Generalized Confocal Resonator Theory

By . D. BOYD and H. KOGELNIK

iManuseript received March 5, 1062)

The theory of the confocal resomalor iz extended lo include the effect of
unequal aperture size and unequal radit of cwrvadure of the fwo reflectors,
The latter is equivalent lo a periodic sequence af lenses with unequal focal
lengths., This treatment i in Cartesian coordinafes as previously used. In
an appendir the modes and resonand formulas are writlen in cylindrical
coordinales.

The effect of unequal aperture size of the two reflectors is shown o pro-
duee mode patlerns of unegual size on the two reflectors of a confocal reso-
nalor. The previous compuiations for diffraction losses are found lo be
applicable. Generalization of the theory to the case of reflectors of wunequal
curvalure shows the existence of low-loss regions and high-loss regions as
the reflector spacing is varied. One of the high diffraction loss regions occurs
when the reflector spacing 18 between the two unequal radii of curvature.
Such a region is tnterpretable in terms of instabilities in a periodic sequence
of lenses of unegual focal length. An estimate of diffraciion losses 15 obloined
for the low-loss regions. The presence of a high diffraction loss region or wn-
stable region should be of importance in the design of resonators or of a per-
iodic sequence of lenses.

I. INTRODUCTION

The existence of modes in an open structure such as the eonfocal
Fabry-Perot type resonator has been demonstrated by Boyd and Gor-
don' and by Fox and Li.? This resonator eonsists of two spherical reflec-
tors separated by their common radiug of curvature, as shown in Fig. 1.
The reflectors were assumed to be of equal aperture and square! or eiren-
lar® if viewed in the z-direction. Uniform reflectivity over the reflecting
surface was postulated. Goubau and Schwering? ¢ have alzo reported on
this problem and have obtained similar results.

A mode may be defined as a field distribution that reproduces itself
in spatial distribution and phase, though not in amplitude, as the wave
bounees back and forth between the two reflectors. Beeause of losses
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Fig. 1 — Confoeal resonstor with spherical refllectors,

due to diffraction and reflection, the reproduced pattern is reduced in in-
tensity on each succeeding traversal of the resonator. The above-men-
tioned authors have shown that there is o set of modes which will re-
produce themselves over the equal apertures 4, and A, of the resonator.

Mathematically the modes of the confoeal resonator form a complete
orthogonal =set of functions. For the confoeal resonator these modes are
highly degenerate in frequency; that is, many modes have the same
resonance frequency. The degeneracy is split when the resonator is made
nonconfoeal by varying the plate spacing, though new degeneracies do
appear at certain other spacings. Beeause of this frequency degeneracy,
the modes of the eonfoeal resonator are not unique unless the effects
of loss are considered. Any linear combination of the degenerate fre-
quency maodes (the Hermite-Gaussian funetions deseribed in Ref. 1) is
still o mode of the resonator.

When one ineludes the effect of diffraction losses due to finite aper-
tures, the modes become unique, for then the eigenvalue degeneracy is
gplit and each mode has its own characteristic rate of deeay or Q. For
the case of low diffraction losses, the eigenfunctions of the modes are
atill given with good approximation by the Hermite-Gaussian funetions,
which are exact only for the lossless case of infinite apertures. The fre-
quency degeneracy is unaffected by the inelusion of diffraction losses.

Boyd and Gordon, in including diffraction losses, considered only the
ease where both reflectors, 4, and Ay | are of sgual size. This imposes a
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certain symmetry on the system. If, however, the two reflectors are of
different sizes, one might expect for the confoeal resonator, with its high
frequency degeneracy, stationary field configurations that are asym-
mefrie in the z-direction. This may be understood by considering the set
of degenerate Hermite-Gaussian modes which are resonant at a frequency
given by 29 4+ m 4 n equal a constant. Combinations of these modes
may be superimposed at one reflector to form various new field patterns.
The field patterns on the two reflectors can now be different sinece the
original modes with even and odd g change their relative phase by 180°
in going from one reflector to the other, It is reasonable that the lowest-
loss mode for an unequal aperture resonator will be such a combination
that the field patterns will be asymmetrical. This also turns out to be
true for all higher-order modes,

