be used, however, as a check on the theoretical understanding of the
maser gain process.® It should be added that even with drastically com-
pressed gain the maser is still a linear amplifier in the sense that it does

* This work was supported in part by the U.S. Army Signal Corps under con-
tracts No. DA 36-039 SC-73224 and SC-85357.
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not create intermodulation frequencies due to a nonlinear mixing inter-
action. Rather, the output is still a faithfully scaled replica of the input
signal.b-®

The advent of optical masers in more recent years”#:? has led to a
more genuine interest in maser high-power saturation phenomena. The
generation of high-power (“‘giant”’) pulses by the Q-switching technique,!
for example, makes use of the fast exhaustion of the energy stored in the
maser material. Similarly, pulse sharpening is an inevitable and in some
applications a desirable effect in a pulsed high-power postamplifier.!*1*
The more prominent role of high-power phenomena in the optical maser
field has suggested the present, more complete publication of the earlier
reports.

The theory of masers is largely identical for those in the microwave
and in the optical range. This applies, for example, to the derivations of
the gain and noise behavior. The same is true for the high-power phe-
nomena treated in the present paper. Thus the term traveling-wave
maser (TWM) can be used without further distinction except in nu-
merical examples.

The coupled differential equations governing the TWNM high-power
behavior are given in the following section. The integral applicable to
pulsed TWM’s is derived in Section III. Some numerical consequences
for pulse sharpening are discussed in Section IV, and an experimental
example of pulsed optical TWM performance is analyzed in Section V.
The integrals describing steady-state gain saturation are derived, and
computed gain saturation curves are presented, in Section VI. Experi-
mental gain saturation data obtained with a microwave TWM are
shown for comparison in Section VII.

II. THE DIFFERENTIAL EQUATIONS

The gain process in the TWM is stimulated emission. It is the inter-
action of two forms of energy. One is the radiation energy of the mode
under consideration. Its strength may be measured in terms of the num-
ber of photons per unit of time, n/(2,t"), which pass the maser or the
mode cross-section at a point 2’ along the maser length and at a time
¢'. Here 2’ ranges from z' = 0 at the input to 2 = L at the output. In
the absence of gain or loss interaction, the radiation energy propagates
through the maser with a group velocity v,, so that then n/ = n/
(2" — ut').

The other form of energy is that stored in the maser material. It can
be given in terms of the number of available quanta per unit of maser
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length, n.'(2',{"), within the eross seetion occupied by the signal trans-
mission mode. The number of available quanta is half the execess number
of particles in the upper state of the signal transition over those in the
lower state, n.” = 3(ny' — n’). n.’ may depend on the length coordinate
Z" along the TWM and on time . A quantity N. may be introduced as
the “pumped-up value” of n.’. It is the maximum value which n.” may
assume either with low signal power operation under steady-state con-
ditions or before any signal energy withdrawal with pulsed pump
operation,

Using these energy variables, a system of two coupled partial differ-
ential equations may be given which deseribes the high-power effects in
TWDNMs. It is of first order and nonlinear

an.’ 1 an,

el T an/n. — bn/ (1)
v
an.' ’ o ' ;
ST —angn, + c¢(N. — n.'). (2)

The first terms on the right-hand side are equal and opposite. This is
an expression of energy conservation; i.e., each quantum of energy
stored in the maser material is converted into a photon propagating in
the signal mode. In a maser, energy conservation of this type may be a
justified assumption, at least under high-power conditions where other
processes such as spontaneous transitions are insignificant by comparison.

The dimensionless constant a describes the gain interaction hetween
hoth forms of energy. In units of decibels, the low-power electronic gain
of the TWM is 4.35 a N.L. This allows a numerical evaluation of the
constant a from experimental data. The line shape of the maser transi-
tion is reflected in the frequency dependence of a. Implicit in such a
treatment of line shape is the assumption that the maser transition
considered is homogeneously broadened. However, the present theory
may also be applied to lines with inhomogeneous broadening provided
the energy diffusion across the overall line is rapid enough to prevent a
line shape distortion or “hole burning” under high-power conditions.
Formally, for a magnetic dipole transition at the maser signal line, a can
be given in the form

Urag(y — pun) f < n'| g8l |n > [PdA
a = Ay . (3a)
e f H A
Ag
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Here w/2r = » = signal frequency, g(» — vua’) = line shape function,
(n' | g8BH -8 | n) = matrix element of the transition, v, = group velocity,
h = Planck’s constant, uo = vacuum permeability, 4 » = cross section
of maser material, As = cross section of structure; finally, the ratio of
the magnetic field energy integrals alone in (3a) defines the filling factor.
The symbols used are those introduced in Ref. 4, to which the reader is
referred for a derivation of traveling-wave maser theory. In the optical
range it is more convenient to characterize a maser line by its spontane-
ous transition rate, W(8,e,P), which is a function of the direction of
emission expressed by spherical angular coordinates 8 and ¢, and of the
polarization P of the emitted light. Using this term, a becomes

_ 2\'g(v — w) W (6,,P)
a= . (3b)

where Ay = vacuum wavelength of light, g(» — ») = line shape function,
¢ = dielectric constant of maser material, A4, = cross section of amplified
mode. These symbols are defined as in Ref. 11, where the theory of
optical traveling-wave maser amplifiers is derived.

The constant b accounts for signal loss along the TWM. In a micro-
wave TWM it may consist of ohmic structure losses (copper loss) and
the forward attenuation of the isolator (ferrite loss). In an optical TWM,
the losses may be contributed by scattering, diffraction and the isolator,
although the latter two do not really occur in a distributed fashion. In
units of decibels, the total propagation loss in the maser is 4.35 bL.

For the case of CW pumping, a maser recovery rate ¢ is included in
(2). Tt is the reciprocal of the exponential time constant which describes
the low-power gain recovery after a saturating pulse. In microwave
masers the pump power usually available is relatively high, so that ¢ is
essentially given by the spin-lattice relaxation rate of the idler transi-
tion. In CW optical masers the pump levels usually available tend to be
lower in terms of pump photons, so that ¢ may be largely determined by
the pump power.

