On the Properties of Some Systems
that Distort Signals—1I

By I. W. SANDBERG
(Manuseript received March 20, 1963)

This is the first part of a two-part paper concerned with some generaliza-
tions and cxlensions of the Beurling-Landau-Miranker-Zames theory of
recovery of dislorted bandlimiled signals. We present a uniqueness proof
that cxtends Bewrling’s result and study a class of functional mappings
defined on Hilbert space. As an application, we show that the recovery re-
sults can be extended to cases in which a known square-integrable corrupling
signal is added to the inpul signal and the result applied to a time-variable
device which may be nonlinear. It is proved that an assumplion made by
the earlier writers is in fact necessary in order that stable recovery be possi-
ble. Part I1 will consider the more complicaled sttuation in which a single
time-variable nonlinear element is imbedded in a general linear system.

I. INTRODUCTION

A signal transmission system is a realization of an operator that maps
input signals in one domain into output signals in a second domain.
When the system contains energy-storage devices as well as time-
variable or nonlinear elements, the mapping is usually quite complicated.
Very little in the way of a general theory is known concerning the
mathematical properties of such mappings.

Of course one of the important properties of a mapping is its inverta-
bility or lack of invertability. Some particularly interesting results re-
lating to the existence of the inverse of a special mapping have been
obtained by Beurling, Landau, Miranker, and Zames. They consider
the situation in which a square-integrable bandlimited signal is passed
through a monotonie nonlinear device. Beurling showed, by means of a
nonconstructive proof,f that a knowledge of the Fourier transform of
the distorted signal on the interval where the transform of the input
signal does not vanish is sufficient to uniquely determine the input

1 Beurling’s proof is given in Refs. 1 and 3.
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signal. Landau and Miranker' have considered a stable iteration scheme
for obtaining the input signal from the bandlimited version of the dis-
torted signal. They assume that the distortion characteristic possesses
a derivative bounded above and below by positive constants. A solu-
tion of this type was found independently by G. D. Zames.* Some ma-
terial associated with the stability of the iteration scheme and an im-
pressive recovery experiment are discussed by Landau.?

This paper is concerned with some generalizations and extensions of
the results mentioned above. Our primary objective is to show that the
results in Refs. 1 and 2 are special cases of a quite general theory.

Section II considers some mathematical preliminaries. In Section IIT
we discuss the solution of a class of funetional equations defined on an
arbitrary Hilbert space, and give a uniqueness proof that extends Beurl-
ing’s result. In the next section two general signal-theoretic applica-
tions of the results in Section IIT are discussed. Theorem IV implies,
among other things, that the recovery theory of the earlier writers can
be extended to cases in which a known square-integrable corrupting
signal is added to the bandlimited input signal and the result applied
to a time-variable device which may be nonlinear. Section V concludes
Part T with some specialized results that contribute to a deeper under-
standing of the character of the previous material. In particular it is
proved that an assumption made by the earlier writers is in fact neces-
sary in order that stable recovery be possible.

Part IT will consider the more complicated situation in which a single
time-variable nonlinear element is imbedded in a general linear system.
We treat a recovery problem of the type considered by the earlier writers
and prove that recovery is possible under quite general conditions. This
study may have applications in improving the quality of distorted data
obtained, for example, from a malfunctioning transmitter in a space
satellite.

1I. PRELIMINARIES

Let ® = [6,p] be an arbitrary metric space. A mapping A of the space
@ into itself is said to be a contraction if there exists a number a < 1
such that

p(Ar,Ay) = ap(z,y)

for any two elements z,y ¢ ©. The contraction-mapping fixed-point
theorem® is basic to much of the subsequent discussion. It states that
every contraction-mapping defined in a complete metric space ® has
one and only one fixed point (i.e., there exists a unique element z £ ©
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such that Az = z). Furthermore z = lim A"z, where z; is an arbitrary
element of O. "

Throughout the discussion 3¢ denotes a real or complex Hilbert space.
If f,g € 3¢, then (f,9), | f || = (£, and || f — g ||, respectively, denote
the inner product of f with g, the norm of f, and the distance between
f and g. It is not assumed that iC is separable or that it is of infinite
dimension.

The space of complex-valued square-integrable functions with inner
product

Gy = [ sqa

where g is the complex conjugate of g, is denoted by £, and L2 denotes

the intersection of the space £, with the set of real-valued functions.
We take as the definition of the Fourier transform of f(¢) £ £ :

Fw) = [ e a,

and consequently
ft) = )if Flw)e™ dw.
=T Ve
With this definition, the Plancherel identity reads:
o [ f0gat = [ F@)6(0) o

Execept when indicated otherwise, a function and its I'ourier transform
are denoted, respectively, by lower and upper case versions of the same
symbol.