IFor the ease of the nonconforcal resonator with spacing such that there
are no frequency degeneracies, this asymmetry in the stationary field
configurations is not possible. The field distribution is forced to be sym-
metrical between the two reflectors. The diffraction losses are then de-
termined mainly by the smaller of the reflectors,

Resonators with reflectors of different radii of curvature are investi-
gated also. A region of high diffraction loss is found for a range of sepa-
ration of reflectors with unequal eurvature near the confocal separation.
This has some practical significance for resonators and transmission sys-
tems in that one must be sure to operate in only the low-loss region. Due
to the possibility of slightly unequal radii of curvature in the fabriea-
tion of resonators, it is desirable to space the reflectors to obtain a
nonconfocal condition. The existence of “stable regions™ of low loss and
“unstable regions™ of high loss as the reflector spacing is varied is inter-
pretable in terms of the stable and unstable regions of a periodie sequenee
of lenses of unequal foeal length,

II. MODES IN A LOSSLESS CONFOOUCAL RESONATOR

It was pointed out in the introduction that the modes of the lossless
confocal resonator are highly degenerate in frequency and thus not
unigue. Bovd and Gordon, in deseribing the modes of the lossless con-
focal resonator in terms of Hermite-Gaussian functions, considered only
the symmetrical situation of identical field patterns and spot sizes over
each aperture, Beeause of the high degeneracy of the lossless resonator,
asymmetric field patterns between the two reflectors are just as pos-
sible. In thiz section the relation between asymmetrie spot sizes is ob-
tained. Only the introduetion in the following seetion of unequal aper-
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tures and the resulting diffraction losses will allow one to state which
combination of asymmetric spot sizes is a unique mode of the system.
Boyd and Gordon have computed surfaces of constant phase within
and without the confocal resonator, These surfaces have approximately
a spherical shape., Any of these surfaces may be replaced by spherical
reflectors to form a new resonating structure of arbitrary spacing and
curvature. Except for the obvious special case, such a resonator was
termed nonconfocal. Boyd and Gordon have shown that each confoeal
system of radius of curvature and separation equal to b generates a set
of surfaces of constant phase of radius b’ and separation o linked by the

relation®
d = 24 + b = 0. (1)

For a given b and b’ there are two possible reflector separations, d; and
d:i i

dy = b + b — 1,
and _ (2)
de = b — /0% — B*.

The field distribution of the modes of these nonconfoeal systems is
symmelric with respect to the system center (ns are the fields of the
generating confoeal system). The fundamental modes of all these
nonconfocal systems have a spot size of radius w, at the center of the
resonator, given by
_ /0 .

i, = 2" (3)
where A is the wavelength. The spot size of the fundamental mode of
the eonfocal system at the reflectors is w, = w,+/2. In general, the
spot size at a distance d/2 from the center is given by

w = w, 1/1 + L'i:- (4)

The surface of constant phase at the center (z = 0) is a plane, and
the whole family of surfaces is symmetric with respect to it. So far we

* The notation used here is congigtent with that of Boyd and Gordon but unfor-
tunately not with that of Fox and Li, who use b for the spacing of the plane paral-
lol resonator. We use d for the spacing of the reflectors, b for the confocal radius
of curvature and thus its nlg:cr::a; and &' for the radius of curvature of a surface
of conatant phase and for t iug of curvature of the reflectors of & nonconfoeal
resonator with identically eurved reflectors. For the nonconfocal resonator with
unequal radii of curvature we use by and bs .
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have arranged the reflector pair symmetrically to this plane, and sym-
metric mode configurations have resulted. It is possible, however, to
construct a field configuration which is asymmetric with respect to the
reflector system by placing one of the refleetors (with radius of eurvature
b') at z = /2 and the other at = = —dy/2. At these locations both
surfaces of constant phase have the same radius of eurvature &', This
is indieated in Fig. 2(a). The resulting reflector separation can be
computed from (2) as

d = 3(dy + dp) = ', (5)

