Permutation Decoding of
Systematic Codes
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A symmetry of a systematic code is a permutation of bit positions in each
code word (the same permutation is applied to all code words) which pre-
serves the code as a whole. Permulation decoding makes use of these sym-
melries lo build up a decoding algorithm for the code.

It 1s difficult to find an appropriate set of symmetries for a code picked
at random. For cyclic codes the problem is somewhat easier, and for some
special cyclic codes it is solved completely in this paper. For these codes, at
least, it is evident that permulation decoding is easy to implement and in-
expensive compared with other decoding schemes.

Permutation decoding as a weans of error control is evaluated for the
binary symmelric channel and for the switched telephone nelwork as repre-
sented by experimental data. 11 1s found to be extremely effective on the binary
symmetric channel and of very doubiful value on the present telephone nel-
work.

INTRODUCTION

A systematic code of block length n is a subspace of the vector space
of all possible rows of n symbols chosen from a finite field. In this paper
such a code will be called an alphabet,' and the sequences belonging to
the alphabet will be called letters.

The parameters used to deseribe an alphabet are block length, n, num-
ber of information places, k, and error correcting capability, e: n is the
number of symbols in each letter, k is the dimension of the alphabet as a
vector space, and ¢ is defined by the property that the minimum Ham-
ming distance between two letters is either 2¢ + 1 or 2¢ + 2.

It is well known'! that an alphabet with parameters n,k,e is theoretically
capable of correcting all occurrences of =Ze errors in a block of length n.
However for e > 1, the process of error correction by decoding is com-
plicated, and likely to require expensive equipment. In this paper we
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describe a new decoding scheme, permutation decoding, which is con-
ceptually simple and quite easy to implement.

The decoding procedure consists of a sequence of permutations of the
received block of symbols, each of which is followed by a parity check
calculation. We can thus make a rough comparison between the com-
plexity of the equipment required for encoding and decoding. The en-
coder uses one parity check register, and the decoder uses r (or uses one
r times), wherer is the number of permutations in the decoding sequence.
Real time operation with a constant time delay is possible and perhaps
not too expensive.

Permutation decoding owes much to the previous work of Peter Neu-
mann? and Eugene Prange.® It depends essentially on the symmetries of
the alphabet. A symmetry of an alphabet means a permutation of digit
positions which preserves the alphabet as a whole. The same permuta-
tion is applied to the digits of every letter, and each letter is changed, if
at all, into another letter of the same alphabet. Very little is known about
symmetries of alphabets in general, but it will be shown that even this
little is enough to enable us to apply the decoding scheme to a large class
of alphabets.

Permutation decoding differs from previous schemes in two important
ways. First, it becomes easier as the redundancy of the alphabet in-
creases; it is most useful for alphabets with high error correcting capa-
bilities. Secondly, it eannot correct more than e errors in n places. A
received sequence containing more than e errors either will be “corrected”
wrongly or will emerge unchanged from the decoder.

Tt will become apparent in Section III that permutation decoding pro-
duces many more undetected errors than does error control by detection
and retransmission. The simpler scheme of detection and retransmission
should be used when it is at all feasible.

The plan of this paper is as follows: Section I contains a description of
permutation decoding in general, without reference to the particular
alphabet we wish to decode. Section II is an example; it contains a de-
tailed account of a particular permutation group which will suffice to
decode many binary cyclic alphabets. Section III describes how the prob-
ability of improper correction and of detection without correction may
be estimated.

I. ERROR CONTROL AND PERMUTATION DECODING

Let V" be the set of all possible binary sequences of length n.* The
distance between two sequences is the number of places in which they

* The method will work equally well for multilevel codes. All that is needed is
to find a euphonious substitute for the term ‘‘binary sequence.”
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differ; the distance between », and v, is the minimum number of bits we
must change in v; in order to convert it into v, .

For purposes of error control, some sequences of V" are designated as
the sequences which will be transmitted. This subset of V" is called a
code. Error detection consists in finding out whether a received sequence
belongs to the code. Every method of error correction consists in map-
ping a received sequence onto the nearest member of the code, where
nearness is defined in terms of the distance function defined above. If
there are several nearest members, the correction procedure chooses one
in some arbitrary fashion or indicates that an uncorrectable error has
been found.