The left-hand side of (1) is a combination of partial derivatives with
respect to time ¢’ and space 2, which indicates that signal propagation
with a group velocity v, is considered in the positive 2" direction. Propa-
gation in the negative 2’ direction would require a minus sign. The
complication of propagation effects can be eliminated from (1) by a
transformation

z=2z ﬂ-g’ = N
, (4)
vt = vt — &' n. = n,
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which results in the differential equations

aﬂ,g

o . — bn 5
92 angm Mg (0)
66%1 = —anm. + ¢(N. — n.). (6)

The physical situation and this transformation in particular are illus-
trated in the space-time diagram of Fig. 1. It is seen that the new time
coordinate { remains constant for any part of the signal as it passes from
the input to the output. For example, the leading edge of a pulse is char-

FINAL STORED ENERGY

1' L
nz(z,to) o<z<L

Ugto

o<t<to

OUTPUT SIGNAL

nt(L,t)

INPUT SIGNAL
nt(o,t) o<t<ty

INITIAL STORED ENERGY
n (z,0) o<z<L

Fig. 1 — Schematic presentation of the maser gain process by removal of
stored energy; also shown are space and time coordinate systems.
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acterized by ¢ = 0, whereas in real time it would pass the input at ¢’ = 0
and the output at ¢’ = L/v, .

The figure also suggests that the problem contained in (5) and (6) is
hyperbolic in nature; that is, it is characteristic of propagation. In the
present case this implies that the physical situation at a point 2, is
determined by all interactions which happened earlier, i.e., from time
0 to ¢, and closer, i.e., from 0 to z. Such a problem is not specified unless
two boundary conditions are set up. The first is an initial condition
which specifies the situation for values of z, 0 < z < L, at the time ¢ = 0.
The second is an input condition which specifies the situation for times ¢,
t > 0, at the input z = 0. Then the equations permit a unicque evaluation
of the variables at any point z and time {.

The boundary conditions for the present problem include the initial
stored energy

(n.(2) for0 < z < L
n.(zt =0) = (7a)
0 forz <Oand L < z
and in the simplest case may involve a uniform distribution of stored
energy
(N. for0<z<lL

nizt = 0) = (7h)
0 forz < Oand I < z.

The other condition specifies the input signal
Jn;(t) fort >0
0 for 0 > ¢

nz = 0t) = (8a)

which in the simplest case may consist of a step function signal

) [N: fort > 0
n(z = 0,t) = i (8h)

0 for 0 > L.
1t turns out that the equation system (5) and (6) with the boundary
conditions (7) and (8) eannot be integrated in general. An exact integral
can be obtained, however, for b = ¢ = 0. It will be derived in the next
section. This integral describes the response of a maser amplifier with
negligibly small internal losses and no replacement mechanism for the
drain of stored energy. It is of interest, since these mathematical condi-
tions approximate very closely the physical situation of pulsed solid-

state optical maser amplifiers.

Another integral can be readily obtained from (5) and (6) by letting
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an./dt = 0in (6) and with b £ 0 and ¢ # 0. This leads to the steady-
state gain saturation formulas which are discussed in the later parts of
this paper and which are of interest in applications of microwave
TWNMs.

IFor numerical ealeulations it may not be too convenient to interpret
n, as the number of photons per unit time and ». as the number of stored
quanta per unit length. Instead n. may be made to mean the stored
energy in joules per unit of maser length and =, the signal power in
joules per second, i.e. watts. This new convention changes the definition
of the constant @ in (3). Now 4.35 @ becomes equal to the decibel elec-
tronic gain of a TWM under consideration divided by the energy stored
(in units of joules) in the same TWNML.

I11. SOLUTION FOR THE TRANSIENT CASE

Forb = ¢ = 0, (5) and (6) can be conveniently rewritten

an, on.,
ot )
an. 9
oy = G, (10)

In this form, (9) is recognized as a conservation law. Using the
language of gas kinetic chemical reactions, (10) describes a bimolecular
reaction whose yield is proportional to the density of either molecular
species, the photons and stored quanta in this case.

The integration of the system (9), (10) subject to the boundary con-
ditions (7a) and (8a) is outlined in the following paragraphs of this
section. The method of integration was suggested to the author by J. A,
Morrison. It is presented here because it does not follow an established
standard approach.

A new funetion @ is introduced subject to the requirements

ad

D
o= = an,. (11)

= —an,, 5

This “ansatz’ satisfies (9) by definition, and the remaining differential
equation (10) becomes

a od
at 9z b
acpz T @ (12)

az
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Logarithmic integration with respect to { yields

ln(iq.i = —®+In dF (z)

dz dz (13)

where the last term is an integration constant which may be a function
of z alone. After rearrangement this is

e@%‘: = dﬁ;gz) . _ (14)
A second integration is possible, with the result
et = F(z) + K(1) (15)
or
® = In [F(z) + K(t)] (16)

where K is an arbitrary function of ¢ alone.

The as yet arbitrary functions F and K are specified by the boundary
conditions (7a) and (8a). Using these and the definition of ® in (11),
one has

dK (1)
, _ldd(z=0) _ 1 dt ' (17)
() = o T aF0) F KO for: <0
dF (z)
, _ ldd(t=0) _ 1 dz i (18)
nz(z)_ ET_ EIW{(_O) fOlO<Z<L

These equations can be easily integrated and the results may be com-
bined in the form

exp [a [l m(s)ds] + exp [—a fz nz(u)dujl -1

_ PG + K@)
F(0) +K(0)

When this result is inserted into (16) and the original definition of
®, (11), the final solution is

(19)

0] S~
n,(z,t) — S(l)fl + G(z)_l -1 (20)
n.(zt) = . (2) G~ (21)

ST+ G(z)t -1
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where (7(z) is the initial power gain

G(z) = exp l:a j: n.(u) du] (22)

and S(t) is the saturation parameter at the input, i.e., the fraction to
which the original stored energy near the input is reduced after a time ¢

S() = exp [—a f na(s) ds:|. (23)

Tor the simpler boundary conditions (7b) of an initially uniform gain
distribution and (8b) of a step function input signal, the solutions (20)
and (21) take the form

N, exp (aNit)
exp (aN ) + exp (—aN.z) — 1
N.exp (—aN.z)

_ 25
na(z,1) exp (aN,) + exp (—aN.z) — L (29)

ne(zt) =

The solutions (20) and (21) show a number of mathematical proper-
ties which should be expected in view of the physical situation. With
general definitions for the gain and saturation parameters

Glz,t) = nzt)/nt)
S(z,t) = n.(zt)/n.(z)

the following features may be mentioned:

() The gain G(z,t) decreases monotonically with time from the ini-
tial value (22) down to unity. /(z,t) is greater for larger values of z.