Sinee the spacing o equals the reflector radius of eurvature B, it is
apparent that a new confoeal system has been formed. Apart from the
surfaces of constant phase, consideration of spot sizes assures us that the
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Fig. 2 — (a) Surfaces of constant phase including asymmetrie confoenl sys-
‘ . Wy A
tems; (b) relative spot sige _— = V 1+
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modes obtained for this conforal system are, indeed, asymmetric. As
indicated in Fig. 2(b) the spot size reaches its minimum wvalue of w,
at z = 0 and is not by any means in the center of the reflector system.
The spot sizes at the new reflectors can be computed from (4) as

3
wl'“'ﬂ)",.l’ 1+%:

(6)
wy = w, 1/ 1+ %,
This combined with (2) yields the relation
l r
wywy = 2 ’ (7)
m

where 4/Ab /¥ is the spot size at the reflectors, which we would expect
for the symmetrical set of modes of a confocal system of spacing b’

The resonance condition for this system is obtained via Boyd and
Gordon’s equation (20) after some eomputation as

4’

T=2ﬁ'+“+m+ﬂjr (8)
where m, n, and g are the mode numbers as defined in Boyd and Gordon’s
work. By comparing their equation (14) with our result, we find that
the resonance conditions for the symmetrie and the agsymmetric modes of
the confoeal system are identical, as expected.

By suitably choosing b for a given reflector curvature §', almost any
ratio of reflector spot sizes wy/w: ean be obtained. Thus, for a given
logsless confoeal system, the confoeal geometry allows an infinite number
of sets of modes (characterized by the spot sizes at each aperture). It is
the finite size and shape of the reflector that selects one particular set,
as we shall =ee in the following section.

I1l. MODES OF A CONFOCAL RESONATOR WITH REFLECTOHR SIZES UNEQUAL

Consider a confoeal resonator. Assume that the reflectors A, and As
are, in general, of different sizes and/or shapes. With this asymmetry
in mind, it is no longer reasonable to postulate that the field pattern
on A; be reproduced on A; when looking for self-consistent field eon-
figurations. Instead, as a more generalized definition of a mode let us
require that an energy distribution launched with a certain pattern on
A, reproduee this pattern on A, after bouncing back from 4. . No con-
dition on the pattern on A, is imposed.
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To express this mathematieally we use the approximations of Boyd
and Gordon's paper and the scalar formulation of Huygens' prineiple.
A wave leaving reflector A, with a field pattern E(x, y) arrives at A,
with a pattern E'(x', y') given by

F A ¥ -E:,E,‘ a4 = =% —ikp
Elx,y) = — df dij E(E, §)e ", (D)
E’El' Ay
where b is the mirror separation, &b = 2x/x, and

i bf-%ir.r’-i—ﬁy']. (10)

Most of the energy iz reflected from As and travels back to A,. The
radii of curvature of the reflectors are assumed very large compared to
the wavelength A, and we can therefore assume that laws for the reflection
of plane waves apply locally. Then we find that the reflected wave
leaves A. with the pattern —E"(x", '), It will arrive at A, with a certain
distribution pattern which we shall eall —an" a,” E{x, y). At this point
we have introdueed the postulate that the field patterns be reproduced,
except for the amplitude factor T af, after one complete return trip.
Again, the energy is bouneed back and leaves reflector A, with a field
distribution which ean be expressed in terms of E'(2', y') as

I 2y _ﬁi‘ Fop ot Py —ikpt
al el Bay) = o [ d @Y, A
with
p=bh— ‘,l—j (zx’ + wy'). (12)

Substituting (9) into (11) to eliminate £, then inserting the expressions
(10) and (12) for p and p', and, finally, interchanging integrals, one
obtains an integral equation I

L‘-E =Tk

z T RN, |
Ty Ty 15 {"I::I ﬂl} 1 [ -I-TIEE;IE

[ aragpG,pKGELD, 03)
Ay
with the kernel

Kir,2;u,) = f dr’ dy' exp (fg{.t:'ii + ) + y'(y + ﬂ"ﬂ). (14)

Asg

This is the fundamental integral equation that yields as its solution
the modes of our system and their diffraction losses. The kernel Kz, E;
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y, §) depends on the shape and size of reflector A, and will be evaluated

for some special cases in the following sections.

