Stability of Active Transmission Lines
with Arbitrary Imperfections

By H. E. ROWE
(Manuseript received August 23, 1963)

Two sufficient conditions for the stability of one-dimensional aclive
lransmission lines with arbilrary imperfections (i.e., discrele or continuous
reflections) are derived. The first stability condition guarantees stability
Jor any arbitrary distribution of reflection. The second stability condition is
restrieted lo a special case of interest that includes discrele reflectors with
nominally equal magnitude and spacing, the stability condition for this re-
stricted class is greally improved over the general stability condition de-
sertbed above.

These results, aside from their own inlerest, provide rigorous justifica-
tion for previous caleulations for the gain statistics of such a device with
random duscrele reflectors.' They may also be used to find an upper bound
on the probability of instabilily of such a device with random reflectors.

Certain types of optical maser amplifiers and lraveling-wave tubes pro-
vide examples of practical devices with distributed gain to which these re-
sulls, or similar ones, might be applied.

I. INTRODUCTION

The preceding paper' has considered the theory of active transmis-
sion lines with discrete imperfections. First, lines with equally-spaced
identical reflectors were studied; in particular, gain-frequency curves
were determined as functions of the various parameters, and the sta-
bility of the device was studied under these special conditions. It was
pointed out that the mathematical expression for gain would yield a
perfectly definite result for any values of the parameters, but that this
mathematical result would have physical significance only if the device
is stable, i.e., does not oscillate.

Next, the case of random imperfections was studied.! Here the statis-
ties of the transmission were determined in terms of the statistics of the
discrete reflectors, which were assumed to have random position and
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magnitude. Again, these results have physical significance only if the de-
vice is stable (or if the probability of instability is negligible). However,
in the random case no precise information about stability was given;
the computed statistics of the transmission were felt to be valid if the
rms magnitude of the discrete reflectors was sufficiently small, but only
intuitive feelings of what was “‘small enough” were available.

In the present paper we derive a sufficient condition for stability of an
active transmission line with arbitrary reflectors; we further show (by
one example) that this sufficient condition cannot be greatly improved
(if at all) in the general case. This result gives useful information re-
garding the range of validity of the calculations of the preceding paper
for the transmission statistics of active transmission lines with random
reflectors. This general bound on stability may be improved if additional
information is known about the distribution of reflectors; one such case
of interest is treated.

The mathematical model chosen for this problem is discussed in detail
in Ref. 1. A line with N discrete reflectors is shown in Fig. 1 (which is
identical to Fig. 1 of Ref. 1). The wave traveling to the right at distance
z is denoted by Wo(z), the wave traveling to the left by Wi(z); Wo(Le+)
and Wiy(Ly+) are the right- and left-traveling waves just to the right
of the kth reflector, as indicated in this figure, while Wy(Li—) and
W.(L:—) are the right- and left-traveling waves just to the left of the
kth reflector.

In the absence of reflections the forward and backward waves vary as

Wo(z) « ™ — forward wave )
Wi(z) = PRk — backward wave
—————————————————— LN——**’—————"—***4—4)I
I': ————————————— Lk———————=———— - |
1 -1la— 1 -lk— 1
e e I s N
| | — 1T 1
Cy Cz Ca Ck-t Ck CN-1 CON
S N T
Wo (0) -~ WolLict) - WolLnt)——>
| |
i‘-~W|(O) Lk=_§k:LL :rew,u_p) “»Hw.n_m)

Fig. 1 — Line with N discrete reflectors.
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where
r'=—a+js a>0. (2)

The line has gain, so that @ > 0. From (12) of Ref. 1, the wave matrix
for the cascade connection of the kth line section of length . and the

kth reflector is
N . 4TI

[ —JCcie

. [ g

V1= ¢ Fjcce™ o Tl :l’ lee| =1, (3)

IFU( Lk—1+ ) "'[)(Lf.-“"' )
= X (4)
Wi(Lea+) Wi(Li+)
where | ¢, | is the magnitude of the reflection coefficient for the kth re-

flector. The over-all transmission matrix for the entire line of Fig. 1,
denoted by X, is given by the matrix product of (13) of Ref. 1:

¥ =[x, (5)
k=1
W N
[ 0(0)} _ X.[WO(L +)} ()
WL(0) Wi(Lx+)

For convenience, denote the elements of the over-all transmission
matrix X asin (14) of Ref. 1.

T _ T T2 . (7)
Loy To2

X is given by (3) and (5). Assume the device is operated as an amplifier
with matched input and output; setting Wy(Ly+) = 0, the complex
transmission gain G is given by

G, = WilLu+)

1
W B Ty
Now 2y is a funetion of I and of all of the I’s and ¢,'s. We may concep-
tually investigate stability in the following way. Imagine that ¢ is re-
placed by ec: throughout this analysis; e is a variable parameter that
scales the magnitudes of all of the coupling coefficients. Let € be increased
from 0, and for each value of e examine a1, [which in (8) is the reciprocal
of the transmission gain, and so may be regarded as the transmission
loss] as a function of frequency w (or of the phase constant 8, which is
assumed proportional to frequency, since the line is distortionless)' over

(8)
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the entire range — © < @ < + «. We determine in this way the mini-
mum value of | z;; | foreach value of e. As e increases, this minimum value
of | z;; | will eventually just drop to zero, for a critical value of e which
we denote by e . Thus, as ¢ — ¢ the gain | G, | — « for a particular
value of w, and the device oscillates. ¢ is the dividing line between sta-
bility and instability; if . > 1, the original device, with the parameters
¢ and I, is stable.

Such caleulations have actually been carried out in Ref. 1 for devices
with identical, equally-spaced reflectors. In this case the gain Gy is a
periodie function of frequency w, so that only a finite portion of the fre-
quency axis (i.e., one period) must be investigated. In general, however,
G is not periodic; since we cannot investigate numerically the entire
w-axis, it is not obvious how to investigate stability for the general case.

In the remainder of this paper we determine a sufficient condition
that guarantees the stability of a general active line with arbitrary dis-
crete imperfections. In particular, consider such a device, illustrated in
Fig. 1, characterized by (3), (5), and (6), with arbitrary «, ¢, and .
We show below that any such device satisfying the condition
—aLy

N

Z tanh™ | ¢;| < 2 sinh™ e

= | VG
must be stable. Many practical devices will have large gain, and hence
must have small reflections. In such cases ¢ *"¥ <« 1 and | ¢; | < 1; under
these conditions a slightly poorer stability condition derived from (9)
is useful.