(i) Similarly, the saturation parameter S(z,) decreases monotoni-
cally with time from the initial value of unity to zero. The drop is faster
for greater values of z.

(i17) G(z,!) may be expressed in the form (20) using the initial gain,
but it may be also obtained by computing the gain due to the instantane-
ous excess energy storage n.(z,t). Thus

B S(t)_l o z
G(z,4) = NORETORES N exp I:afo n. () du:l. (27)

(zv) A corresponding relation holds for S(z,)

_ G(z)~ R Y
S(z,t) = NOEFY OREES e.\p[ a,j; n.(z,8) d.s:l. (28)

(v) Tig. 1 suggests that the situation at some time ¢, might be used as

(26)
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a boundary condition instead of the initial condition at time ¢ = 0.
Thus there is an addition theorem for the gain formula

_ St + )7
S(tl + tz_}—l + (}(Z)_l -1

_ S(ta)™
N S“-_&)_] -+ G(z,h)_l -1

G(zstl + t?)

(29)

(v7) A similar iteration formula applies to the saturation parameter,
which may be defined either directly by the initial total gain and input
saturation or by the initial gain of a part of the maser and the saturation
at the beginning of this part

— G(Zl + 2’2)71

S(f)_l -+ G(Z] + 22)71 —1
_ G(Zz)_l
TS )T+ Gl =1

S(Zl + 22 ,t)

(30)

(vi2) Energy conservation requires that the excess of the output
energy over the input energy equal the loss in stored energy

ft [ne(z,8) — n(s)] ds = /-z [n:(u) — n.(ut)] du. (31)

Equations (27) to (31) may be verified directly.
Equations (20) to (21) ean be simplified if the original gain is large,
G(z) > 1, and if the degree of saturation at the input is small,

t
af n(s) ds < 1.
0

The greater part of the deerease in gain occurs before this last condition
is violated, With these approximations

nezt)  _ 1 (32)

n, (1) G(z) 1+ G(2a fﬂ n.(s) ds

n:(zt) _ 1

7 . (33)
ns(2) 1+Gma£m@ds

Equations (32) and (33) deseribe a hyperbola, as shown in Fig. 2.
In the case of a step function input signal (8b), for example, the curve
deseribes directly the shape of the output signal. The initial output power
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Fig. 2 — Decrease of gain as a function of input energy and decrease of stored
energy vs input energy. The graph ean be also interpreted as showing the shape
of the output signal vs time if a step funetion input signal is applied.

in that case, of course, is given hy the input signal multiplied by the
original gain and the ordinate of the curve would have to be scaled
accordingly. As one expects from energy conservation, the reciprocal
sealing applies to the time scale on the abseissa. In other words, the
drop of the output signal occurs faster if the input signal and the initial
gain are higher. Also, as expected, the drop of the output sets in more
slowly if the stored energy per db of initial gain, (4.35 a)”, is greater.

The curve in I'ig. 2 also describes the reduetion of stored energy as a
function of input energy. Directly at the input, the stored energy decays
by an exponential law (23). Further along the TWM at points z, where
there is an appreciable initial gain (7(2), the reduction of stored energy
follows the hyperbolic law. The initial drop is faster for higher (/(z), but
then the loss of stored energy levels off, although it is always faster than
directly at the input.

The reduction of gain with input energy is plotted in another way in
Fig. 3. Roughly speaking, the plot is a double logarithmie presentation
of the data in Fig. 2. The ordinate shows the gain in db. The abscissa
shows the decibel degree of saturation at the input

t
10 logyo S(t) = 435 a [ n(s) ds
Jo

plotted on a logarithmic scale. In this presentation, the hyperbola of
Tig. 2 becomes a horizontal line eurving into another line with a slope
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Fig. 3 — Drop of the initial gain in db vs integrated input energy, in db of
saturation at the maser input. The plot shows that with the same constant input
signal, the gain of a maser with initial 10 db higher gain drops 10 times faster.

of minus unity. A family of curves results because abscissa and ordinate
now contain the initial gain explicitly. In this way the plot demonstrates
that, of two otherwise identical TWMSs excited by the same input signal,
the one with a 10-db higher gain, for example, suffers gain reduction 10
times faster. In the lower right-hand of the figure it is seen that the
asymptote to all curves is no longer a straight line but levels off. This is
the region where the gain is very large compared to unity and the degree
of saturation at the input is small. Thus there the expression (32) no
longer approximates the gain behavior, and hence the exact formula
(20) had to be used for plotting the curve.

IV. DISCUSSION OF PULSE SHARPENING

The results of the last section show that the instantaneous gain of a
TWM is a decreasing function of time. The decrease can be particularly
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rapid if the energy stored in the TWM is not too high. The question
arises whether this phenomenon can be used as an optical pulse shaping
mechanism. From a practical viewpoint, such a method of pulse genera-
tion would be of interest only if it could be used to produce pulses of
higher peak power within a diffraction-limited beamwidth and/or of
shorter duration than those produced by other methods. High peak
power allows the study of nonlinear interactions in matter, and short
pulses can be used in optical ranging devices with extremely high resolu-
tion. The generation of very short, very high-powered pulses will be
discussed in this section with the aid of some numerical examples. These
examples are deliberately chosen to be between the present state of the
art and optimistic forecasts.