The symbol X denotes an arbitrary subspace of 3C. Henee 3¢ = X
X', the direct sum of X and X', where X’ is the orthogonal complement
of X with respect to 3¢. The operator that projects an arbitrary element
of 3C onto X is denoted by P. The subspaces of £:5 of principal interest
to us aref

®(Q) = {f(1) [f(t) € &m; Flw) =0, weQ}

and

I

D(Z) = {f(O)[f(t) e Lar;  f(1) = 0,182},

t It is a simple matter to verify that the linear manifold @(%2) is in fact a sub-
space. An obvious modification of the proof in Ref. 1 for the case in which @ is a
single interval suffices.
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where @ and = are each the union of disjoint intervals. It is hardly
necessary to mention that the class of electrical signals belonging to
®(2) or D(Z) is of considerable importance in the theory of electrical
communication systems.

We shall use the fact that any projection operator defined on a Hilbert
space is self adjoint [i.e., that (f,Pg) = (Pfg) for any 1,9 € 3.

The symbol I is used throughout to denote the identity transforma-
tion.

III. INVERSION OF A CLASS OF OPERATORS DEFINED ON AN ARBITRARY
HILBERT SPACE

As we have said earlier, a signal transmission system is a realization
of an operator that maps input signals in one domain into output signals
in a second domain. The following theorem relates to the existence of
the inverse of a particularly relevant type of nonlinear mapping defined
on an arbitrary Hilbert space.

Theorem I: Let Q be a mapping of X into 3¢ such that for all f,g € X:

Re(Qf — Qaf — @) = k|l f —gl”
| PQf — PQg||* <kl f—gl”®

where ky and ks are positive constants. Then for each h ¢ X, the equation
h = PQf possesses a unique solution (PQ) " 'h £ X given by (PQ)"'h =
lim f. where

n-=>wo

k
fn+1 = Fli (h‘ - Pan) + fn
and fy is an arbitrary element of K. Furthermore, for all hy ,hz & X
- - 1
” (PQ) lhl. - (PQ) lhz ” = E "hl — ke ”
1

Proof:

Let A = PQ and note first that
Re(Af — Ag,f — ¢g) = Re(Qf — Qg,Pf — Pyg)

= Re(Qf = Qo —9) =k [f —al”

for all f,g € & since P is a self-adjoint transformation.

The equation A = Af is equivalent to f = Af, where Af =ch + f —
cAf and ¢ is any nonzero constant. The following calculation shows that
A, a mapping of X into X, is a contraction when ¢ = F(les) ™'
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|Af — Ag||* = ||f — g — cAf + cAg || ®
[f—gl"—2cRe(Af — Ag,f — g) + ¢* | Af — Ag || *
(1 =2k + k) [|[f =g, ¢>0.

Since (1 — 2¢cky 4 ¢*ks) = 0 for all ¢ > 0, it follows thatt &’ < k.
Hence

1A - Ko P s (1= f) -0l 0s(1-E) <

2

IIA

The last inequality stated in the theorem follows from an application
of the Schwarz inequality. For all f,g e &

IAf = Agll-F—gll 2 |(Af—Agf =@ | Zkf—gl”
Thus
|Af —Agll 2 k|lf—gl.
In particular, with f = Ay and g = A s,
b = hall = ko || A7 — A2 ||

3.1 Uniqueness Theorem

We show here that the uniqueness property of solutions to equations
of the type considered in Theorem I is implied by much weaker hy-
potheses than those stated in the theorem.

Theorem II: Let f,ge X and let Q be a mapping of X inlo 3C such that
(Qf — Qg,f — ¢) vanishes only if f = g. Then if the equation h = PQz
has a solution z ¢ X, it is unique.
Proof:

Assume that PQz, = PQz, where z;, z2 £ K. Since P is self-adjoint,

(Qzi — Q2,2 — ) = (Qz — Qz, Pzy — Pzy)
= (PQzl — PQz,z — 2)
= 0.

Hence z; = 2.
Theorem II is a generalization of the uniqueness theorem due to A.
Beurling.!#

TdAlternativel_v, the hypotheses and an application of the Schwarz inequality
yields:

kel f—glt* =1 (AF - A, f — ) P=|AF—Ag | f—gl* = k|If = g *
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IV. APPLICATIONS

We present two theorems that have specific signal-theoretic interpre-

tations.
Theorem III: Lel 3 = £ and let

Lf = f:l(t — 1) f(7) dr

where 1(t) € £, and f & K. Suppose that

sup | L(w) | < ©, ReL(w) 2 —a
where « < 1. Then for any he X, h = f + PLf has a unique solulion
fe x. Suppose alternatively that

sup | L(w) | < =, Re L(w) > 0 a.e.