(9)

—oaLpy

N
Z | e;| = tanh [2 sinh™ e\/§ ] . (10)

In the high-gain case the right-hand side of (10) may be made simpler
still by further degrading this stability condition. We may show, for
example, that

—a Ly
tanh |:2 sinh ™' e\/ﬁ :’ = 0932 v/2e "N, 8.686alLy = 10 db. (11)

Thus a slightly poorer version of (10) is

N
Dle:| £09324/2¢ %Y, 8.686 aLy = 10 db. (12)
=1

The stability condition of (12) is valid when the one-way gain of the
active medium exceeds 10 db. As the lower bound on the one-way gain
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of the active medium increases beyond 10 db, the numerical factor 0.932
on the right-hand side of (12) increases, approaching 1 as the lower bound
on the gain approaches infinity. This is readily seen from (10); as
aLy — «, ¢ “*¥ — 0, so that the sinh ™" and tanh functions in (10) may
be approximately replaced by their arguments tor sufficiently large aLy .
However, direct calculation with (10) is straightforward; the result of
(12) (or similar equations) is intended principally to illustrate the gen-
eral behavior.

Thus (9) or the successively poorer versions of (10) and (12) guaran-
tee that the device will be stable, even for the worst possible choice of
the ¢, and I, . Equations (9), (10), and (12) are each sufficient, but
not necessary, conditions for stability. These results are derived in
Sections 1I, III, and IV. In addition, a better bound is obtained for a
special case in which the reflection coefficient is distributed more or less
uniformly with distance z along the active line, in a certain sense to be
described more precisely in Section V below; these results include many
cases of interest. Finally, some numerical examples illustrating the use
of these two different types of hounds are given in Section VL.

II. DIFFERENTIAL EQUATIONS EQUIVALENT TO MATRIX RELATIONS
Consider the following differential equations:
Wy'(z) = =TWylz) + gr(z)Wi(2),
W(z) = —jr(z)Wo(z) + TWi(z).

These relations have the form of the coupled line equations with a gen-
eral continuous coupling coefficient. In the present case, Wo(z) and Wy(z)
are the right- and left-directed traveling-wave complex amplitudes, and
r(2) 18 the continuous reflection that couples the two waves to each other.
Equation 13 is readily obtained as a limiting form of the matrix relations
of (3), (5), and (6) by assuming very small, closely spaced discrete re-
flectors whose magnitude varies slowly with distance. Thus in the matrix
relations of Section I above set

(13)

L. = Az. (14)
Assume that ¢, varies slowly with k. Then we set
Ccp = ?'(’1‘&2)'A8, (]5)

where r(z) is a continuous function. We now let Az — 0 so that the num-
ber of diserete reflectors — < ; during this process the continuous func-
tion r(z) is fixed and the ¢, determined by (15), so that the magnitudes
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of the individual reflectors — 0 as Az — 0. Then the matrix relations of
(3), (5), and (6) will yield the continuous differential equations of (13).
The analysis is straightforward and quite similar to that of Ref. 2 for a
similar problem, and so will not be given here. The above discussion of
(13) as an appropriate limiting continuous form of the matrix relations
of Section I is given only to provide some physical motivation for con-
sidering (13), and plays no part in the mathematical analysis to follow.

The case of isolated, discrete reflectors, characterized by (3), (5), and
(6), may conversely be regarded as a special case of continuous reflection
in (13), in which the continuous reflection r(z) becomes a sum of suit-
able d-functions, one located at each discrete reflector. Thus we show
that if r(2) in (13) is given by

r(z) = Ztanh 8(z — L), (16)

where in Fig. 1 L; is the total distance from the input of the line to the
ith reflector, then the solutions to (13) at the output of the line, i.e.,
Wo(Ly+) and Wy(Ly+), are given in terms of the input conditions
Wo(0) and W1(0) by (3), (5), and (6).

Consider the typical kth section of line, of length I, followed by the
kth discrete reflector, as illustrated in Fig. 1. In the line section between
the (k — 1)th and the kth reflectors r(z) = 0, from (16). Therefore in
this region the solution to (13) has the form of (1); the forward and
backward waves are uncoupled, and have the same propagation constant.
We may thus write the solution between the (k — 1)th and kth reflectors
in the matrix form

[WQ(L,,_IH} [e“"* 0 } [WO(L,,— )] ()
Wi Liat) 0 ™| [ Wi(L—)

where W(L;— ) indicates a wave amplitude evaluated just to the left of
the kth reflector, W(Ls+) just to the right.

We next evaluate the transmission matrix for the kth reflector, i.e.,
the kth s-function of (16). This calculation may be performed by setting

tanh™ ¢,
—_— Ly <z < Ly + A
r(z) = 4 (18)
0, otherwise.

We then determine the matrix 7'(A),

[WO(LI«: + A)J _ T(A)‘I:WO(LI:)]- (19)
Wy(Ly + A) Wi(Ly)
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Then as A — 0, r(z) — tanh™ ¢,-8(z — L;), and lim 7'(A) = 7(0)
A-0

yields a matrix relating the wave amplitudes W, and W, on the two sides
of the kth é-function of r(z) [see (16)]. This analysis is again similar in
motivation, although different in detail, to that of Ref. 2 for a similar
problem. Since 7(z) in (18) is constant throughout the region of interest,
(13) becomes a linear differential equation with constant coefficients, and
is readily solved by the usual techniques. The solution for general A may
be written in matrix form, yielding 7(A) of (19), as follows:

T(a) =

| —K ™ 4 Ko™ ¢tV — YT (20)
K, — K_ L Ko e™ — KoV
1+
= —_ — _ = 1

Ky tanh—! ¢, ’ K.K (21)
TA
tanh™ ¢,

1 ra (22)

7
K. — K. 2~

/‘/ 14 (tanh ) (23)

Taking the limit as A — 0, (20)-(23) yield

) Wo(Ly—
I:Wo(LH')] _ T(O)‘[ o( Ly )] (24
Wi(Li+) Wi(Le—)
where
L _ 1 L Je
T(0) = lj'}}, T(A) = \/“—I—_—Ckzl:—j(}k 1:,- (25)
Inverting (24),
{WG(LA.—)J e (0)_[W0(Lk+)J 26)
Wi(Li—) Wi(Le+)

where, from (25)

77(0) 1 1 —Je (27)
\/1———45; +jer 1 . )
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From (17), (26), and (27) we now have
[Wo(Lk—1+):| X, \'WD(Lk+)i| (28)
Wl(Lk—l+) WI(LE+)
where X} is as given in (3). Equation (28) is identical to (4). Finally,
the solution to (13), with 7(z) given by (16), is given by (3), (5),
and (6).

The equivalence of (13) and (16) with (3), (5) and (6) is useful be-
cause the original matrix problem may thus be regarded as a special
case of a pair of differential equations. Stability appears to be more
readily studied for the more general continuous case described by the

differential equations; these results may then be applied to the special
discrete case of interest here.