As a first example consider a step function input at a power of N, = 10
watts incident on a unidirectional optical TWM of the type developed
by Geusic and Scovil," but with an initial gain of 40 db. The leading
edge of the pulse experiences the initial gain and hence results in 10"
watts = 10 gigawatts at the output. The duration of the pulse may be
defined as the time at which the output has dropped 3 db. It ean be ob-
tained from TFig. 2 or 3.

In the ruby optical TWM," the stored energy is about 1 joule for every
6 db of gain, provided the signal transmission mode mateches the cross
section of the ruby rods. Thus 4.35 & = 6 db/joule. The gain is reduced
3 db after a time

]

ty = (GaN )™\ (34)

For the numbers chosen, {; = 0.7 X 107 seconds. The energy AR,
released by the TWDM up to that time can be found, for example, by in-
tegrating (24) with respect to time. It can also be given without ealeula-
tion, however, if one considers that at any time there is proportionality
between the stored energy and the decibel gain. Thus AEj is equal to the
energy stored originally in a fraction of the amplifier length which ini-
tially gives rise to 3 db of gain:

AEy N.L, (35)

3
 Go(db)
which is ¥ joule in the case considered.

With less stored energy in the amplifier, for example by signal trans-
mission which utilizes only a fraction of the ruby cross section, the pulse
duration f; would tend to be shorter. This is hardly possible, however,
because the time given already comes close to the linewidth-limited rise
time of the amplifier.
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The computed pulse duration and peak power would seem rather at-
tractive, and certainly they are beyond the capabilities of existing
technology. It should be questioned whether the calculation is based on
realistic assumptions. Geusic has operated a TWM with initial gain
values of 20 to 30 db. Thus the assumed initial gain of 40 db is feasible.
An optical power level in the megawatt range can be produced over
short periods of time by the Q-switching technique.” Usually, however,
that power is spread over a larger beam divergence than the diffraction
minimum. Only a diffraction-limited beam can be fed conveniently into
an aperture-limited TWNM. The greatest discrepancy exists, however,
with respect to the rise time of the input pulse, or step function, as used
in the ealeulation. The calculation presented and the results are mean-
ingful only if the input power rises in a time short compared to ¢; or at
least comparable to it. If this were the case, the pulse would have its
original fast rise and the exhaustion of the gain mechanism discussed
here would produce a reasonably sharp cutoff at the trailing edge. Re-
alistic rise times for Q-switched giant pulses are about two orders of
magnitude longer than the ¢ quoted. With such a pulse fed into a TWM,
most of the stored energy and amplification would be depleted long be-
fore the input ever reached the assumed 1 megawatt level.

The question therefore arises as to what degree of pulse forming may
be observed under conditions when the input signal is a rising function
of time. The situation is schematically indicated in Fig. 4. The input
signal may be the initial rise of a giant pulse. A TWM with initial gain
@, will amplify the first portion of the input signal proportionally until a
noticeable fraction of the stored energy is exhausted. The resulting drop
of gain may be so rapid that a distinguishable pulse is obtained at the
output. With higher initial gain G > G in the amplifier, the peak power
of the pulse is greater, the peak is reached sooner and the subsequent
drop to 1 of the peak power occurs faster.

The rise of the input signal may be described by a power law

nt) = (t/)"P,  n=1,2,3---. (36)

The numbers used in the example are a peak input power of P = 10°
watt which is reached after a rise time of &, = 107° second. The initial
TWM gain considered is 60 db, G(L) = 10°. Application of (32) shows
that the peak of the output pulse occurs at a time f,..x Where

nin + D"
aPG(L)

The output power is down 3 db from the peak value at the time #; where

(szmz)"+l = (37)
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n+ 1

n

ty 2 binax -

At the peak of the pulse the remaining gain is

G(Latmux) = ﬁ__TG(L)

and the peak output power n,( L,{nax) becomes

ntl PG(L) n '
[]L;(L;tmux)] - n—+1 (a_tu) '

639

(38)

(39)

(40)

Table I summarizes the numerical results. The true rise of the giant pulse
may come sufficiently close to a eubic or quartic parabola. From the last
two entries in the table one then can estimate that the peak of the output
pulse will exceed the peak of the input by about 30 db. This is a sizable

QUTPUT
FOR G, > Gy

POWER —>

TIME =

Fig. 4 — Pulse sharpening during rise time of input signal. The pulse is higher

and the rise time shorter for higher initial gain.
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TasLe 1
Exponent of Input Rise Pulse Duration Peak Pulse Power (watts)
[n in (36)] [ty in (38)] [#e(L,tmax) in (40))
n=1 4.8 X 10710 gec 6 X 10°
Straight-line rise
n=2 2.3 X 107? sec 1.9 X 10°
Quadratic parabola
n=3 4.6 X 107? sec 1.3 X 10*
Cubie parabola
n=4 6.7 X 107? sec 1.1 X 10*
Quartic parabola

Values used: input: rise time £, = 1078 sec
maximum power P = 10° watt
maser: initial gain G(L) = 10°
energy storage (4.35 a)”! = 6 db/joule

increase, although it is much less than the initial gain of 60 db. The pulse
power obtained in this fashion from the TWM has essentially the same
frequency spectrum and mode distribution as the input pulse. This can
be understood by observing that the TWDM is, for any short time ele-
ment, a truly linear amplifier although the gain decreases continually
with time. It is therefore clear that the output frequency spectrum is
only slightly wider than that of the input, namely to the extent that the
pulse duration was indeed shortened. Similarly, appreciable mode con-
version by a TWM amplifier is possible only if the gain over the cross
section is grossly nonuniform. In this sense, the TWM is a “faithful”
amplifier even under high power saturating conditions. The duration of
the pulse, measured here from ¢ = 0 to the time {; when the output power
has passed the peak value and dropped to § of it, is at best not quite one
order of magnitude shorter than the assumed initial build-up time ¢ of
the input signal.