The strategy for choosing a code is usually to place its members as far
apart as possible in V", It will then take a relatively large number of
errors to cause a transmitted code sequence to be received as a different
code sequence. If the distance between any two code sequences is
=2e + 1, it is theoretically possible to correct all single, double, - - -
e-fold errors. This may be restated as follows: If v is a received sequence
in which =<e errors have occurred, there is a unique code sequence « at
distance =<e from ». Every other member of the code is at distance
>e from v.

The business of decoding is to find «, given v. To do this expeditiously
we need some additional structure in the code, and from now on we re-
strict our choice of codes to the kind described in the next paragraph.

An alphabet® (systematic code, group code) is one in which a fixed
number of fixed bit positions are designated as information places, and
the other bit positions contain parity checks, which are linear combina-
tions of the contents of the information places. For convenience, the first
k bit positions are taken to be the information places. From any k-place
binary sequence h we obtain a unique letter of the alphabet by adding
n — k parity checks. This letter will be denoted by m(h).

Let @ stand for the first & coordinates of the n-place sequence a. « is
a letter of the alphabet if and only if « = m(&). Let = be a permutation
of bit positions in V" which preserves the alphabet; if « is a letter, so is
aw. The first & positions of ar are information places, and ar = m(am).

Let v be a received sequence containing <e errors. If no errors have
occurred in the first k places of v, a0 = m(#) is the unique letter of the
alphabet at distance =<e from v, and is the corrected version of ». On the
other hand, if one or more errors have occurred in the first £ places of v,
the letter m() is not the corrected version of v, since it is the same as v
in the first & places. In this case m(7) is at distance >e from v.

* It bas been shown! that every systematic code is a group code and that every
group code is a systematic code.
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The first step in the decoding procedure is to form ag = m(7), find the
distance between v and ao, and take aq as the corrected version of v if
this distance is =e.

Let o denote the unique letter of the alphabet at distance <e from v.
Let = be, as before, a permutation of bit positions which preserves the
alphabet. Clearly the distance between aw and vw is the same as that
between « and v.

Suppose that we can find a permutation «; which preserves the alpha-
bet and which moves the errors in » out of the first k& positions. Then
a; = m(vm) is at distance <e from v, , and is the unique letter of the
alphabet with this property. Consequently o = a;ri - is the corrected
version of v.

This suggests the following decoding procedure: Let / (the identity),
m, m, -+ be a sequence of permutations which preserve the alphabet.
Form the letters

oy = m(ﬂ), ap = m(v_m), az = m(”-;%),

and at each step find the distance between a; and vr; . Continue until a
letter a; is found which is at distance <e from vr;. Then agm " is the
corrected version of v.

A received veetor which is at distance >e from all letters of the alpha-
bet will be detected as an error but not corrected by this procedure. Some
provision must be made for this eventuality. This is discussed in Seetion
111,

It is also possible for the decoder to make an incorrect ‘“correction.”
This will happen if an error pattern (of more than e errors) causes the
transmitted letter « to be received as a sequence v which is at distance
<e from a different letter o’. The probability of this occurrence is cal-
culated in Section III.

In order for permutation decoding to work, we must be sure that one
of the sequences v, is correct in the first k places. If » = a + f, f being
the error sequence, the permutation =; must move all nonzero coordi-
nates of f out of the first k places. In order for the procedure to be prac-
tical, it must be possible to move all sets of <e errors out of the first &
places with a fairly short sequence of permutations.

To correct all sets of <e errors in a block of length n, we need the fol-
lowing: (1) an alphabet of block length =, dimension k, and minimum
distance =2¢ + 1; and (#) a set of permutations, m , m, - -+ which
preserve the alphabet and at the same time move any set of =e errors
out of the first & places.
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We emphasize that the reason for insisting that the permutations ;
shall preserve the alphabet is to keep the parity check ealculation always
the same. The encoder (the parity check calculator) is a complicated and
expensive piece of equipment; it is desirable to use only one encoder in
the decoding scheme. If for any reason (such asreal time operation) it is
necessary to have more than one encoder, we can, to a certain extent,
relax the restriction on the permutations ; .