[1I. SOLUTION BY SUCCESSIVE APPROXIMATIONS (PICARD’S METHOD)

We summarize the solution of (13) by successive approximation, fol-
lowing the same general approach as in Ref. 3 for a similar problem. First,
it is convenient to make the following transformations:

Wo(z) = ¢ ™-Gy(2)

(29)
Wi(z) = '™ Gi(2).
Substituting (29) into (13), we have
G'o(z) = jr(z) e Gy(2)y
0 ar( ( (30)

Gy'(2) = —jr(z) e Go(2).

Assume that the device is operated as an amplifier with matched input
and output. It proves convenient in the following analysis to take the
input at the right-hand end of the amplifier, i.e., at z = L, where Ly
is the total length, and the output at the left-hand end, ie., 2 = 0; this
is just opposite to the choice made in Ref. 1 and in Section I above
[particularly in (8)]. The useful output is then the left-directed traveling
wave at z = 0, i.e., W1(0), corresponding to an input taken to be the
left-directed traveling wave at z = Ly, Wi(Ly). Since the device is
matched at both ends, Wo(0) = 0; Wo(Ly) # 0, since this quantity
corresponds to the reflected wave at the input end (ie., at z = Ly)
of the amplifier.

Now assume for convenience a unit-amplitude output wave:

Wi(0) = 1. (31)
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As noted above, since the output is matched,
We(0) = 0. (32)

We seek WW,(Ly), the input corresponding to the output of (31); since
unit output has been assumed in (31), the complex transmission gain
G, will be

1
- Wi(Ly)’

where Wi(Ly) is the solution to (13) subject to the initial conditions of
(31) and (32).

The transmission gain is readily stated in terms of the solutions to
(30), which were obtained from (13) via the transformation of (29).
Thus, consider (30) subjeet to the initial conditions

(fo(0) = 0,
7(0) =1,

Gy (33)

(34)

obtained from (31) and (32) via (29). The complex transmission gain
G of the amplifier is then given by

1
Gi(Ly) ’

Gr = ¢ "N (35)
where (/,( Ly) is the solution to (30) subject to the initial conditions of
(34).

We now seek the solution to (30), with the initial conditions of (34),
via Picard’s method of successive approximations.*® Assume the
(n — 1)th approximation to the solution is available; let us denote this
approximation by Gy,._n(z) and (h,_1y(z). Then the (n — 1)th
approximation is substituted into the right-hand side of (30) and the
right-hand side integrated to yield the nth approximation.

Guon(2) = 3 [ 1) ¢ G (s)
. (36)
Gion(2) = 1 = j [ 1(8) ™G (s) ds.
We take the initial (Oth) approximation as simply the initial conditions
of (34):
Gow(2) = 0,

(37)
Gio(z) = 1.
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Writing
Go(n)(z) — Gﬂ(n—l)(z) = go(n)(z);
(38)
Gl(n)(z) — Gl(n—-l)(z) = gmo(Z),
we have
Gaw (2) = 2 o (2),
. (39)
Gioy(z) = 1 + kz:lguk)(z)-
From (36) and (38), the ¢’s of (39) are given as follows:
Qﬂ(n)(z) = ]fq r(s) e+2rﬂgl(n—1)(8) ds, n = 1. (40)
guny(2) = —jfn r(8) € goun(s)ds, n = L (41)
go(o)(z) =0, gl{o)(z) = 1 (42)
From (40)-(42)
gomy(2) = 0, n even.
(43)

fumy(2) = 0, n odd.

Thus only odd terms appear in the top summation of (39), and only
even terms appear in the bottom summation of (39).

We next obtain bounds on the magnitudes of the terms in the series
of (39), thus showing that these series converge as n — o for all finite
z, so that the solutions to (30) subject to the initial conditions of (34)
are

Go(z) = 2 gom(2),

n=0

" (44)
Gi(z) = 291(»)(3);
with goe(2) and giy(2) as given by (40)—(42). The analysis is sug-
gested by that of Ref. 3. We show that:
= 0, n even.

| gom (2) | [j: [7(s) | ds]n (45)

= , n odd.
n!
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[fz | 7(s) | ds]n n even.

é eEn: - nl , (4:6)
[ grm (2) |
= 0’ n Odd-
where from (2)
I' = —a —+ j83, a= —ReI > 0. (47)

Suppose that (46) is true for some even n. Then from (40)

j: | 7(s) | ds:]" ]
L

lgﬁ(n+1)(2) | = j; ,T(l) l g 2at e+2ag[ —

T rera] d [ a] s
Lo

n+ 10
in agreement with (45). Substituting this result into (41),

[ 1re1as]™

| grnin(2) | < _[Oz [r(e) | & (n + 1)!

sagmh L rwra]”
d[fo |7(s) | ds]
N [ fD r(s) | ds]m

(n + 2)! !

in agreement with (46). Noting (42) and (43), the results of (45) and
(46) hold for all » by induction.

The bounds of (45) and (46) guarantee the convergence of the series
solutions of (44) under quite general conditions. It is readily seen that

A

Il

dt

(49)

=€

| Go(2) | < sinh [ler(s) lds:',
0
. (50)
|Gi(2) | S ¢ cosh [ [1r@) ds].
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The series solutions of (44) converge for all finite 2, so long as the con-
tinuous reflection coefficient is absolutely integrable,

fz]r(s)]ds < ., (51)

In particular, note that r(z) may contain §-functions, as in (16), so that
the above bounds may be applied directly to the discrete case of Sec-
tion I.

The solutions to (30) given by (44) and (40)—(43) thus converge for
all finite z in the case of interest. However these formal mathematical
solutions have physical significance only when the device to which they
apply is stable, i.e., does not oscillate. In the following section we use the
bounds of (45) a,nd (46) to obtain a sufficient condition guaranteeing
stability in the general case,

IV. BOUNDS ON STABILITY — GENERAL CASE

Consider a general amplifier deseribed by (13) or equivalently by
(30). Assume the total length is given by Ly. We may investigate
stability as indicated following (8). Replace the continuous reflection
coefficient r(z) by e-r(z), where e is a numerical parameter. Let ¢ be
increased from 0, and for each value of e determine the maximum value
of the transmission gain | Gr | as a function of frequency . From (35)
the maximum value of | G| corresponds to the minimum value of
| Gy(Ly) |. As e approaches a critical value, denoted above by e,
| Gz max — © and | Gi(Lx) [min — 05 if & > 1 the original device is
stable.