It is beyond the scope of this paper to suggest whether or not the pulse
sharpening discussed is a practical way of producing the extreme in fast,
high-power pulses. It is a way, however, where, although with diminish-
ing returns, the peak power is only limited by whatever high-power limits
exist in the stimulated emission process itself and in transmission through
materials like glass and sapphire, and where the ultimate pulse rise time
is limited only by the bandwidth of the maser signal line itself, not by the
time for a round trip of light through the device, as in the Q-switched
oscillator.

There remains one point which is more curious than serious. The reader
might ask why the power law (36) was used for the input power in the
pulse sharpening analysis. If instantaneous switching of the shutter can
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be assumed, the initial rise of the giant pulse follows an exponential®
n,(t) = P exp (t/to) —hLh <t<O. (41)

Is it possible to use this input signal for pulse sharpening analysis?

It turns out that the ideal exponential rise, —¢;, = — =, does not pro-
duce an output pulse at all. Rather, the output becomes a monotonically
increasing function of time. Loosely speaking, the exponential input
clears the stored energy out of the TWM in such a smooth fashion, slowly
at first while the gain is still high and more rapidly when the gain has
started to decrease, that it never can develop the kind of “overswing”
or “shock wave’ indicated in I'ig. 4. One consequence is therefore that
deviations from the exponential rise in the actual input signal are signifi-
cant, and helpful for achieving pulse sharpening.

V. AN EXPERIMENTAL EXAMPLE OF PULSE SHARPENING

One of the aims of optical traveling-wave maser development is the
generation of very high pulse power by amplification of an already high
input signal. Pulse sharpening due to partial exhaustion of the maser
energy storage is unavoidable in this situation, as pointed out in the
paper on the optical traveling-wave maser."! IEven with more moderate
power levels, some pulse sharpening ean be observed if pulse duration
and initial gain are sufficiently large. Geusic and Scovil demonstrated
the effect in experiments with the optical TWM, and an example of their
observations is given in Fig. 5. It shows the tracing of a dual-beam os-
cilloscope presentation of pulse amplification. Part of the amplifier input
and output was detected by photomultipliers. A time constant of about
a microsecond was used to smooth both responses. In reality the input
signal contains spikes which appear faithfully amplified at the output.
In the oscillogram of Fig. 5, the sensitivity of the output detection was
reduced 15 db by inserting a grey glass attenuator, and the polarities of
both signals are reversed for easier presentation of the data. The figure
clearly indicates reduced gain for the later portions of the signal and the
resulting pulse sharpening.

The data of Fig. 5 were used to evaluate the intrinsic gain decay curve
shown in Fig. 6. Here the ordinate shows the numerical power gain, that
is, essentially the amplitude ratio of I'ig. 5. The abscissa represents the
input energy which was obtained by numerical integration of the lower
curve in Fig. 5. The circles show the numerical data points. According
to the theory [see (32)], the reduction of gain in this presentation should
follow a hyperbola such as shown in Fig. 2. The solid curve in Iig. 6 is a
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Fig. 5 — Dual-beam oseilloscope record of a pulse sharpening experiment taken
with a ruby optical traveling-wave maser by J. E. Geusic.!? The arrows indicate
the time at which half of the energy stored in the amplifier was exhausted, thus
redueing the numerieal gain by a factor of 2 (or the db gain by 3 db).

hyperbola which was fitted to the data by adjusting two parameters. It
should be mentioned that the first and last points of the data are ap-
preciably uncertain because there the absolute magnitude of the signals
is rather small. Considering this, the agreement between the data points
and the curve is remarkably good. This may be taken as support for
the theory. It would be impossible, for example, to fit the data with an
exponential law.

Some further details may be read off the curve. The initial gain was
52 (17.2 db). At the time of the signal peak, the gain had already dropped
by 1 db to 40.5 (16.1 db). At the point indicated by arrows, the gain is
reduced by 3 db to 26 (14.2 db). The energy contained in the output pulse
up to that time is equal to the energy originally stored in a 3-db section
of the amplifier [(35) applies here, too]. This would be about % joule if
the output beam filled the entire aperture of the amplifier. Actually, the
beam area in this experiment covered one-half of the ruby cross section,
so that the output energy, taken from the rise of the pulse to the time
marked by the arrows, was about % joule. The corresponding average
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. Fig. 6 — Replotting of the data of Fig. 5: numerical power gain is shown vs
integrated input energy. Points are data read ofl Fig. 5 and solid line is hyperbola,
predieted by theory, fitted to the data.

pulse power is 5 kilowatts. This power level, incidentally, implies a rather
high power per solid angle. The acceptance angle of the amplifier, which
was measured to be in agreement with the actual angular spread of the
output pulse, is 10~% radians. This comes close to the diffraction-limited
heam spread of 10~ radians for a }-inch diameter ruby amplifier. Ap-
plieation of (33) allows one to evaluate the energy still stored, for exam-
ple, at the 3-db time. At the output, the stored energy is then reduced
to § the original value. By comparison, at the input only %5 of the
total has been spent. For the latest portions of the signal, the gain has
dropped to 20 (13 db), down 4 db from the initial value.

The presentation of the gain data in Fig. 6 shows two other points.
Loss of stored energy due to spontaneous transitions is negligible; other-
wise the gain would drop faster. This should not occur here, since the
pulse is fast compared to the fluorescence decay. The other point con-
cerns the pumping. Fig. 6 shows that the pumping process was com-
pleted at the time of the signal pulse, because otherwise an increase in
gain with time should be observed.

VI. STEADY-STATE GAIN SATURATION

Under steady-state conditions, the differential equation (5) remains
unaltered
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— = anm, — bng (5)
dz

and the differential equation (6) becomes the well-known saturation
formula

N.

n; = m (42)
where a characteristic saturation power level P, is defined by
P. = ¢/a. (43)

It is the level which reduces the stored energy to one-half. Another
convenient definition is

R = aN_./b (44)

the ratio of low-power electronie gain to structure loss. Using (42), (43)
and (44), (5) results in the ordinary differential equation

dz 1 R

((IN;_b)d—m:E PG(R-—l)—’nt.