Integral equations for the modes of asymmetric nonconfocal systems
can be derived on the basis of arguments similar to the ones used in
this chapter, but solutions for them are in general not available.

IV, CONFOCAL RESONATOHRS WITH UNEQUAL S5QUARE AND RECTANGULAR
APERTURES

In this section a confocal resonator with two reflectors of finite but
unequal size is considered. Let reflector A, extend from —a, to 4a, in
the x direetion and from —A, to 4+A4; in the y direction as shown in
Fig. 3(n). Reflector A, iz chosen to be of a rectangular shape 2a, by
24, correspondingly.

For the above reflector dimensions, the kernel of integral equation
(13) takes the form

Kz, 9,9 = ‘[:1 dx’ [:rfy' exp (1' %[Ir[:':-l—f] + y'(!f-l—iﬂl). (15)
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Fig. 3 — (n) Reflectors with rectangular aperture; (b} reflector 4 : blocked in
center,



GENERALIZED CONFOUAL HESONATOR THEORY 1355

These integrals can be evaluated nnul}rtiml]y and the kernel rewritten as

-ih’ sin - -::;{.:r + £) sin A:{y + i)

F Ilz + ) Lr + §)

Assume that the field pattern of a mode can be written in the form
El(x,y) = E,falz)g.{y), (17)

with E, a constant amplitude factor, f{x) a function of x only, and
g(y) o function of y only. Under these conditions integral equation (13)
can he rearranged as

K(z,%;4,9) = (16)

y Ein ¥ aslx + %)

T 32 = g TR0 P b
Tm Ty fﬂ[-r}ﬂ'u{y} D v al d'E-r"{:'} l'{:’ + j"'

i (18)
Al sin E .."l:{y' -l— fl'}
at 479.(9) =y + §)

An integral relation satisfied by the angular prolate spheroidal wave
functions S.(e, 8) is®

gin e{f — &)

x(t — &)

where Ro.Mie, 1) is the radial prolate spheroidal wave function of
nth order. Beeause

2e ) i
-: {Hﬂn“ {E; Il]]:.r S‘"{EI E} T ' ils Sﬂﬂ{'ﬂr H}l {.IQ}

i"'|'||.|.,|rl-.| 5| = |: _ ] .I ) lh:;lml:-c1 _H}1 {m}
it holds that
¥ +1
2 [ Roc® (e, DT Swnle, ) = (=1)* [ asSeEH 8 g 00 (1)
T 1 x(t + &)

We ean compare this relation with integral equation (18) (with ¢ =
(k/byaas: and € = (k/6)A,4:) and conclude that the field patterns of
the TEM .., mode of the system are

on Ay: Elx,y) = Som ( ) ('L'T y)
4 A EE T I - I-_ y _y_
on As: E(x,y) - (ﬂ, EE) Son (ﬂ-‘, -'h) i

As pointed out in Boyd and Gordon’s work, the prolate spheroidal

(22)
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wave functions Se. can be approximated by orthogonal Hermite fune-
tions if the apertures are large enough. This enables one to derive an
approximate formula for the dimensions of the “spot” of the funda-
mental, which indicates the location where the field of this mode has
decreased by a factor ¢ with respect to its maximum. For rectangular
reflectors these quantities will, in general, be different for the r and the
y directions. One obtains

on reflector A, : I = ::—: 1 E&: tfa = j—l /'/E}-ti
T
T8 [Tt as)
on reflector A, : x, = 1/{1 _1/ Yo = "'—:3 /l/E
1 Ay T
Note that
:{:lx'i' - y-yl-" ay .w_: T TJ {24}

which agrees with (7). From the above we see that, compared to a
confoeal resonator with equal apertures, the patterns of all modes on
reflector 4, are now magnified by a factor 4/a;/a, in x direction and
a factor 4/A4,/A; in y direction, if a; > az and 4, > A, . The patterns
on reflector As are compressed correspondingly.