From (40)—(44),

Gi(Ly) =1+ Z g1y (L) (52)

n evan

Noting that #(z) has been temporarily replaced by e-7(z), for sufficiently
small € a lower bound on the magnitude of Gy(Ly) is given by

o

|Gi(Ly) |21 — Z:z | grmy (L) | - (53)

n=

n even

Both sides of (52) and (53) are functions of frequency w, through their
dependence on the propagation constant 8. Using the result of (46) in

(53),
. " ler(s) |ds |
|Gi(Ly) | =21 — E ety I:j; :I . (54)

n=2 n!
n even
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Since the expression on the right-hand side of (54) is independent of
the propagation constant 8 and hence of the frequency w, this expression
is also a lower bound on | ¢1(Ly) |min , the minimum value of | Gy(Ly) |

as a funetion of w.
Ly n
. [f le-r(s) | ds]
,GI(LN) 'min 2 1 - Z egﬂLN 0 . (55)

n=2 n*

n even

As e increases from 0, the lower bound on | Gy(Ly) |min given by (55)
steadily decreases, and for some particular value of ¢ = e approaches 0.
Therefore if

. [[LNIe-r(s) |ds]"
E Lo < B—ZaLN (56]

o} n!
n even
stability is guaranteed. If (56) is satisfied for e = 1, then stability is
guaranteed for the original amplifier, with reflection coefficient r(z).
Consequently, a sufficient stability condition for an active transmis-
sion line with a general continuous reflection coeflicient r(z), deseribed
by either (13) or (30), assuming the device to be matched at both ends,

is given by
. [fwlr(s)fds]n
2. =

< 672aLN. (57)
n—o n!
This may be written
Ln
mshl:f | r(s) lds:| — 1 < g (58)
0
or further
[
| r(s) | ds
2| o 1 _oary (59)
sinh — < 3 e )

Tinally, taking the square root of both sides of (59) we obtain
Ly
0 lr(s) f ds e LN (60)
sinhf ——— | < G

[S]
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or equivalently

e aLN

f:” |r(s) | ds < 2 sinb™ <7 (61)

as sufficient conditions for stability for a general active transmission line
with an arbitrary continuous reflection coefficient r(z).

We may now apply the result of (61) to the discrete case of Section I
above by making use of the results of Section IT. As noted in Section II,
if the continuous coupling coefficient r(z) is a series of é-functions of
the form given in (16), then the solution to (13) is identical to that for
the discrete case, given in (3), (5),and (6). Since the stability condition
of (61) holds true in general, it may be applied to the discrete case by
substituting (16) into (61), yielding

—aLy

3 tanh™ | o | < 2 sinh™ e\/ﬁ . (62)

=1

Equation (62) is a sufficient condition for stability for a general active
transmission line with arbitrary discrete reflectors, having reflection co-
efficients ¢; located at arbitrary positions along the line. Equation (62)
is the result stated in Section I as (9). This inequality is a sufficient con-
dition for stability; if the inequality is satisfied, the device must be
stable. This condition is not necessary for stability; many devices that
violate (62) or (9) are stable.

The weaker bounds of (10) and (12) are readily obtained from the
basie result of (62) or (9) by straightforward use of inequalities. From
(62) or (9) we must have

e oLn

tanh™ | ¢;| < 2 sinh™ 3 i=1,2 -+ N. (63)

Since the function ¥ = tanh™ z is concave upward for z > 0,

tanh ™ 2,

tanh ™'z < -z, 0<z<zam <l (64)

m

Therefore, from (63),

2 sink~ S
V2=l
tanh | 2 sinh™! :1
[ V2

(65)

tﬂ,ﬂh—l I Ci | <
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Therefore if the relation

N

—a L,
> |e| = tanh [2 sinh™ 2 \/;] (66)

=1

is satisfied, then the condition of (62) must also be satisfied, so that (66)
is a slightly poorer sufficient condition for stability; this result was given
in (10). Finally, since the function y = tanh [2 sinh™" 2] is concave
downward for z > 0,

tanh [2 sinh ™ 2]

tanh [2 sinh™ z] = " 2, 0=22 2 z.. (67)

As a particular instance let us choose z, = (1/4/20) = 0.2236; then
(67) becomes
1
tanh [2sinh™' 2] = 1.8632, 0=z < /30 = 0:2236. (68)

By using (68) to decrease the right-hand side of (66), we obtain the
slightly poorer sufficient condition for stability

e LN
2

N
| = 1.863
ol = 18687

= 09322 ", 20 logw ¢ = 10 db

(69)

given in (12).

V. BOUNDS ON STABILITY — SPECIAL CASE, INCLUDING REFLECTORS OF
NOMINALLY EQUAL MAGNITUDE AND SPACING

The bounds on stability derived in Section IV in the general case
guarantee stability for the worst possible arrangement of reflectors.
Thus in many cases the sum of the magnitudes of the reflectors may far
exceed the bound given by (9), (10), or (12) without causing instability.

These general bounds guarantee stability even if we have no informa-
tion whatever about the distribution of reflectors. If we do have such
additional information, it should be possible to make use of it to find im-
proved bounds. As a trivial example, in the treatment of equally spaced,
identical reflectors in the previous paper! exact stability conditions were
obtained; we will see in Section VI that for this case the sum of the
magnitudes of the reflectors at the houndary of instability may far ex-
ceed that given by (9), (10), or (12).

In the present section we consider a somewhat restricted special case
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in which the reflection coefficient is almost uniformly distributed in a
certain sense. We assume that

Re(z—1) < [ [r(s) | ds S Rz +g),
0 (70)
R>0, fz0, g¢20,

where R, f, and g are constants. Equation (70) states that the indefinite
integral of the absolute magnitude of the reflection coefficient is con-
strained to lie between two straight lines of the same slope R, separated
by the horizontal distance h given by

h=f+g hzo0. (71)

It turns out that the final bounds of this section are better the smaller
the separation A. This is to be expected, since the smaller the separation
of the two straight lines given by the right- and left-hand sides of (70),
the more constrained is the reflection coefficient r(z).

The presence of sufficient length of perfect (i.e., reflectionless) active
line at either end will needlessly inerease f and hence A in (70) and (71),
and hence needlessly degrade the final stability condition given below.
Such a length of perfect line cannot affect the stability, but merely alters
the gain of the device (assuming it is stable). Therefore for purposes of
the present stability analysis sufficient lengths of perfect active line
should be removed from each end so that & is minimized, and hence the
best possible bound is obtained. Removal of any additional lengths of
perfect active line from either end will do neither good nor harm to the
final stability condition.

A few examples serve to illustrate the general nature of the restriction
of (70). First suppose that (z) is equal to a (positive) constant,

r(z) = ro. (72)
Then (70) is true with
R =mn
f=0 g¢g=20 (73)
h=f+g=0.