It may seem to be quite a trick to find at the same time hoth a suit-
able alphabet and a suitable set of permutations; really the chief diffi-
culty is that neither alphabets nor permutation groups have been studied
from this point of view. It is shown in Section II that a very simple per-
mutation group will do for many cyclic alphabets.

We conclude this section with an example of permutation decoding
applied to the Hamming alphabet withn = 7, k = 4, ¢ = 1.* The alpha-
bet is written out in Table I; it is seen to be invariant under cyclic per-
mutation.

TasLe I—A CycLic ALPHABET WITH n = 7,k = 4,¢ = 1

0
0
0

OO et Qi O~ OO0 —o
HO I —m OO~ OO O — i~
=l =R =T e R R N )
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HFHOO=O~=—OOoOH~S~OS
OO OO~ O~O oo

DD ek (D b b ok ok o b )

Let T denote the cyclic permutation. Clearly at most four applications
of T will move any single error out of the first four places. The decoding
sequence consists of the permutations 7, T, 7%, T° T*.1

Let the received vector be 1110100 (the first nonzero vector of Table
I with an error in the first place). The successive stages of the decoding
process are shown in Table IT.

* The example is chosen for simplicity. Permutation decoding is not the most
efficient way of correcting single errors.

T E. R. Berlekamp has pointed out that the shorter decoding sequence I, 773,
T is sufficient.
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TasrLe II — DEcopiNG PROCEDURE FOR THE ALPHABET OF TABLE I

vV = 1110100
m(V) = 1110010 distance = 2
VT = 0111010
m(VT) = 0111001 distance = 2
“VT* = 0011101
m(VT? = 0011010 distance = 3
VT3 = 1001110
m(VT? = 1001011 distance = 2
VT = 0100111
m(VT1) = 0100011 distance = 1

Thus « = 0100011 is the unique letter at distance =1 from V7%, and the cor-
rected version of V is a7~ = 7% = 0110100.

II. PERMUTATION DECODING OF CYCLIC ALPHABETS*

The coordinate places in V" are labeled by the numbers 0, 1, 2, -- -,
n — 1. This notation is convenient for deseribing permutations. If w
stands for one of these numbers, the cyclic permutation is

T:w— w -+ 1 (addition mod n).
The powers of the cyclic permutation are
T w—w+ 2; T w—w+3, T :w—>w+n = o

A cyclic alphabet in V" is an alphabet which is invariant under 7',
hence also invariant under 7%, T°, etc. We assume that we wish to decode
a cyclic alphabet with parameters n,k,e.

Successive cyclic shifts will eventually bring any k consecutive bits to
the first k positions, and hence will move out of the first k positions any
error pattern in which there is a gap of length = k. In particular, the se-
quence I, T, --- | 7™ will always correct all single errors. T

This sequence will not correct an error pattern in which there is no
gap of length = k. Suppose, for example, that n = 23, k = 12. The error
pattern shown below cannot be corrected by cyclic shifts alone.

X12345678X 101112 13 14 15 16 17 18 X 20 21 22

To deal with such cases we introduce another permutation U: w — 2w
(multiplication mod n), and its powers, U w — 4w, U': @ — 8w, ete.
If n is odd, there exists a least integer ¢ such that 2 =1 mod n; and
U* = I. The choice of U is motivated by the following theorem.

* Tt is to be emphasized that this section is only an example. The permutations
described here willi) not suffice to decode all cyclic alphabets of odd block length. A

method of finding other permutations is given in Appendix A.
i It will also correet all double errors if & < n/2, and so on.
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Theorem 1: Every binary cyclic alphabet of odd block length is invariant
under U and the powers of U.

The proof of this theorem is given in Appendix A.

The error pattern 0, 9, 19 above is changed by U into 0, 18, 15. This
pattern is moved out of the first twelve places by 21 eyclic shifts.