The eenter of the reflector svstem is no longer the position of maxi-
mum energy density. The position of maximum energy density will,
in general, be different for the coneentration in the z direction as com-
pared to the concentration in the y direction. One computes displace-
ments D, and D, of the positions of maximum econcentration from the
center in the direction of the smaller reflector:

q'.r_ﬂf — ﬂ!11‘ D h :"Ig - ‘l1
2 as 4+ a®’ *T B AR + A

Comparison of (18) and (21) also yields the eigenvalues of the integral
equation (20):

D, = (25)

Eﬂidﬂt n _{_1}H+Iﬂ =ikh "l'ﬂ.‘:l lRDh{"{[!, I.:] -I'fnr;":ll:cr 1:]1! {Eﬁ_}

This shows that
{#) the resonance condition

4{=2q+(1+m+n} (27)
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is not changed by making the apertures of the reflectors of a confoeal
system unequal, and

(#1) the diffraction losses of a confoeal system with unequal reflector
apertures of dimensions a; , 4, , a:, and 4, are equal to the diffraction
losses of a confoeal system with egual aperture dimensions a,, A, if
a, = mas and A, = A4,

V., CONFIMAL RESONATOR WITH ONE REFLECTOR PARTIALLY BLOCKED

In this section we would like to quickly sketch the analytical treatment
of a eonfoecal reflector system in which one reflector — in our ecase
Ay —is blacked out in the center as shown in Fig. 3(b). The other
reflector dimensions are assumed to be the same as in the previous
section. The effective shape of reflector 4, 18 now that of two rectangles
of width Aa, extending from ¥’ = —a; — (Aa/2) to —ay + (Aa/2),
and from ' = a: — (Aa/2) to as + (Aa/2). If we insert the corre-
sponding limits into (14}, we obtain the kernel

sb* . | kAa i
K(z,&; 49 = TEEIET) EIH[E (z + I]]

[.im: (z + z}] Hin[’;ﬁ;mw + z?}l:l

for the integral equation describing the system.

For very small reflector width Aa << b)/a, the kernel is given withi
good approximation by

4baa ka
K(x, 2, u,) _m“ﬂﬂ 2{3"!‘3} ‘5“‘- {J""ﬁ'} (29)

With this kernel, integral equation (13) can be separated into one
equation containing functions of r and one containing funetions of y
only, as in the previous section. While the latter is the same as the
integral equation treated in SBection IV, the equation for f(x) is of the
form

(28)

4y

yf(z) = E’;‘mi dF J{E) rm;%m (x + ). (30)

L |

Applying standard proeedures, this integral equation can be solved
elementarily. The solutions are

Jz) = mskTmz, (31)
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with the eigenvalue

b . _k
¥ = 2Aa (ﬂ| + S, sin 2 A r]-;ﬂg) L (32)
and
flx) = ﬁinj%::, (33)

with the corresponding eigenvalue
I -
v = —2Aa (m T Bkst sin 5~ u.r::) i (34)

The eigenvalues, of eourse, determine the diffraction losses and the
resonance conditions for the reproducing patterns, as in the previous
section, The resonance formula is

? =2%4+14n (35)
for the even cosine-function, and
?=Eg+2+u (36)

for the odd sine-function.

One should note that the field distribution on reflector A, is simply
the two-slit diffraction pattern one would expect from eoherent excita-
tion of the two narrow reflectors compriging A, .

V1. RESONATOHRS WITH REFLECTORS OF UNEQUAL CURYVATURE

To investigate resonator systems with concave reflectors of unequal
radii of eurvature, let us return to the consideration of a lossless system.
From this model one can obtain information on spot sizes and resonance
conditions. Diffraction losses will be estimated using the same approxi-
mation previously used by Boyd and Gordon for the nonconfoeal resona-
tor of equal eurvature,

6.1 Surfaces of Constani Phase

Let reflector A, have a radius of curvature b, and reflector A, a
radius of by . We shall base our argument on Boyd and Gordon's picture
of surfaces of constant phase (Fig. 2), which we have already used in
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Section 11 In a set of surfaces, characterized by the confocal parameter
b, reflector A; can be placed at the distances +d,/2 from the center,
and A at 4=ds/2 correspondingly. These distances can be computed from
{(2) as

d|_=li|:|: ﬁi —bET

dj s Eilg + ‘\.-"bgt'—' b,

With given concave reflectors, therefore, four different resonator systems
can be found which fit this particular set of surfaces of constant phase.
The four different reflector separations d = {d, 4+ di) are given by