The separation h [of (71)] between the straight lines of the two sides of
the inequality of (70) is zero in this case. Equations (13) or (30) are
readily solved exactly for the reflection coefficient of (72) by slight modi-
fication of the results of (18)—(23), in particular by first replacing
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tanh™ ¢, — rA and subsequently replacing any remaining A’s by
A — L, where L is the total length, in these equations. From this exact
solution precise stability conditions may be obtained for the case of
constant (continuous) reflection coefficient; we expect the bounds of the
present section to agree with this exact result when we set f = ¢ = 0.

Similarly, the parameters of (73) apply to the bounds of (70) when
the (continuous) reflection coefficient is a square wave of constant
absolute value ro, with arbitrary transitions between the 47 and the
— 7o sections.

The above two examples utilize a continuous reflection coefficient.
However, our particular present interest lies in some of the discrete cases
of the preceding paper.! First, consider the case of identical, equally-
spaced reflectors of Section IT, Ref. 1; the relations of (70) are illustrated
for this case in Fig. 2. A less-restricted case is provided by the case of
reflectors of identical magnitude but random spacing, where the fluctua-
tion in spacing is very small compared to the average spacing, treated in
Section III of Ref. 1. The relations of (70) for this case are shown in
Fig. 3; the randomness in spacing has resulted in a slightly wider separa-

4K |-

3K

2K -

N
r(z)=K3 F(z-i1,)
L=1

r(z)

o Lo 21, 3l, al, N1,

Z —-—

PARAMETERS OF EQUATION 70
R=K/1, f=1, g=o0

Fig. 2 — Identical, equally spaced reflectors.
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Fig. 3 — Identical, randomly spaced reflectors.

tion than in Fig. 2 between the dashed lines that enclose the staircase
curve of

j:lr(s) | ds.

Sinee in this case the magnitudes of the reflectors are strictly constant,
the “risers” of the staircase have the same size, while the “treads” vary
in length. It is clear that if the magnitudes as well as the spacings of the
reflectors vary slightly, both the “risers” and the “treads” of the stair-
case will vary slightly, but otherwise the behavior will be much the same
as in Fig. 3, so that the restriction of (70) may be satisfied with small
separation between the straight-line bounds.

While the discrete cases of the preceding paragraph, which have re-
flectors of nominally equal magnitude and spacing, are of principal in-
terest here and supply the motivation for the analysis of the present
section, discrete reflectors having quite different distributions from the
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above may also fall within the restriction of (70) with small separation
of the bounding lines; one such case is illustrated in Fig. 4. (Note that
reflectors of both signs are indicated in the lower drawing of this figure,
by é-functions with both positive and negative magnitudes.)

The above cases, which satisfy the restriction of (70), may be re-
garded as having the absolute magnitude of the reflection coefficient
more or less constant in a certain sense, in that

‘/:h‘(s) | ds

is approximately proportional to z [see (70)]. Thus we seek bounds on
stability in the case of (70) that are similar to those obtained for constant
reflection coefficient [see (72)].

We again use the solution by successive approximation given in Sec-
tion IIT above. The discussion of (29)—(43) remains appropriate for our

h=f+g

r(z) = SUM OF d-FUNCTIONS

r(z) | L1 II I \J ]J || |l|“|1

Z —

Fig. 4 — More general case satisfying the restrictions of (70).
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present purposes. However, greatly improved bounds over those obtained
in (44)-(51) may be obtained because of the additional restriction of
(70) imposed in the present section; in contrast, the boundsof (44)—(47)
of Section IIT hold true in general, and specifically when the restriction
of (70) is not satisfied.

Consider the series solutions of (44). From (42)

N (z) =1, g (z) = 0. (74)
Note also (43). We show that:

2
Igl(n)(Z)l < R2 (ﬁl_ + h) ezua
[

_{Rz (% + h) [z + (g _ 1) h]}cm)_l
G-1)

neven,n = 2.

(75)
[g1m(2) | = 0, n odd.
| n (Z) = 01 n en.
gom (2) | 1 even (76)
| gomy(2) | < R (% + h)
. 1 n—1 (n—1)/2
oG+ n) -+ ()}
('n. - l) | ’
5 !
n odd.
In (75) and (76), R and h are the parameters of (70) and (71).
First, from (40), (42) or (74), and (47),
: —2as — : —2as )
lgon() | < [ ™ () ds = [ e d[f |r(z)|dt] o

e f;lr(mdt + % fo g [foalr(tﬂdtjlds,

where we have made use of integration by parts. Using (70) in (77),
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lgoay(2) | = €7 R(z + ¢) + 2aRf0 e (s + g) ds

IA

— e—zale(z+ g)

1 —2az (78)
— € —2qz —2az
+R [T — zZe +g(1 - e )]
=R a-em R < E R+ 0,
(23 (o4

where in the final step we have used thefact that f = 0. Finally, substitut-
ing the definition of % from (71) into (78),

[go(2) | < R (2—10[ + h)- (79)

Equation (79) agrees with (76) for n = 1.
Next, from (41), (47), and (79),

0@ < B(gg+1) [ 7] ds

=R( +h)[ e g l:flr(t)]dt]

(80)
_R( +h) +2az[ ]T(t)ldt
—R (51& + h) 2aj‘; e“‘”[j: [ r(t)]dt]ds
Using (70), (80) becomes
| e (2) | < R’ (2—2 4+ h) e (z + g)
- R (Z_Ia + h) 2a fnz (s — ) ds
= R2 (%“"h) 820!2_(2+ g) (81)

RE (2%1 + h) I:]. _‘)ae : + zei,'az +f(1 _ 6202)]
<R i+h)e2‘“[i +f+g]
2a 2a )
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Finally from (71), (81) becomes

2
|gl(2)(3)l < R”— (é}_ + h) eﬂaz, (82)
o

which agrees with (75) forn = 2.
We now establish the bounds of (75) and (76) by induction. Suppose
that (75) is true for some even n = 2. Then from (40) and (47),

1 (n/2)+1
R (% <+ h)

('g - 1)!
= fo [s n (’% - 1) h]‘ﬂm—ld[f; | r(t)fdt]. (84)

Integrating (84) by parts,

I= [z + (g - 1) h:lmm—‘ UD [r(D)] dt:l
)T
-[_/:]r(t)ldt]ds.