The permutation group on 0, 1, -- -, n — 1 generated by 7 and U will
be called G, . It is easy to check that TU = UT®; hence we may repre-
sent every permutation in G, in the form U7’ with0 £ 7 <t — 1,
0 =7 =n — 1. Now every power of U leaves 0 fixed, and no power of
T' (except the identity) leaves 0 fixed; thus U7 = U™ if and only if
t = hmodtandj = k mod n. It follows that the group @, is of order
nt and consists of the permutations:

I, T, T - T

U, UrT, Ur?, ., urt

U'}.’ UET’ LIL‘TZ, ., U2T1n—1

UI—I, U‘_IT, IIJPITZ, e U!—lTn—l.
Let 0 = uy <ue < -+- < w, £ n — 1 (nodd), be a set of integers;
we suppose that errors occur in places w; , - -, u, . Let g(uy, - -+, u,, n)

be the length of the maximum gap which can be inserted in this sequence
by repeated multiplication by 2 mod n.

If w,. denotes that integer less than n which is congruent to 2“u, mod n,
then

g(uy, ==+ ,ug,m) + 1 = Max | ug — uj |,
ik

under the condition that the interval [ug , u;] contain no other w,; .
Let g(s,n) be the minimum value of this maximum gap for all possible
choices of the s values u;, -« -, u, .
gisp) = Min g(uy, --- ,u,,n).
Up,=ry Uy

The group (7, then contains a permutation which moves any set of s
errors out of the first g(s,n) places. Clearly s < simplies g(s’,n) = g(s,n).
Hence a binary cyclic n,k,e alphabet with n odd may be decoded by G,
if and only if & =g(e,n). The quantity g(e,n) has a few obvious prop-
erties.

The numbers 0, 1, - - - , » — 1 can be partitioned into subsets which are
invariant under {7.* For example, for n = 15, these subsets are

* The number of cyclic alphabets of block length n is determined by the num-

ber of these subsets; the dimensions of the eyelic alphabets are determined by the
sizes of the invariant subsets; see, for example, Ref. 4.
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(0), (1,2,4,8), (3,6,12,9), (5,10), (7,14,13,11).

The union of any number of invariant subsets is also invariant under
U; from these subsets we may obtain upper bounds on g(e,n) by in-
spection. In the example above we obtain:

g(2,15) =< 9, since the invariant set (5,10) gives us a maximum gap
11,12,13,14,0,1,2,3,4 of length 9.

¢(3,15) = 4, since the invariant set (0,5,10) gives us a maximum gap
1,2,3,4 of length 4.

g(5,15) = 2, since the invariant set (0,3,6,9,12) gives us a maximum
gap of length 2.

These upper bounds limit the usefulness of the group (7, . However
it is still sufficiently useful to be of interest.

The value of g(e,n) for various choices of e;n have been computed
on the IBM 7090. These are tabulated in Table III together with the
parameters n,k,e for several cyclic alphabets.

TasLe 111 — Errect oF PeErRMuTATION U FOR
DirrerENT BLock LENGTHS

Code Gap Length
n k e g(2)  g@3) g4 gG)
47 24 5 26
31 21 2 25
31 16 3 19
31 11 4 12
23 12 3 17
21 12 2 13
21 9 3 6
21 5 4 6
17 9 2 13
15 7 2 9
15 5 3 4

The gap length g(s) is the maximum number of consecutive error-free positions
which can be inserted into an arbitrary pattern of s errors in n places by succes-
sive applications of the permutation w — 2w mod n. If k < g(e), the group gener-
ated by 7' and U contains a sequence of permutations which will suffice to decode
an n, k, e alphabet.

It is desirable, if possible, to use only part of (7, in the decoding se-
quence. As an example we consider the alphabet with n = 23, k=12,
¢ = 3.* In this case one of the permutations, U, U?, U" will always
create a gap of length at least 12 in any set of 3 errors. The decoding
sequence is:T

* This alphabet is described in detail in Table V.

i It has been shown by E. R. Berlekamp that a subsequence of length 40 is all
that is really necessary.
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]. T1, T2’ - TE?
v, uvr, urs, -.., UT*
U2, szl’, ;2T2, . (]ETQ'J

U“, ("T“T, []“Tﬂ, . i i

The decoding procedure for this particular alphabet has been simulated

on the IBM 7090. A diagram of the logical program is given in Fig. 1,

and Table IV traces a particular sequence through the decoder. In prac-

tice it is convenient to add one more permutation (in this case T'U) to the
decoding permutations, so that a sequence passing through the entire

INPUT =V

W= WT, L=101+1

i=23

Lw:wu, i=0 |—--< W=WT,
L

W= Wu,
w = wu?