Then PL is a mapping of X into itself such that the equation
h=PLf, heX

possesses at most one solution f e X.
Proaf:
Let Q = I + L and let z ¢ X. Using the Plancherel identity

Re(Qz2) = [ z]" + Re(Lzy2)
= N2l + = Re [ () 120 [ do

(1 —a)|z].

v

Also,
| PQz||* = | 2]*+ 2 Re(Lzz) + || Lz °
(1+248)z]"°

where 8 = sup | L(w) | . Hence the hypotheses of Theorem I are satis-

1A

fied. This establishes the first part of Theorem III. The second part is a
direct application of Theorem II since,f in view of the Plancherel iden-
tity, it is clear that here Re(Lz,z) vanishes only if z = 0.

If & = D(Z), Theorem III implies that under either of the stated
conditions only a knowledge of the output for t& Z of a known linear
filter is necessary to completely determine the input to the filter, if it is
known that the input vanished for ¢ # Z. In addition, if i(¢) is any ele-

 The boundedness of | L(w) | is required in order that Lf & £2 whenever f ¢ X.
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ment of $(ZX), there exists in the first case a unique input signal in
D(Z) such that the projection of the output signal is h(¢), and this
input signal, which ean be computed in accordance with Theorem I,
depends continuously on A(t). Some related results are discussed in the
Appendix,

Definition I: It1is assumed throughout that ¢(x) = @(x,t) s a real-valued
Junction of the real variables x and {.

Theorem IV: Let 3¢ = X 4+ X' be a real Hilbert space in which | f(t) | =
| g(t) | for all t implies that || f| = | ¢ || whenever f,ge 3. Let o(a,t)

satisfy
m(x — y) = e(xt) — e(yt) = M(x — y) whenz 2 y

where m and M are positive constants. Let o[f] € 5C, f& 3. Then for any
u(t) e K, v(t) e X', there exists a unique w(t) € KX such that

Pofw(t) + o(1)] = u(t).

In fact, w(t) = lim w, where

n—=>w

m

Wpy1 = e {u — Polv 4+ w.]} + wa

and wy 18 an arbitrary element of X. In addition,
| Pelo + f1 — Pelo + gl | 2 m{|f —gll; fgeX, veX

and if Polve + wa] = ua, Polvy + wy] = w, where w, ,w, s ,uy ¢ X and
Vg Wy € K,

1A

1 M
W — Wp | — |, — — v, — v
R N T R P

1A

M| ve — vl + M| we — w|.

1w — ]|
Proof:

We first show that the hypotheses of Theorem I are satisfied when Q

is defined by Quw = ¢lw + v]. Let 4 = (n — m) where
ol + 71 —olv + g1 _
= n;

f—y

Observe that an application of a well known identity yields (with z =

J—9):

fgeX.

(n2,2) — m(zz) = (42,2)
i+ Dz||* =1 (5 - 1)z|*
0.

v
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Hence (ofv + f1 — o0 + gl,f —g) =2 m[f — gl ®, Since, in addition,

| Pelv + 71 — Pelo + gl || = [ olv + f1 — ¢lv + g1 |l

the hypotheses are satisfied. The bound on || w, — w; || is obtained from
the inequality:

1
[wa — w =~ | Polwa + va] — Polws + vd] ||-
Specifically, the right-hand side is equal to

:71 || Polwa + v — Polws + v] + Pelwy + vl — Pelws + vil ||

IIA

L e = wll + L 1Pl + 0 — Polus + 0] |

< 2 llue = wll + o ll2 = ol

With 3¢ = Lo and & = ®(Q), Theorem IV implies that if a function
of time w(¢) having frequency components which vanish outside @ is
added to a second funetion »(¢) with frequency components which vanish
inside ©, and if the result is applied to a quite general type of time-
variable nonlinear amplifier in cascade with an ideal linear filter having
only passbands coincident with the intervals contained in @, then the
output is sufficient to uniquely determine the signal w(¢), assuming of
course that »(t), 2, and the function ¢(z,t) are known. Furthermore, for
each signal v(t) € &/, there exists a unique input w(¢) ¢ X such that the
output is any prescribed element of X. In particular, w(t) depends
continuously on the prescribed output and v(t).