I (83)

| Gontn (2) | <

where

Using (70) and (71), we have from (85)

0T
e [ G- ] e
e+ (-] re
Y P AT
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= [z + (- - 1) h:l(ﬂm_lg(z +g)
—R(z—f) I:z + (g B 1) h]hm—l ~ Rfl:(g— 1) h:l(n.fﬂ)—l
o[ [
= Rh [z n (ﬁ B 1) h]t»m— . ( )h]{nm_l
Bl a6

eyl G0

l\:!l =

IIA
[T

_ [+ G

where the last step follows from the preceding one because n = 2 [from
(75)],f = 0 [from (70)), and & = 0 [from (71)]. Using the inequality

e <o+ (¢/k)], =0 and e> 0, (87)
(86) yields

2

&

t\.a

Substituting (88) into (83),
1 n/2
+ h) (z + nk)]

[ gonin(2) | < R ( + ;) [R2 (Zr .
G)

Recalling that » is some even integer = 21in (89), (89) agrees with (76).
Next, from (41) and (47), using the result of (89)

1 (n/2)+1
Rn+l (_ + h)
20

()

(89)

J (90)

| grinsn(2) | <
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where
J = fo (s 4 k)™ d [f (1) | dt]. (91)

Integrating (91) by parts,

J = ¢“(z + nh)"" I;,: [ 7(t) | dt]
~ % f (s + nh)"" [fo 17(1) | dt] ds (92)

— 'g f‘ (s nh) ™2 I:fn [ r(t) | dt] ds.

Using (70) and (71), we have from (92)
J £ & (z + nh)""R(z + ¢)

— R2a fz e (s 4+ nh)"* (s —f) ds
0

_ ﬂ i +2as (nf2)—1 _
ngfu e (s + nh) (s — f) ds
= (2 + nh)""R(z + ¢)
_ Rf (S '_f) d [B-Has(s + nh)n.f?]
0

— (2 + nh)"*R(z 4+ ¢) — R(z — )" (z + nh)""

- Rf(ﬂ.h)ﬂﬂ + R fz e (s 4+ nh)""* ds (93)

0

— Rhe™(z + nh)" — Rf(nh)""

R : n/2 Qa8
+foo(s+nh) d (e™)

Il

Rhé™(z + nh)™® — Rf(nh)"* + % (2 + nh)""

E_Efz 2as (n/2—1
% 3 ﬂe (s + nh) ds.

From (71), h = 0, so that (93) yields
J <R (éla + h) (2 + nh)™?. (94)

R n/2
o (nh)
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Substituting (94) into (90),

1 2 [R2 (2l + h) (z + nh)]m
| grnsmy(2) | < R? (2:1 + h.) & @ . (95)

()

Recalling that n is some even integer = 21in (95), (95) agrees with (75).
Noting (79) and (82), the results of (75) and (76) hold for all n by
induetion.

We now use the results of (75) together with (74) to obtain bounds
on stability for those cases where the reflection coefficient r(z) is re-
stricted as in (70). This analysis is almost identical to that of Section IV,
(52)—(57), for the general case, modified by replacing the relation of
(46) by that of (75). Thus, making the substitution

M — R (L + h)g
! 2a

[ TS0 YOl
E)

throughout (54)—(57), we obtain, corresponding to (57), the following
sufficient condition for stability in the present case, after a minor modi-
fication of the summation index:

o f 1 "
2 [R- (_—f + h) (Ly + mh):’
R (i + h) D 20 < N (97)

m=0 m!

Ly is the total length of the device. The summation of (97) is found in
closed form by the analysis given in the Appendix. Using the final result
of the Appendix (137), the final results of this seetion may be sum-
marized as follows:

If the reflection coefficient 7(z) (continuous, diserete, or a combination
of both) satisfies the condition

R-(z — f) gj:h(s) [dsS R4 R>0/20920 (o0

h=f+g; h=0.
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then a sufficient condition for stability of the active line (with reflection)

is
’ (1 + 2—;1) ory (98b)
= < exp I:—ZaLN (1 + m)]
where
aERE(i+h)h<l (98¢)
2a e
and r; is given by
n=¢e", n<e (98d)

The results of (98) are illustrated in Fig. 5, which shows the maximum
value of R for which stability is guaranteed by (98) versus the nominal
total gain 20 logy ™Y, with 20 logs ¢*" as a parameter.

A greatly simplified but slightly poorer version of the stability condi-
tion of (98) may be obtained in the high-gain case. As one example,
suppose the one-way gain of the active line exceeds 10 db,

U 2 10, 8686 aly z 10db,  aLy z 1151 (99)

If & satisfies the sufficient stability eondition of (98b), it must also
satisfy the weaker inequality

8 < r_?_a—gah g el (100)
Substituting (99) into (100),
8 < 0.1. (101)
From (98d), r, is a monotonic increasing function of 6. Therefore
r < 1.118. (102)
Further, since from (98d)
&y = Inn, (103)

67y is a monotonic increasing function of r, , so that
ory < 0.1118. (104)
Now writing out the right-hand side of (98b),

exp [—ZaLN (1 + Er—l):| = exp (—2alLy) exp (—{JE 67‘1) , (105)
2ah h
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Fig. 5 — Exact and approximate bounds on R for which stability is guaranteed.

we investigate the exponent of the second factor on the right-hand side
of (105). From (100),

L 2aLy  —sany . ar
f&rl < ﬁ(’ WIN p < Daly ¢ N Ly (106)

The right-hand side of {106) is a monotonic decreasing function of 2aLy
for 2aLy > 1. Therefore, substituting from (99) and (102), (106) yields

% ory < 0.2574. (107)

exp [Jhi érl] > 0.7731. (108)
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Finally, using (104) and (108) in (98b), we obtain the following suf-
ficient condition for stability, subject to (98a);

Rk < 0.8287 l-fﬁ e 8.686aLy = 10 db. (109)
The stability condition of (109) is slightly poorer than the stability con-
dition of (98b), (98c), and (98d), from which it was derived. As the lower
bound on the gain of the active line increases beyond 10 db and ap-
proaches «, the numerical factor 0.8287 in (109) increases and ap-
proaches 1. Equation (109) or a similar result is useful in illustrating the
general behavior; however calculations using the basic result of (98) are
straightforward. The result of (109), with the numerical factor 0.8287 — 1,
is also shown as the dashed curves of Fig. 5, illustrating the way in
which this approximate stability condition approaches the exact result
of (98) in the high-gain case.