DISTANCE &,W
W=wu OUTPUT =W

Fig. 1 — Logic of decoder for (23,12,3) alphabet. The contents of the boxes are
F(l;rtranfbyp,e instructions; for example, ¢ = 7 4 1 is to be interpreted as “replace
ibyi+ 1.
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set emerges in its original form. The final output of the permuting regis-
ter is then the corrected form of the received sequence.

The operation of the 7090 program is of course sequential—it employs
one subroutine to simulate the parity check caleulation. It is clear from
the logic diagram that it is quite convenient to split the encoder into four
parallel sections, each of which contains a register capable of making a
eyclic permutation and an encoder to caleulate parity checks. This idea
can be applied to speed up the decoding of any cyclic alphabet.

III. EVALUATION OF PERMUTATION DECODING AS A MEANS OF ERROR
CONTROL

Permutation decoding of an n,k,e alphabet @ will map a received se-
quence v onto the nearest letter of @ provided that this letter is unique.
This is the case if v lies at distance <e from some letter of @. If v is at
distance >e from every letter of @ the decoder will detect an error but
will be unable to correct it.*

The decoder will also make mistakes. If f is an error sequence of more
than e errors, and « the transmitted letter, the received sequence a + f
may lie at distance =e from some other letter ' of @. The decoder will
then interpret o 4 f as o’. The error sequences which cause such in-
correct decoding are characterized by the following theorem.

Theorem 2: The error sequences which cause the decoder to ‘“correct”
incorrectly are exactly those sequences of weight >e which lie at distance
<e from some letter of Q.

Proof: Let f be a sequence of weight >e such that f = 8 + f, B € @,
I’ of weight <e.

For any transmitted letter «

atf=a+8+],

and the decoder will interpret o + f as a« + 8.
Conversely, suppose that f is an error sequence such that « + f is
decoded as o' ## «. Then

at+f=ad+f o’ e @, " of weight =Ze,
and
f=a —at]
Hence f is at distance =e from the letter o/ — « of @.
* One is tempted to suggest that the decoder ask for retransmission of such de-
tected errors. This idea is of dubious value; error correction by decoding should
not be used at all if error correction by detection and retransmission is a possible

alternative. We must assume that retransmission is extremely awkward, if not
completely infeasible.
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Let A(s),s = 0,1, - -+, n be the number of letters of @ of weight s. Let
C'(s), s = 0,1, --+, n be the number of sequences of V" of weight s
which lie at distance <e from letters of @ The C(s) are uniquely de-
termined by the A(s), and may be obtained from them by a simple
caleulation; the exact formula is given in Appendix B. The values of
A(s) for a number of binary cyelic alphabets are tabulated in Table V,
and the values of C'(s) for these alphabets are given in Table VI.

Fors = e, C(s) = (1:') and is the number of sequences of weight s
[R5

which are properly corrected by the decoder. For s > e, C(s) is the
number of sequences of weight s which are improperly corrected by the
decoder.

Let D(s),s = e + 1, - - -, n be the number of error sequences of weight
s which cause the decoder to detect an error that it cannot correct.

Clearly D(s) = 0 fors = e, and D(s) = (?) — C(s) fors > e.

P denotes the probability that a received sequence will be “‘corrected”
incorrectly by the decoder; P denotes the probability that a received
sequence will be detected as an error but not corrected. We consider
first a binary symmetric memoryless channel with bit error probability
p. The probability of s specific errors in a block of length n is then
p'(1 — p)"™", and this probability is independent of the location of
the errors. Hence

n

> C(s)p*(1 —p)" ",

s=et1

I

P(BS.)

Pp(BS.) = E;r D(s)p'(1 —p)"™".
g=e-+1
It is to be noted that if error correction by detection and retransmis-
sion is used, the probability of an undetected error is

n

AP (1 — ) =2+ 1 or 2+ 2.

g=d

This sum starts with the first nonzero value of A(s) (for s > 0), i.e.
with s = 2¢ + 1 or s = 2e + 2. It is obvious that for the values of p,n
currently in use in the Bell System, error correction by detection and
retransmission is the preferable scheme.

The values of Pe(B.S.) and P,(B.S.) for a number of alphabets are
tabulated in Table VII; p is taken to be 3.22 X 107°, the over-all bit
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error rate on the telephone network obtained from the Alexander, Gryb
and Nast task force data.’