2d = by 4 b £ b? — B2 £ Vbd — b (38)

To obtain various other resonator systems the parameter b can be
varied. But the range of this variation is restricted, since only real
valued distanees have physical meaning in this context. If we assume
that b = by , it follows from (38) that b can be varied in the range from
0 to b . One can thus obtain reflector separations d in the range from
0 to by and from b to by + b as shown in Fig. 4. No information on
resonators with reflector separations in the range from b, to by can be
obtained. It is of interest that the confoeal system for reflectors of
unequal curvature, with f = $(8 4+ bs), is just in this “unstable region."

Let us restrict our diseussion to systems of given by, b, and o in the
range covered by the picture of surfaces of constant phase. We ecan

(37 )
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Fig. 4 — Spol sizes and high- and low-loss regions for a resonator with reflec-
tors of unequal curvature and variable spacing.
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inquire into the spot gizes wy on A, and w; on A;. Combining (1), (4),
(37), and (38) we obtain the relations

ih 1 I by by — d .
(uT.) “hh—d !
1 _ (WY bud
(wnes)” = (;_) m (40)

It also follows that the maximum concentration of energy oceurs
at the distanee

T (41)

from reflector A, , and at
2 b+ b—2d

(42)

from A .

In Fig. 4 we have shown for a special ease how the spot sizes wy, and
ws vary as a funetion of the reflector spacing d. In thiz figure the spot
size on each reflector is normalized in terms of w, = V) /7 and w,. =
4/ boh/w. These are the spot sizes at the reflectors of equal-radii con-
focal resonators with radii of b, and b respectively.

Note that as d approaches by | the spot size w, on As approaches zero,
while the spot size wy on Ay increases beyvond limit. The corresponding
effect oceurs if d approaches bs from above. It should be remembered
that the information obtained here can be applied usefully only so long
as the spot sizes are somewhat smaller than the corresponding reflector

dimensions.
The diffraction losses of the nonconfoeal resonator of equal radii of

eurvature and aperture were previously estimated by Boyd and Gordon
on the assumption that the diffraction loss is equal to that of its equiva-
lent confocal resonator with reflector dimensions scaled up by the ratio
of their spot sizes.

IF'or the nonconfoeal resonator of unequal radii of curvature and
aquare apertures of sides 2a, and 2a. respectively, the equivalent Fresnel
numbers at reflectors 4, and 4., which determine the diffraction losses
at each reflector, are obtained from Boyd and Gordon's equation (29) as

(.- 54O
(.- EE8-GT

(43)
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where o) and ds are determined by (41) and (42), The diffraction loss
atl each reflector is then obtainable from Fig. 3 of Boyd and Gordon as
arp and aps .

The resonator € is given by

Q=— (44)
where

o = %fﬂ'm + ape) + o [43:|

and e, represents the reflection loss per bounce at a reflector plus the
single-pass scattering and absorption loss between the reflectors.

Omn the basis of this estimate, one concludes that the diffraction losses
increase sharply if the separation d approaches an “unstable’” region.
No gimilar estimate of diffraction losses is available for the “unstable”
regions, However, a ray optical analysis which we present in the next
section shows the divergent nature of “unstable’ resonator systems.
This indicates relatively high diffraction losses.

With results obtained here and the help of Boyd and Gordon's equa-
tion (20), the resonance condition for the resonator with reflectors of
different curvature can be computed as

24 1 ot 4/ d d
.h-_g-q-;{l-t—m-i-n]ms /V(I_E)(I_b_e)" (446)

To compare this with Boyd and Gordon’s resonance formula for reso-
nators with equal curvature &, we rewrite their equation (31) in terms
of d and b':

@ _ + -1-{1 + m 4+ n) cos”’ (L - E) (47)
A T b
We have found this to be a very convenient form in which to rewrite
their resonance formula (31, But due to well known relations between
the trigonometrie functions, various other formulations are possible,
Une of these formulations was given by J. It Pierce.®

A half noneonfoeal resonator may be formed by a plane reflector and
o spherieal reflector of radius of corvature b, and spacing o between the
reflectors with o < by < =, The resonant condition may be obtained
from (46) by letting Iy — =, The result 15 given by