VI. EXAMPLES AND DISCUSSION

Consider first an active line with two discrete reflectors of equal mag-
nitude ¢ at the ends of the line, z = 0 and z = Lz. ¢ is of course real;
for convenience we assume ¢ > 0. In this simple case the exact stability
condition is readily found, and may be compared with the two bounds
derived above. From (8) of Section I, the transmission gain of this de-
vice in the stable region is

1
Gr = —, 11
’ HATI ( 0)
where from (1)—(7)
an = € (1 4+ ). (111)

The condition for stability is readily found as desecribed following (8)
[this procedure is similar to that used in Section IV, (52)—(57), and
Section V, (96)—(97), in obtaining bounds on stability]. Replacing ¢
by ec, where € is a numerical parameter greater than 0, and using (2),

an = e[ + (ec)’et e, (112)

For small enough e the minimum value of x;; , and hence the maximum
value of gain G of (110), occurs at

28L; = =m, £3m, . (113)
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Hence
| 0u Jmin = €291 — (ec)’e™*™. (114)

As e increases from zero, instability will take place at a value of ¢ for
which

I-‘llll ‘min = 0,

(115)
(ec)’e’*™ = 1.
Hence the original device (with ¢ = 1) will be stable if
c < e (116)

Equation (116) is an exact condition for stabiity for the active line
deseribed above, with two equal reflectors at the ends. We now comgare
this exact result with the bounds deseribed above.

Consider first the bound of (9) or (62). This result is a sufficient con-
dition for stability for any arbitrary distribution of discrete reflectors,
and so must apply to the special case above. Setting N = 2, ¢, = ¢ = ¢,
this general bound guarantees stability if

—aLg
tanh™' ¢ < sinh™ e\/ﬁ . (117)
Equation (117) yields
] —alLg
.\/5 \/1 + % e—).aL:l

as a sufficient condition for stability for an active deviee with two equal
reflectors of magnitude ¢ at the ends. Comparing the bound of (118)
with the exact stability condition of (116), we see that the general
bound of (9) or (62) is conservative in the present special case; i.e.,
the device with two equal reflectors at the ends remains stable for the
reflector magnitude ¢ larger than that guaranteed by the general bound
of (9) or (62) by a numerical factor that varies from +/3 to 4/2 as the
gain al, varies from 0 to e . Therefore the general bound on stability
given in (9) or (62) cannot be improved by a factor greater than +/2
[i.e., this factor to multiply the right-hand side of (9) or (62)]; of course
it may be that no improvement at all is possible, and that some distribu-
tion of reflectors can be found for which (9) is satisfied as an equality at
the boundary of instahility.

Next, consider the bound of Section V, (98), applied to the above
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special case, i.e., two discrete reflectors of identical magnitude ¢ at the
ends of the active line. In (98) we set h = L., R = (tanh™ ¢)/Ls,
to yield the following (precise) bound on stability:

ory Qalin —2aLy

T—on 1+ 2als° (119a)
where
8 = (tanh™ c)ﬂ-%i:"—l‘g (119b)
and r, is given by
rno=é", rn < e. (119¢)

The bound on ¢ for stability is readily determined numerically from
(119) as a function of aL. . However, when the one-way gainof theactive
line is large, als 3> 1, the bound of (98) takes on the form of (109),
with the numerical factor 0.8287 — 1 since al, 3> 1 (i.e., the gain is
taken to be very large, not simply greater than 10 db). Thus the ap-
proximate bound on stability in the present case becomes

~ 2C!L2 —alg,

—1
tanh™ ¢ <1+2aLze ;

als, > 1. (120)

The symbol < indicates that the relation of (120) is not a precise bound,
but merely gives a good numerical approximation to the precise bound
if al, is large enough. Comparison of the (imprecise) bound of (120)
with the exact stability condition of (116) shows that in the high-gain
case, als 3> 1, where ¢ < 1, the specialized bound of Section V, (98),
yields bounds on the magnitude of the reflection ¢ in the present special
case (two equal reflectors at the ends of the active line) that approach
those of the exact condition for stability. Consequently the bounds of
(98) cannot be further improved (in their present form).

The case of N identical, equally spaced reflectors was studied in Sec-
11 of Ref. 1, where simple expressions for stability were found in the high-
gain case. If the total gain is large and the gain per section small, com-
parison of (109) (with the factor 0.8287 — 1) and (98a) with (43) of
Ref. 1 shows again that the bound on stability of (98) cannot be
further improved. It is of interest to see how close the bounds of (98)
come to the exact value corresponding to instability in a few cases of
interest. For this purpose we consider examples (), (), and (4%) of
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Section II, Ref. 1. In (98) we set

—1

=1, R:%‘J, (121)
and compute upper hounds on | ¢ | that guarantee stability. It is also of
interest to compare the general bound of (9) or (62) for this case.
Table I summarizes these results. The bounds of (98) are quite good
when the total gain is high, aLy >> 1, and when the gain corresponding
to the distance ! is small, ol << 1; for these conditions the stability condi-
tion of (98) gives much better results than the more general stability
condition of (9), because in the former we have made use of additional
information regarding the distribution of reflectors.

TABLE I — IpeENnTICAL, EQUALLY SPACED REFLECTORS

N = number of reflectors
Gain (db) = 20 loge e¥e! = 20 log,o e=E¥ = one-way gain of active line

in db
| ¢ |max = maximum value of | ¢ | for stability, as determined in Section
II, Ref. 1
Bound on | ¢ | — (98) = maximum value of |¢ | for which stability is
guaranteed by (98)
Bound on | ¢ | — (9) or (62) = maximum value of |¢ | for which sta-
bility is guaranteed by (9) or (62).
C i max B d
(Sec. 1L, Ref. 1) N Gain, db | (s | fi 5. | Peunbenlel | Bogndonlel
(z) 30 30 0.00860 0.00590 0.00149
(22) 300 30 0.000860 0.000710 0.000149
(#31) 50 b 0.06501 0.01105 0.0130

1 Note that for this case in Ref. 1 the high-gain approximation given there was
inappropriate, so that this result was obtained by use of a computer,

Finally, we consider the application of the above stability conditions
to some of the problems involving random reflectors studied in Ref. 1.
The stability of the various deterministic cases discussed above in the
present section has been treated exactly here or in Ref. 1 without using
the new results of the present paper; these cases have been discussed in
the present section both to show that any possible improvement in these
general stability conditions must be quite small, and to provide partial
confirmation of these results. However, the application of (9) and (98)
to cases involving random reflectors provides the principal motivation
for the present analysis, since no other information whatever is available
regarding stability in these cases.

Let us consider the example of the first part of Section IV, Ref. 1, in
which the average normalized loss and the rms loss fluctuation were
determined for an amplifier with reflections having identical magnitude
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but random spacing. The following parameters were chosen for this
illustration:

I» = spacing between (k — 1)th and kth reflectors [(3) and Fig. 1]
lo = {l), average value of l; , independent of k

¢ = magnitude of kth reflection coefficient [(3) and Fig. 1]

cx = ¢ ; all reflectors identical, ¢o > 0 (122)
N = 30, number of sections

20 logp "' = 30 db, nominal total gain

20 logy €* = 1 db, nominal gain per section.