Except for the first and last example, the alphabets in Tables V, VI
and VII occur in pairs. The second alphabet in each pair consists of
the letters of even weight in the first. Since the minimum distance of
the second alphabet is 2¢ 4 2, its value of C'(e + 1) is zero. In other
words, every error of weight ¢ + 1 will be detected. If this is important,
it is advantageous to use the second alphabet.

The error rates of Table VI are fantastically low; unfortunately the
fantasy resides in the binary symmetric channel. The situation is very
different on the real telephone channel.

Let P(s;n) be the probability of s errors in n consecutive bits. [For

the binary symmetric channel P(sn) = (1:) p'(1 — p)"".] Tables of

P(sn) for the telephone network have been caleulated from the Alex-
ander, Gryb and Nast task force data.

The decoder will either detect or correct wrongly every error of weight
>e. Hence

n

P + I,p = E P(s,n).
s=e+1
It is impossible to obtain exaet formulae for Pr and P, separately.
Using the methods of Ref. 5 we obtain the approximate formulae

P5(TN) = 3 o(s) L)

s=e+1 n
S

Po(TN) = 3 D(s) L)

s=c+1 n
S

These numbers have been computed and are tabulated in Table VIII.
This shows rather clearly that on the channel deseribed by the Alex-
ander, Gryb and Nast data the word error rate with error correction
is greater than the bit error rate with no encoding.

Of course the average error rates of Table VIII conceal something.
Examination of the P(sn) tables for the individual ecalls shows that
about half of the calls in which errors occurred would be handled sue-
cessfully by permutation decoding,.
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I 0 1 I 0 1 I 0 /1 £2/1 0
¥ s O)4 O) 4 s v v s /(¥ £T/(OV s
(z'L's1) (z'8°L1) (Z%6'Ln) (Z'1'ro) (z'z1'1e) £T1eT £zr'er = o'y'u




TasLe VI —Vavrugs oF C(s)

nke = 47,24,5* 31,21,2* 31,20,2 31,16,3 31,15,3
=1 C(s) = 47 31 31 31 31
2 1081 465 465 465 465
3 16215 2170 0 4495 4495
4 178365 13640 12555 5425 0
5 1533939 82274 5022 29295 26040
6 1997688 360964 339047 02225 13020
7 11700743 1276115 81685 320375 303180
8 58503719 3829585 3591040 1248525 86025
9 253516120 9788250 604655 3190675 2861455
10 1094459500 21506932 20159981 6790333 690525
11 3681363800 41087771 2569497 12063363 11812395
12 10764415000 68535730 64275400 21284445 1987720
13 28981118000 100106900 6245260 31108034 28201320
14 70307802000 128661310 120616350 40561485 3675360
15 154677160000 145890120 9085914 45069682 41569263
16 310193350000 145890120 136804210 45969682 4400419
17 565646700000 128661310 8044965 40561485 36886124
18 942103590000 100106900 93861645 31108034 2006715
19 1437947500000 68535730 4260330 21284445 19296724
20 2012287600000 41087771 38518275 12963363 1150968
21 2587226900000 21506932 1346950 6790333 6099808
22 3059047600000 9788250 9183595 3190675 329220
23 3325051800000 3829585 238545 1248525 1162500
24 12761156 1194430 329375 26195
25 360964 21917 92225 79205
26 82274 77252 20295 332565
27 + symmetric 13640 1085 5425 5425
28 terms 2170 2170 4495 0
29 465 0 465 0
30 31 0 31 0
31 1 0 1 0
mk,e = 23,12,3 23,11,3 21,12,2 21,11,2 17,9,2 17,8,2 15,7,2
=1 |C(@) =23 23 21 21 17 17 15
2 253 253 210 210 136 136 105
3 1771 1771 210 0 340 0 180
4 8855 0 2625 2520 1190 1020 540
5 33649 28336 10269 1008 3910 408 1413
6 100947 14168 24024 21168 7820 6936 2355
7 245157 216568 52440 4200 11560 1428 3135
8 490314 61226 92610 85050 14450 13005 3135
9 817190 715990 131530 12810 14450 1445 2355
10 1144066 138138 161196 146748 11560 10132 1413
11 1352078 | 1180774 161196 14448 7820 884 540
12 1352078 171304 131530 118720 3910 3502 180
13 1144066 1005928 92610 7560 1190 170 105
14 817190 101200 52440 48240 340 340 15
15 490314 429088 24024 2856 136 0 1
16 245157 28589 10269 9261 i7 0
17 100947 86779 2625 105 1 0
18 33649 5313 210 210
19 8855 8855 210 0
20 1771 0 21 0
21 253 0 1
22 23 0
23 1 0