(45)

Integration yields
nl(L) _ oy, (L) = Po(R — 1)
7 (0) n(0) — P.(R — 1)

This function is an implicit relation between input, n.(0), and output
signal power, n,(L). If one considers n,(L) as a function of L, it is a
function whieh has two branches, If

n(0) < PR — 1)

In

= (aN. — b)L.  (46)

a branch results which describes gain. For very small input powers, in
particular

n,(0) < P(R — 1) (47)
the TWM has simply its low-power gain
ny(L) = ny(0) exp (aN. — b)L. (48)

For
n(0) > PR — 1)
(46) describes net loss. In particular, for very high input power

n(0) > P(R — 1) (49)
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the gain mechanism in the TWNM is inactive and the device behaves as
an attenuator

w( L) = n(0) exp (—0L). (50)
If the input signal assumes the value
n(0) = PR — 1) (51)

it ean be shown that the maser exhibits neither gain nor loss; it is trans-
parent

n0) = n(L). : (52)
At this level, the energy stored in the TWM is uniformly distributed
n.(z) = N./R. (53)

Equation (46) loses its meaning for a TWM without intrinsic loss,
b = 0. The relation valid in this case may be derived directly from the
differential equation or by a limiting process for R — « applied to (46).
The result is
n(L) | n(L) — n,(0)

In e (0) + P = alN.L. (54)
This equation describes an exponential amplification under low signal
conditions as before, but an additive amplification process for signal
levels large compared to P, . This means that every section of amplifier
having a low-power gain of 4.35 db or a power gain factor of e increases
the signal additively by P. .

TFFor the most interesting range, where input or output power levels
are comparable to P., (46) has to be applied without approximations.
The relation between input, n,(0), and output powern,(L) was machine-
computed for a number of low-power gain values,

Gay, = 4.35 (aN, — b)L,

and gain-to-loss ratios, £ = aN./b. These data are shown in a series of
plots in Figs. 7 through 10. Each family of curves applies to masers with
the same low-power net gain and with the intrinsie loss varied from 3 db
to 18 db in 3-db steps. The six families of curves are characterized by
low-power net gains from 15 db to 40 db in 5-db steps. Essentially all
practical masers are designed for gain in this range. Fig. 7 presents the
data as a relation between input and output power, both normalized to
the characteristic saturation level, P. . Fig. 8 shows the apparent gain
as a function of input power and Fig. 9 as a function of output power.
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Fig. 7 — Output vs input power for traveling-wave masers having low-level
net gain of (a) 15 db, (b) 20 db, (e) 25 db, (d) 30 db, (e) 35 db, and (f) 40 db. In-
trinsic loss for each family of curves increases from 3 db to 18 db in steps of 3 db;
all power levels are measured relative to characteristic saturation power.
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Fig. 8 — Plot of apparent gain vs input power for traveling-wave masers of
Fig. 7.

For many applications, the onset of gain saturation in the maser is sig-
nificant and, depending on the system function, gain compression of 14,
1 or 3 db or even more may be tolerated. The region of beginning gain
compression is shown in IYig. 10. It is a plot of apparent gain versus input
power as in Fig. 8, although on an expanded seale.
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Tig. 9 — Plot of apparent gain vs output power for traveling-wave masers of
Fig. 7.

Inspection of Fig. 7, for example, shows that in the range of drastic
gain saturation, a TWM can be used for automatic gain control (AGC).
Here the average output stays approximately constant for input varia-
tions almost as great as the electronic low-power gain. The AGC time
constant is nearly, although usually somewhat shorter than, the recovery
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Fig. 10 — Beginning of gain saturation is shown on plot of apparent gain vs
input power on an expanded scale for traveling-wave masers of Fig. 7

time of the TWM, ¢ ', Masers with high net gain and high intrinsic
loss have close to ideal AGC characteristies. It should be pointed out
that, over periods of time short compared to ¢, the response of a TWM
in an AGC application is still linear, i.e., rapid amplitude variations in
the input are strictly reproduced at the output. This distinguishes AGC
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action from that of a leveler which elips every power level above a cer-
tain minimum without delay. The instantaneous T'WM response is more
fully discussed in two other papers.”*

For small degrees of gain saturation such as those shown in Fig. 10,
it is desirable to have a more manageable approximation of the rigorous,
transcendental gain saturation formula (46). The result of a lengthy
but straightforward expansion can be given in the form

n:(0)(dbm) + G(db) + A = P.(dbm) (55)

where

A =639 + 10 logwR IE i~ A(db) — 10 logw [A(db)].  (56)
This formula may be used to solve two typical experimental problems.
First, it permits the evaluation of the characteristic saturation power
P, (in units of dbm) from gain saturation measurements. According to
(55), P, is found by the following prescription. Take the input level
n,(0) in dbm at which the gain is reduced by A(db), add to it the low-
power gain G/(db) and a constant A. Typical values of 4 are given in
Table II. Second, the formula and the table (as well as Tlig. 10) can be
used to study the details of the gain saturation behavior, assuming that
P, is known. For this purpose it may be advantageous to rewrite (55) in
terms of the output power

n (L) (dbm) = »n,(0) (dbm) + G(db) — A(db)

(55")
= P(dbm) — A4 — A(db)

According to (55') and the first row of A values, for example, it is ap-
parent that the maser output at 0.5 db gain reduction is about 10 db
lower than P, . Similarly, at 3 db gain reduction the output is roughly
3 db below P, . One also sees from the table, for example, that gain re-
duction by 1 db occurs at input levels 3.5 db higher than for a gain re-
duction of 0.5 db. Similarly, a gain tolerance of —3 db allows 10.3 db
greater input signals than a permissible gain compression of 0.5 db.
Formula (55) can, of course, also be used in reverse to caleulate the

TaABLE Il — VALUE oF A

]
I
%)
'S
(-3
=
—
=]

omw
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maximum permissible input level n,(0) from a given gain tolerance
A(db) and the known saturation level I, .

In the original paper on the microwave TWM," it was suggested that
the degree of gain saturation in a maser depends only on average power.
Thus the same amount of gain reduction was found with a certain CW
power level and with pulses of a 30-db higher peak power applied with a
30-db duty ratio. This feature of maser gain saturation is examined here
more closely.