E_ﬂr= -|-—;{l-|—m-|—n} mm_'(l Ed)

© il (48)
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6.2 Equivalent Sequence of Lenses

Let us eall the regions by + b > d > bhand 0 < d < b, “stable”
or “low loss,” and the regions d > by 4+ by and by < d < by “unstable”
or “high loss.” We can understand these stable and unstable regions
of a resonator system with refleetors of unequal eurvature from another
point of view if we replace the resonator by an equivalent sequence of
lenses. These lenses are spaced at distances d and have focal lengths of
fi = b,/2 and fi = by/2 respectively. Lens systems of this type have
been used in periodic foeusing of long electron beams and instabilities
have been observed.

Stability investigations of sequences of lenses of equal focal length are
readily available.” These systems are stable if

0 < # < 4, (49)

where L is the lens spacing and f the foeal length.
A pair of lenses of foeal lengths f, and fi spaced at the distance o ecan
be replaced by an equivalent optical system® of a focal length f given by

AN L I
f A +.ft fifs’ (50)
The system's principal planes are found to be spaced at distanees I, =
d( f/f:) and hy = d(f/f;) from the corresponding lenses (sec Fig. 5).
If we substitute such a thick lens for each pair of unequal lenses of
our system, we obtain a sequence of equal optical systems of foeal
length f. If, furthermore, we define as their “effective’ spacing

L=d+h+h, (51)
the arguments of Pieree’s treatment” are applieable to our ease,

- ] e ] ———— ] - ——— - -

| | | |
| | | LA f
RO
hi ]*_ '_'.'I ha e L hlL"— —-)"| ha pe- i
st AR

f

g —

Fig. 5 — Sequence of lenses of alternating focal length
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Combining equations we obtain

L_,J]2,2 d
T_d{fl-l-f: .fif!}+ o

From (49) and (32) one ean show that the boundaries of the stable re-

gions are given by
d d
(E-1)(E-1)sn (53)

e TR

These relations define the stable and unstable regions in agreement with
the preceding discussion, but they are also valid for negative values of
b, and bs . If one allows for convex reflectors, one can also obtain this
somewhat generalized result from the picture of surfaces of constant
phase.

and

6.3 Stability Diagram

A. @, Fox and T. Li have suggested a two-dimensional diagram of
the stable and unstable regions which is very instruetive, Several choices
of coordinates are possible, In Fig. 6 we have plotted /by and d/b. as
coordinates. In this diagram the boundary lines described by (54) ap-
pear as straight lines, and the eurve represented by (53) as a hyper-
bola, as shown. For conforal systems, ie., systems with coinciding
reflector foci, we have 2d = by + by, which may be written:

if 1 d 1 1 L
(E_i)(ﬁ_é)_i‘ (55)

In our diagram, therefore, these systems are represented by points on
another hyperbola and fall within the high-loss region. A transition from
a “stable” to an “unstable” region means an extremely sharp increase
of diffraction losses for reasonably large Fresnel numbers.

The vonfoeal system with reflectors of equal curvature is represented
by a rather singular point in our diagram. We see that certain deviations
from the ideal dimensions d = b, = bs will greatly increase the system
losses. This should be taken into aceount when designing maser reso-
nators or optieal transmission systems, and it may be advisable to
choose points of operation at a safe distance from the unstable region.
The degenerate frequency charaeteristics of the confocal system can be
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Fig. i — Two-dimensional diagram of stable and unstable regions.

obtained, if desired, by using a coneave reflector (b = 2d) and a flat
one (b = o« ) spaced at the distance d = by/2. This system is in o sta-
ble region.

6.4 Fquivalent Syslems

One may ask whether operation in one of the two low-loss regions is
to be preferred to the other. We have found that the two regions are
absolutely equivalent as far ag diffraction losses, spot sizes, and resonance
conditions are concerned. For a given reflector spacing o, we can find
a corresponding pair of resonator systems, one operating in the lower
stable region with reflector radii by, and by, < o, and one in the upper
region with reflector radii by and ry > d. Spot sizes, diffraction losses,
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and frequency response of both systems are the same if the conditions

1 1 2
S [ (1]
anid (56)
1 1 2
g~y

hold, In this ense the mode patterns of one resonator correspond to the
complex conjugates of the mode patterns of the other.