* This table is correct to eight significant figures.
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TaBLE VII — ERrrRorR RATES For THE BINARY SYMMETRIC CHANNEL

mk,e Pg Pp Prg+ Pp
l47,2~l,5 2.23 X 1072 4.56 X 10720 4.78 X 10720
31,21,2 7.23 X 1071 0.77 X 10710 1.50 X 10~
31,20,2 1.342 X 107 1.50 X 10710 1.50 X 107
31,16,3 5.83 X 1015 2.80 X 10 3.38 X 107
31,15,3 9.01 X 1071 3.38 X 10 3.38 X 10~
23,12,3 9.59 X 10716 0 9.59 X 10~6*
23,11,3 9.81 X 1071 9.59 X 10716 9.59 X 10718
21,12,2 7.00 X 10712 3.72 X 101 4.42 X 101
21,11,2 2.70 X 107t# 4.42 X 1071 4.42 X 101
17,9,2 4.54 X 107+ 1.80 X 1071t 2.27 X 101
17,8,2 1.11 X 10713 2.27 X 1071 2.27 X 10—
15,7,2 6.092 X 10712 1.078 X 10-10 1.078 X 10°te

* This is a close-packed alphabet; every sequence of 23 binary bits is at dis-
tance =3 from some letter of the alphabet.

CONCLUSION

Permutation decoding is a simple and feasible scheme for error corree-
tion without retransmission. It is particularly suitable for use with a
highly redundant alphabet. Like any such scheme it produces many more
undetected errors than error correction by detection and retransmission,

TaBLe VIII — Error RaTeEs For THE TELEPHONE NETWORK*

mk,e Pg Pp Pr+ Pp
47,24,5 4.656 X 10°° 3.51 X 10°° 4.08 X 1076
31,21,2 3.17 X 107® 3.73 X 10°° 6.9 X 1076
31,20,2 1.23 X 107% 5.67 X 107° 6.9 X 10°®
31,16,3 7.34 X 10°¢ 3.99 X 108 4.72 X 10°®
31,15,3 3.06 X 10-¢ 4.41 X 107° 4.72 X 10~
23.12,3 3.60 X 10-¢ 0 3.60 X 1078
23,11,3 1.52 X 1078 2.17 X 10°® 3.69 X 10°°¢
21,12,2 1.82 X 1075 3.13 X 107¢ 5.05 X 10°¢
21,11,2 8.72 X 107° 4.18 X 10°¢ 5.06 X 10°¢
17,9,2 2.36 X 107% 1.80 X 10°% 4.25 X 10°®
17,8,2 0.98 X 107 3.27 X 10% 4.25 X 1076
15,7,2 1.83 X 1075 2.0 X 10® 3.83 X 10°®

* Pg and Pp are approximate values. Pg + Pp is exact.
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but it is quite adequate for a channel in which P(s,n) decreases rapidly
as s increases. It is of very doubtful value on the telephone network as
deseribed by the Alexander, Gryb and Nast data.
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APPENDIX A

Idempotents and Automorphisms of Cyclic Codes

We give first a short summary of the properties of cyclic alphabets.

Let V be a finite field of characteristic g. Let V" denote the direct sum
of n copies of V.

Denote by V[y] the ring of polynomials in y over the field V. Let
Viz] = VIyl/(y" — 1) be the residue class ring of V[y] mod y" — 1.
V[x] consists of all polynomials of degree <n — 1 with coefficients in V.
Addition of polynomials is done as usual; to multiply two polynomials
we multiply in the usual way and then reduce exponents mod n.

A subset @ of polynomials of V[z] is called an ideal if

(1) 1,02 € @ = augh + cofs € @, ar,op eV
() ge@=2g €Q.