Let #; be the duration of signal pulses and ¢, the time after which the
pulse repeats. The leading edge of the pulse may be at ¢ = 0. Then the
energy storage is essentially determined by

M.

= = —angn. 0<t <t (57)

%;—z = ¢(N. — n.) h <t <lts. (58)
In (57), spin recovery is neglected during pulse duration. This leads to
a small error for short pulses. The error can be largely compensated for,
however, if the recovery in (58) is formally extended over the whole
period, 0 < t < {;. The solution n. will be a steady-state solution if it
repeats after a time fu , that is

n.(2,0) = n.(zt). (59)
From (57), (58), (59)
N.[1 — exp (—et2)]

ty 1 -
1 — exp l:—af ne ds — sz]
0

If the pulses repeat with a fast rate compared to the maser recovery
time and if the energy per pulse is not very large, that is, if

ny(z,0) = (60)

cly K 1 (61)
and
t
a [ n(s) ds < 1 (62)
Jo
then (60) can be approximated by
N.
n.(z,0) = (63)

- ./0“ n(s) ds-
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This equation is identical to (42), the usual saturation formula, except
that here the average power takes the place of CW power in (42). Thus
all statements made in the equations of this section and in Figs. 7 through
10 are applicable to pulse power, provided the terms used there are
interpreted in terms of average power. '

In the case of a ruby microwave TWM, the restrictions are not severe.
If a safety factor of 10 is included on account of the inequality relations,
(61) means that pulse repetition rates should be 100 pps or faster. Since
the stored energy in typical microwave masers is between 10~° and 10~7
joule, the condition (62) restricts the encrgy per pulse to about 107%
joule. This may imply 0.1-microsecond pulses of 100 milliwatts or less,
or 10-microsecond pulses of 1 milliwatt or less. It is of course possible
to operate a TWM under conditions which violate (61) and (62). In
that case, the graphs of Figs. 7 through 10 will no longer apply and there
will be an appreciable extent of pulse sharpening, as discussed in the
earlier sections of this paper.

VII. EXPERIMENTS ON GAIN SATURATION

In this section, some measurements of gain saturation in a microwave
traveling-wave maser are reported. The measurements were carried out
by F. 8. Chen.? The maser was developed by P. J. Pantano and W. J.
Tabor,* and it features the earlier design of a round-finger comb with a
single slab of ruby on one side of the comb. The passband extends from
6.2 to 6.8 gc and the highest net gain occurs at 6.25 ge. Signal frequencies
of 6.25, 6.35, and 6.45 ge which were used in the measurements are
associated with phase shifts between comb fingers of about 20°, 45°, and
75°, respectively.

TWMs of a more advanced design with hobbed square fingers and
double-sided ruby loading!®-1¢ were under development at the time of
this study, but they were not available for extended gain saturation
measurements. Nevertheless, the general conclusions about gain satura-
tion derived in this section should be equally applicable to those newer
masers. The only difference might be the absolute value of the charac-
teristic saturation power.

Four aspects of the TWM gain saturation theory presented in the
previous section were studied by the experiments:

(i) The theory makes use of a single interaction constant a as defined
in (3a). On closer examination this equation suggests, however, that the
interaction depends on the local strength of the RF magnetic field, which
is a function of the coordinates x,y within the maser material cross sec-
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tion A . Thus the interaction should be described by a funetion a(x,y)
whose average is equal to the previously used constant a

1
— f a(zy) dedy = a. (64)
Ay Jay,
The use of a function a(z,y) implies that there is a varying degree of
saturation throughout the cross section of the maser material, i.e. the
saturation formula (42) is replaced by

N./Ay

1+ a(xy)nec? (65)

n.(xy) =
where
f n:(ay) de dy = n.. (66)
AM

When introducing (65) into the earlier differential equation (5), it has
to be observed that once again the gain interaction a(z,y) varies over
the cross section. Thus (5) takes the rigorous form

dng _ nN: a(zy) dx dy
dz Ay ay 1+ ma(zy) ¢t

This equation takes into account the nonuniform exhaustion of stored
energy within the maser material cross section, A 5 . Parts of the maser
material exposed to higher RF fields nearer the comb saturate at a lower
signal power level and vice versa. The differential equation (67) pre-
diets a more gradual drop of gain and a slower transition to net attenu-
ation as the input power is increased than the corresponding equation
(5) with an averaged value a.

The function a(x,y) was evaluated by F. S. Chen’s space harmonic
analysis of the comb structure.'” Tt consists of a Fourier or space harmonie
sum involving combinations of trigonometric and hyperbolic functions.
Unfortunately, it is not possible to approximate the result by a simple
analytical expression for a(x,y). This is so mathematically because many
terms in the sum are of appreciable magnitude, which in turn is due to
the physical fact that several of the relevant dimensions are comparable.
Thus, while the computed function a(x,y) may be used in machine com-
putations of the gain saturation from (67), this would require a separate
set of computations for each ecomb design and for each phase shift value
within the passband (in addition to the number of parameters already
entering the computation). Clearly, such a procedure does not appear
attractive, Instead, it would be more convenient if it were possible to

—bm . ((‘17)
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interpret the experimental data in terms of the theoretical curves in
Figs. 7 to 10, which were computed on the basis of an averaged interac-
tion constant «. In this case one should in principle expect some dis-
crepancy between the theoretical curves and the observed results. The
question arises whether this diserepancy, if observable at all, is of prac-
tical significance.

(#7) The characteristic saturation power, P, , in (43) is independent
of the amount of stored energy in the maser transition. Hence it should
be independent of the degree of inversion or the amount of pump power
supplied. This feature is obvious from maser theory and would perhaps
not deserve experimental verification. For amplifiers other than the
maser, however, it would be an unusual property. In conventional volt-
age amplifiers, for example, the maximum output voltage tends to be
proportional to the supply voltage.

(##7) The phase shift between comb fingers and the RF magnetic field
pattern changes with the signal frequency. This implies a change of
a(z,y) and possibly of the average value a with frequency. It is con-
ceivable then that the saturation power P, varies also with frequency.