If 3¢ is the usual space of real-valued periodic functions of ¢, and
o(z,t) is similarly periodic in ¢, the theorem possesses a similar interpreta-
tion. Of course, all of the results are valid for the interesting special case
in which ¢(z,t) = ze(1,t) (i.e., when the physical operation correspond-
ing to this function is product modulation).

The inequality: || Pelv + f1 — Pelv + gl || = m || f — ¢ || in the con-
clusion of Theorem IV is quite interesting from an engineering view-
point. For example, let 1€ = £sp , & = B(), and suppose that f ¢ B(Q)
is the input to a time-variable nonlinear amplifier with transfer charac-
teristic ¢(x,t) which satisfies the assumptions stated and for simplicity
¢(0,t) = 0. Then || Pglf] || = m || f ]|, a lower bound on that part of the
energy of the output signal which is associated with the frequency bands
occupied by the input signal.
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Remark: It can be shown that Theorem IV remains valid if the words
“Hilbert space’ are replaced with ‘“Banach space’” (and & denotes an
arbitrary subspace of the Banach space with P the corresponding projec-
tion operator). In particular, the existence and uniqueness of the fune-
tion w(t) follows from an application of the contraction-mapping
fixed-point theorem to the equation w = (P — ¢PQ)w + cu in which
Q is defined by Quw = ¢[w + »] and ¢ is a real constant. Using the
fact that || P || < 1, it is not difficult to show that there exists a ¢ for
which (P — ¢PQ) is a contraction,

V. SOME SPECIAL RESULTS

In this section we present some results that contribute to a deeper
understanding of the character of the material already described. We
shall be concerned throughout with the space £, .

In the proof of Theorem IV the hypotheses concerning ¢(x,t) is used
to establish the applicability of Theorem I. The following theorem
asserts that, for this purpose, the hypotheses can be relaxed somewhat
if 3¢ = Lo and X = ®, where @ denotes ®(Q2) when Q is a single fixed
finite interval centered at the origin. The orthogonal complement of ®
is denoted by ®*.

Theorem V: Let 3¢ = Ly and X = ®. Let f& B, ve ®*, The operator Q
defined by Qf = o[f + v] satisfies the hypotheses of Theorem I assuming
that

m(xz — y) < e(at) — e(yt) £ M(x — y) when x = y

Jor all t £ I1, where m and M are positive constants, 11 is a subset of the real
line, and

m[l — A(ID)]
< - T AV
Y1)
in which
§ = sup (P(Q:,t) - <P(@I,t)‘

tell r—y

U
and

[ 10 ae
AT = fiﬁ’w
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Proaf:

Clearly, || Pe[f + v] — Pelg + ol || £ ol f + 0] — ¢lg + 0] || =
max (8,M) | f — g .

Let IT* be the complement of IT with respect to the real line. Observe
that

(olf 1l =gl + ol f = o) = [ (i +0l = ol + DT — o) dt
b [ =gt [ olf 0l = olg + D) — g) e
In I

-—mLU—gfﬂsziﬁ—gf—(m+®£Jf—wHt

2 [m— (m 4 a@m]|f— gl

When II is any set of finite measure, A(II) is less than unity.f{

At this point it is convenient to introduce
Definition 11: An operator A defined on a Banach space is said o be
bounded if there exists a constant k such that | Af — Ag || = k||f — gl
for all f,g in the domain of A.
This definition obviously reduces to the usual one in the event that A
is a linear operator. From the viewpoint of implementing a signal re-
covery scheme (i.e., of constructing a device that reverses the effect
of some known operator), it is highly desirable that the inverse operator
be known to be bounded, since this situation guarantees that an error
in the input signal to the recovery device would produce at most a
proportional error in the recovered signal, assuming that the device
functions as an ideal realization of the inverse operator. We shall con-
sider the existence of two situations in which a mapping of the type
considered earlier does not possess a bounded inverse.
Theorem VI: Let m(z — y) < o(at) — o(yt) = M(x — y) for
> ywhente Il and o(x,t) = 0 when t I, where m and M are positive
constants and 11 is a set of finite measure. Let A be the mapping of ® inio
® defined by Af = Pelf], f ¢ ®. Then A does not possess a bounded inverse.
Proof:

If A" existed and satisfied |A™f — A% | = k| f — ¢ for all
f,g £ ®, it would follow that || Af — Ag || = (k)| f — g |. However,
since for any e > 0 there exists a z ¢ ® such that

t This is proved in Ref. 5 for the case in which II is a single interval. H. J.
Landau has pointed out to the writer in a private conversation that the published
argument can be extended to apply to an arbitrary set of finite measure.
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llz]] =1 and fzzdl'(e,
I

the following caleulation shows that the inequality cannot hold for any
finite k:

1Pelf) = Relgl I = Lol = oldl IF = [ (els] = ol)? at

IA

< szn (f — ¢)* dt.