A polynomial is completely determined by its coefficients; it is possi-
ble, in fact, to identify V[z] and V". However, it is convenient to regard
them as separate entities, related by the (1-1) mapping

-1
d+at + o+ Ran, @, G

An ideal in VI[z] is, by property (i), a linear subspace of V". By
property (44) it is invariant under a cyclic permutation of coordinates;
hence it is a cyclic alphabet in V". Conversely, a cyclic alphabet in V"
is an ideal in V[z]. We represent the ideal and the alphabet by the same
letter, Q.

The ring V[z] may be regarded as the group algebra of the cyclic
group 1, z, - -- , 2" over V. The group algebra is semi-simple provided
that ¢ does not divide n (Ref. 6, Section 10.8). In this case it is known
that every ideal contains a polynomial e with the following properties
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(#) e is idempotent. (& = e)
(#) e is a unit for Q. (e e@=ae = a)
(i27) e generates Q. (@ consists of all polynomials

Te, e Vix]).

e will be called the generating idempotent of @.
An automorphism ¢ of V[x] is a (1-1) mapping of V]z] onto itself
which respects both addition and multiplication. If v, v, € V[z], then

(?’1 + ?)2]0’ = o + Voa
(viw2)e = (o) (20).

Lemma 1.1: An automorphism o of V[x] preserves an ideal @ if and
only if o preserves the generating idempotent ¢ of Q.

Proof: Suppose that o preserves e. Then Go = V[z]-eo = V[z]-e = Q.

Suppose that o preserves @. Then ec e @, and ece = eo by property
(a7).

Let b be the element of @ such that be = e. Then

be = e.

eoe = eaba = (eb)a

Hence ¢ = ege = e, and o preserves e.

Lemma 1.2: If q (the characteristic of V') is relatively prime to n (the
block length of @), then the mapping o: &' — &' is an aulomorphism of
Vla].

Proof: Clearly this mapping respects addition and multiplication in
V[x]. We have only to show that it is 1-1.

If 2 = 2™ then (i — j)g = 0 mod n. Since g is prime to n, this
implies that 7 — j = 0 mod n or 2* = 2,

This proves the lemma.

Theorem 1.3: If q is prime lo n, cvery ideal in V]x] is preserved by the

iq

mapping o: v* — 2",
Proof: Let @ be an ideal in V[r]and e = D a’, the generating idem-
=0
potent of G.
ge = ) ax'l = (Z a,-z')q = ¢
i=0 =0

since g is the characteristic of V.

e=¢ =¢ = ... = ¢ hence ¢ preserves ¢, and hy Lemmas 1.1 and
1.2, o preserves Q.

Let the coordinate places of 1" be labeled 0, 1, - -+, n — 1; the map-
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ping o: ' — 2™ in V[2] corresponds to the permutation U,: @ — qw of
coordinate places in V"

Corollary: Every binary eyclic alphabet of odd tlock length is preserved
by the permutation U: w — 2w,

This is Theorem 1 of Section II. The proof given here contains more
machinery than is necessary to prove Theorem 1. This is done on purpose,
in order to get Lemma 1.1, which suggests a method of finding other auto-
morphisms of V[x] which preserve a particular cyclic alphabet.

APPENDIX B

Distribution of Weights in the Cosels of a Group Code

Let @ be an (n,k,e) binary alphabet, and let ® be the orthogonal
complement (dual alphabet) of @ in V". Let A(7), B(z) denote the
number of letters of weight 7 in @, ® respectively. The quantities A (1),
B(7) are connected by the generating function.’

ixl(i)(l +2)"7(1 — 2)' = 2 3 B(i)Z".

i=0 =0

Since the A (i) are known, the B(i) may be calculated from this rela-
tionship.
Set

(14270 = 2 = 3 Wi

Let ('(s,j) denote the number of sequences of weight s in V" which
are at distance j from some letter of @. Then if j < ¢, C(s,j) and B(7)
are related by the generating funetion.”

__; B()(ij)(1 4+ 2)" (1 — a) = 27" gc(s,j)xﬂ

Since B(i) and ¥(7,j) are known, C(s,j) may be calculated from this
relation.
Clearly

0(s) = 5 Clod).
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