The following assumptions were made in these caleulations of Ref. 1:
(a) Ir is always a large number of wavelengths;

By > 2m, Bly >> 2. (123)

(b) The distribution of the I, about their mean l is very narrow with
respect to the mean, but wide compared to 2x/8; further, this
distribution is smooth and symmetrical about ;.

The probability density for I did not have to be further specified for
the calculation of average loss and rms loss fluctuation in Ref. 1. (Note
however that in the calculations of Ref. 1 for the covariance of the loss,
the specific form of the probability density for x must be known, and
was assumed to be Gaussian in Ref. 1.) The average loss and the rms
loss fluetuation for the amplifier of (122) were given in Fig. 9 of Ref. 1
versus ¢, the magnitude of the reflections. These curves were shown
dotted for ¢o > 0.00860, because it was known that instability is possible
in this range, in particular for I = I, i.e., equally spaced reflectors [see
Section II, Ref. 1 and case (), Table 1]. However it was noted that this
was only a symbolic reminder of the unsolved question of stability; these
results are valid for small enough ¢, , but how small was not known from
the results of Ref. 1.

We illustrate the utility of the results of the present paper by applying
them to this problem; these results provide useful information concern-
ing stability in this case, and of course in many similar problems. For
convenience we make one further assumption in addition to those
mentioned following (122):

(¢) The distribution of l; about its mean [ is strictly bounded; in

particular

|1k._ll)l é Vlu; (124)
further, we assume for convenience that

v < L. (125)
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visin (124) the upper bound on the fractional deviation in spacing from
its average value; the restriction of (125) requires that I, = 0, and so
prevents the order of the reflectors from being altered. In practical cases
we will be interested in small values of »,

v <L 1. (126)

We determine upper bounds on the reflector magnitude ¢, that guaran-
tee stability, as a function of », the maximum fractional deviation in
spacing between reflectors. For » = 0 the reflectors are equally spaced;
Ref. 1 or Table I shows that stability is guaranteed if

eo < 0.00860, v =10, (127)

Next, the bound of (9) guarantees stability independently of the par-
ticular distribution of reflectors. Nince however the total length may
vary somewhat, we must in (9) set

LN = L:m = 3010(1 —+ 1’), (]28)
yielding
eo < 0.00149(0.03162)" (129)

as a sufficient stability condition.
Finally, we apply the bound of (98) to this example. We set

—1

R = ““‘Th“'ﬂ (130)
1]

k= (1 + 600l (131)

and make use of (128) in (98) to obtain a sufficient stability condition.

The sufficient stability conditions of (127), (129), and (98) are
plotted in Fig. 6; the result of (129) is identified as originating from (9),
and that of (127) from Section II of Ref. 1. The curves of Fig. 6 have
been plotted out to fractional spacing variations » of 10 per cent; over
this region the stability condition of (98) is superior to that of (9).
However the bound of (9) [i.e., (129)] will be superior to that of (98)
for large enough ». Note that the factor (0.03162)" in (129) arises from
the fact that the total length and hence the total gain is subject to
statistical fluctuation [a similar factor oceurs in using (98) for the
problem]; in the range of probable interest, i.e., for very small fractional
spacing fluctuations », this numerical factor will be close to 1. The fact
that the limit of the bound of (98) as » — 0 is substantially below the
maximum value of ¢ given by (127) is due to the fact that the nominal
gain per section in the example of (122) is 1 db, which is not too small;
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as the gain per section decreases these two quantities will approach each
other, as indicated above.

These results, plotted on Fig. 6, show that the range of ¢o over which
the calculations of Section IV of Ref. 1 are guaranteed to be valid. If the
maximum fractional variation in the spacing between reflectors is very
small, then the results plotted on Fig. 9 of Ref. 1 are valid for ¢y up to
approximately 0.00590.

The stability conditions of (9) and (98) may be applied to a variety
of similar problems. In the above example we have found the maximum
value of ¢ for which stability is guaranteed, i.e., for which the probability
of oscillation is zero, as a function of the maximum departure of the
spacing between reflectors from its average value. The results of (9)
and (98) may also be used to determine an upper bound on the proba-
bility of oscillation in similar problems where no absolute guarantee of
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Fig. 6 — Bounds on magnitude of coupling coefficient to guarantee stability
for amplifier of (122), with reflectors of identical magnitude and nominally equal
spacing.
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stability can be given, e.g., perhaps in cases where the probability dis-
tribution for the spacing deviations is not strictly bounded.

The main emphasis of the present paper has been on the diserete
case; the continuous case was introduced only as an intermediate step
leading to the desired results. However, it is clear that related problems
with continuous reflection may be studied for stability using the general
results derived above.

Finally, the present calculations have assumed for definiteness a rather
speeial model; i.e., the forward and backward gains have been assumed
equal and a particular form has been taken for the matrix of the dis-
crete reflectors. These assumptions are not essential to the analysis;
similar results can be derived for many related cases of interest, such as
systems using isolators to partially attenuate the backward waves, etc.
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APPENDIX

Z (z + om)"

Summation of the Series S = e T
n=0 n.

The summation of (97) was initially performed by a method suggested
by S. O. Rice, employing contour integration; this method is straight-
forward but lengthy. A much shorter analysis presented by the unknown
referee is given here. It has been shown that®

=1+ "ZI ala — mb)™ . ;,’“b)”tl y" (132)
where )
y =xe" and |yb| < (1/e). (133)
Differentiate (132) with respeet to y and then set y = 1 to obtain
I(n—b): ) _ _ n
R S (134)

where

bx

x=¢ " and |b| < (1/e). (135)
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Finally, set

a=z— 34, b= —s, T=n (136)

to obtain

o0 (Z + 6n)'ﬂ e'rla -

= , <5

raz—l) n! 1 — én 0=9d< e

where », is given by (137)
ro=em, r < e.

REFERENCES

1. Rowe, H. E., Imperfections in Active Transmission Lines, B.S.T.J., this issue,

p- 261.

2. Rowe, H. E., and Warters, W. D., Transmission in Multimode Waveguide with
Random Imperfections, B.S.T.J., 41, May, 1962, pp. 1031-1170. See particu-
larly Sections 2.3.2 and 2.3.3.

. Rowe, H. E., Approximate Solutions for the Coupled Line Equations, B.5.T.J.
41, May, 1962, pp. 1011-1029.

. Ince, K. L., Ordinary Differential Equations, Dover, New York, N. Y., 1956.

. Bellman, R., Stability Theory of Differential Equaiions, McGraw-Hill, New
York, N. Y., 1953.

. Bromwich, T. J. I'a., An Iniroduction to the Theory of Infinite Series, Mac-
millan, N. Y., 1955.

(=] [ [