(iv) The theoretically predicted equivalence of gain saturation by
pulse and CW power of the same average value had not been checked
hefore over a large range of power levels.

The experimental results are presented in Figs. 11 to 13. Theoretical
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Tig. 11 — Measured and ealeulated gain saturation under CW conditions. Sig-
nal frequency is 6.25 ge and intrinsic circuit loss is 9 db. Fitting of theoretieal
curves to the data yields a characteristic saturation power level of —28.7 dbm for
both curves.
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Fig. 12 — Gain saturation under CW conditions at signal frequencies of 6.35
ge (9 db eircuit loss) and 6.45 ge (12.5 db eireuit loss). The characteristic power
level is —28.7 dbm for both curves.

curves taken from I'ig. 8 are shown as solid lines, and the experimental
data are shown by points and crosses. The theoretical eurves were fitted
to the data by adjusting the characteristic saturation power, P.. The
figures suggest the following conclusions:

(7) The theoretical curves fit the experimental data remarkably well.
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Fig. 13 — Measured net gain under pulse saturation conditions with —20-db
duty ratio at signal frequency of 6.25 ge. Data taken with two different pump
levels and with two different types of pulses are compared with theoretieal curves.
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The greatest deviations are £0.5 db and could in part be caused by ex-
perimental errors. There is a consistent tendency of the experimental
points, however, to follow a slightly flatter curve than the theoretical
one. Nevertheless, gain saturation follows the simplified theory suffi-
ciently well for practical purposes. The discrepancies are 0.5 db here
and could be =1 db for a maser with 40 db low-power gain. This result
eliminates the need for more rigorous computations based on equation
(65).

(1) The two curves in Fig. 11, taken with pump power levels of 50
and 10 milliwatts, respectively, are characterized by the same saturation
level, P, , to within better than 40.25 db. This shows, in agreement with
theory, that P, is independent of the amount of pump power.

(#i1) The curves in Figs. 11 and 12 result in the same value of P.,
again to better than 40.25 db for signal frequencies of 6.25, 6.35, and
6.45 ge. In the case of the 6.45-ge data, no compatible theoretical curve
was available from Fig. 8, but P, there was determined from the zero-db
conditions (51) and (52). Since all these data were taken only in the
lower half of the passband, it is not necessarily justified to assume the
game constant P. in the higher-frequency parts of the passband where
the field is even more tightly bound to the comb.

It should be emphasized that a constant P, across the signal band does
not imply that at all frequencies the gain is reduced by 1 db, for example,
at the same signal input level. As shown in formula (55), this level de-
pends also on the ratio R and the low-power gain.

(i) The curves of Fig. 13 show the same data with pulse measure-
ments that Fig. 11 shows for CW measurements. Small discrepancies
between both figures can be accounted for by the experimental errors in-
herent in pulse measurements, in particular in an accurate setting of the
duty ratio. Taking this into account, the measurements prove over a
50-db range of input power that the degree of gain saturation depends
only on average power.

CONCLUSIONS AND ACKNOWLEDGMENTS

The pulse sharpening phenomenon in an optical TWM is, in principle,
a means of producing coherent optical pulses of higher peak power and
shorter rise time than any other method. The peak power is limited only
by the onset of nonlinearities in light transmission, and the rise time is
limited only by the linewidth of the optical transition.

Considering the present optical maser technology, however, it would
appear difficult to produce pulses of appreciably higher peak power and
shorter duration by application of pulse sharpening, compared to those
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which are available now by the giant pulse technique. This will have to
wait for the development of TWMs which for very short periods of time
exhibit very high gain despite the rapid exhaustion of stored energy due
to saturation on the intrinsic spontaneous emission. It will also have to
wait for the devlopment of more rapid shutter techniques which, for
example, may allow a further steepening of the initial rise of a giant
pulse so that it may be used subsequently as the driver signal for the
TWM pulse sharpening chain. It also should be mentioned that the
pulses so produced will show the desirable extremely rapid rise, but a
rather slow “hyperbolic” trailing edge. This, however, may be adequate
for many purposes, such as high-resolution optical radar.

The analysis of recorded data from a pulse sharpening experiment
using a maser of more moderate gain indicates agreement with the
theoretical model derived in this paper, in particular with the predicted
gain decay.

The gain saturation observed in a microwave TWNM distinguishes this
device from other amplifiers. In the range of reduced gain, the TWM acts
as a slow time constant AGC ecircuit responding to the signal average
power, More rapid signal variations such as modulation of any kind are
transmitted and amplified without distortion. At very high signal power,
the device is effectively an attenuator of moderate insertion loss. Gain
saturation experiments covering power level variations of many orders
of magnitude showed that the gain saturation theory derived in this
paper is applicable with gratifying accuracy to practical comb structure
ruby microwave TWDMs. Experiments with pulsed signal power sub-
stantiated the suggestion that the degree of gain saturation depends
only on the average power,

This work was aided by contributions from many individuals. H. E.
D. Scovil predicted the pulse sharpening phenomenon and suggested a
study more than four years ago. J. E. Geusic provided the experimental
data shown in Fig. 5 on pulse sharpening in his optical TWM. J. A.
Morrison conceived the method of solving the pulse sharpening dif-
ferential equations as reproduced in (11) to (23). W. J. C. Grant pro-
grammed the machine plotting of Fig. 3. J. 8. Wright programmed the
numerical evaluation of (46) and the machine plotting of the data shown
in Figs. 7 to 10. F. S. Chen provided the experimental data on gain
saturation in a microwave TWM shown in Figs. 11 to 13. He also sug-
gested the derivation of the small gain compression formula (55) and of
the average pulse power formula (63). The author gratefully acknowl-
edges these contributions.

Note added in proof. After completion of the manuscript, a paper on
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“Pulse Propagation in a Laser Amplifier” by Frantz and Nodvik'® ap-
peared in print. These authors independently derived some of the results
contained in our 1959 report! and in certain parts of Sections II, III,
and IV of the present paper.
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