Recall that the mapping deseribed in Theorem I'V possesses a bounded
inverse and that ¢(x,t) is assumed to satisfy the Lipschitz condition:
m(x — y) = ela,t) — o(y,t) when @ = y, where m is a positive constant.
The assumption that m does not vanish is essential; the result is obviously
not valid if ¢(x) vanishes throughout a neighborhood of the origin of the
z-axis for all ¢, The following theorem focuses attention on some restrie-
tions imposed on the derivative of ¢(z) by the requirement that the
mapping possess a bounded inverse.

Theorem VII: Let ¢(x,t) be independent of ¢ and continuously differ-
entiable with respect to x on the interval Z. Let |o(x,t) — o(yt) | <
M|z —y|and

de(z)

dr | 0.

anf

TeZ

Then the mapping A, of ® into ®, defined by Af = Py|f], f& B does not
possess a bounded inverse.

Proof:
As in the proof of Theorem VI it suffices to show that for any ¢ > 0
there exist functions f,ge ® such that ||f — g| = 1 and || Pg[f] —

Pelg] || < e. We need the following result.
Lemma I: Let v and e be posilive constants and let &k be a real number.
Then there exists a function g ¢ & such that

lg(t) = k| <e¢ |t] <

The proof of the lemma is very simple. Let §(¢) ¢ ® such that §(0) = 0.
Sinee §(t) is continuous, | aj({) — k| < ¢ || < br for some constants
aand b where b > 0. If b < 1, set g(¢) = ag(bt). This proves the lemma.

IFFrom the hypotheses there exists for any ¢ > 0 an 2 ¢ = such that

de(2)
dx

< e, |z — 2] <&
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where §, is a positive constant that depends on ¢ . Choosef h such thatf
he®, ||h] = 1,and | h(¢) | < %8, ; and then, for any e > 0, determine
T such that

f B dt = ezz.
|t|>T

Through Lemma I, choose g ¢ ® such that | g — 20| < 38 when || < T,
and set f = g + h. Observe that || Pe[f] — Pelg] || * = || olf] — ¢lg] || *
and that the right-hand side is equal to

ﬂ”<11¢w-+-m —-¢b”2d¢4-j;pr{¢b + Bl — olgl}? dt

olg + Bl — olgl [ 2
g + 1l = ol fmgh at

+ M2f Rdl <o + Me'.

|t>T

= sup

le]=7

Since ¢” and e are arbitrary positive constants, our proof is complete.
Remark: The proof can easily be extended to cover some situations in
which the variation of ¢(x,t) with ¢ plays an important role. One such
situation is that in which
dp(2,l)
dx

=10
2=(1)

where ¢(¢) is continuous for all finite ¢ and d¢/dx is uniformly continuous
in a neighborhood of the curve x = {(t).
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APPENDIX

Some Resulls Related to the Previously Mentioned Application of the First
Part of Theorem 11T
Suppose that L is redefined by

L — Ll(t,r) £(z) dr, feD()

t The writer is indebted to H. J. Landau for suggesting this approach.
T The funetion (sin kt)/+/ krt satisfies the unit norm condition and for suffi-
ciently small k satisfies the other two requirements.
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where

j;]; | 1(t,r) |* dr dt < 1.

Then PL is a mapping of ©(Z) into itself such that for any h ¢ D(Z),
the equation A = f 4+ PLf possesses a unique solution f ¢ ©(Z). The
proof of this result follows from Theorem I, a two-fold application of
the Schwarz inequality which shows that

|Re(Lzz) | < ||2]° fzf 11(t7) [ dr de

for all z ¢ D(Z), and a similar calculation using the Schwarz inequality
which establishes that Lz ¢ £, whenever z ¢ ©(2) and that there exists
a constant k such that || P(I + L)z | = k|| 2] for all ze D(Z).

The result mentioned above can be obtained also from a direct con-
sideration of the pertinent Fredholm integral equation:’

WO = 1) + [ ) W) 1) d, (1)
where
e(t) = 1, e,
= 0, te Z.

In addition when
(t,7) =0, t< 7

[i.e., when [({,7) is a Volterra kernel], it is known® that (1) possesses a
solution [ if

sup [l(t,r) | < o, f [h(2) | dt < o,
t,r z
and X is a bounded set.
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