Some of these conelusions can be drawn on the basis of (39), (40), and
(46) alone. To prove the correspondence of diffraction losses and maode
patterns, however, the integral equations of the resonator systems have
to be investigated using a procedure suggested by T. Li for the ana-
lysis of noneonfocal resonators with equal reflectors. Examination of
the integral equations shows that unstable systems also are equiva-
lent under the eonditions given above.

VII, SUMMARY

The effects of unequal reflector apertures on the modes of a confoeal
resonator have been diseussed. It was found that unequal apertures at
ihe two reflectors have a large effeet in determining the mode patterns,
The resonant eondition, however, i not changed by an asymmetry of
this kind. Boyd and Gordon’s picture of surfaces of constant phase does
not contain nencenfocal systems (of equal eurvature) with similar asym-
metries in gpot size. This is because lossless nonconfocal resonators are
not, except for special cases, degenerate in frequency. This shows that
the mode patterns of nonconfocal systems are not significantly changed
if the reflectors are of unequal size but are larger than the spot size at
the reflectors,

For resonators formed of two reflectors of unequal eurvature, unstable
regions of high loss are shown to exist in that an equivalent sequence of
Jenses beeomes defoeusing. The true eonfoeal resonator is on the border
of such unstable regions, though in fact it has minimum diffraction
losses. Unfortunate deviations from the dimensions of the ideal eonfocal
resonator ean produce a system of high loss. The implications for the
design of resonators for gaseous or solid optical masers or of long distance
optieal transmission systems are that the “equal” radii of curvature
should be made slightly larger (or smaller) than the reflector spacing.
One can also choose to simulate a confocal resonator with one eurved
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and one flat reflector spaced at half the radius of curvature. This system
is stable,
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APPENIDIX

Cylindrical Coordinates

In this paper and in the paper of Boyd and Gordon! the mathematical
analyses were based on a system of Cartesian coordinates. Resonators
with reflectors of square or rectangular aperture have been investigated.
For large apertures the authors were able to obtain approximations for
the properties of the resonator modes on which many arguments of this
paper are based. They showed that the mode patterns are deseribable
in terms of Hermite-Gaussian functions,

IFor certain classes of problems, for instance if it is desired to obtain
diffraction losses for circular apertures, it is preferable to use a eylindrieal
system of coordinates. Approximate solutions for the modes of resona-
tors with reflectors of large circular apertures can be obtained from the
work of Goubau and Schwering.? The results of these authors are pre-
gented in terms of hybrid waves, but by snitably combining two hybrid
waves one obtains modes which for our purposes ean be regarded as
linearly polarized TEM waves. Goubau and Schwering show that the
mode patterns are deseribable in terms of associated Laguerre-Gaussian
functions. Fox and Li* have given asymptotic solutions for the mode pat-
terns in terms of Sonine's polynomials, which ean be shown to be equiva-

lent to the above results,
One can obtain asymptotic solutions for the modes of the confoeal

resonator in eylindrical eoordinates by making a sealar wave approxima-
tion and using Huygens' principle. This leads to an integral equation
for the modes of the confoeal resonator with reflector spacing and eurva-
ture b in eylindrical coordinates, which has been given in Appendix C
of Fox and Li? For an infinitely large aperture their result may be
written in the form

x| vt R.(t)) =F:-:p[-z'kb+i_:(£ + ]}J]
I (57)
- fu VER() -Jo(t) T Y,
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where § = #+/(k/b) and r is the radial distance in the plane of the
aperture. As the solution of the above equation the function Rpi(i)
deseribes the radial dependence of the modes and the angular depend-
ence ig e, The resonance condition for the individual modes is ob-
tained from the eigenvalue x of (57).

From Magnus and Oberhettinger one observes that the associated
Laguerre-Gaussian function is self-reciprocal under the Hankel trans-
formation. Thus the solution of (57) is given by

Ro(l) = L8 - ™" (58)

where L,'(t) is the associated Laguerre polynomial. The associated
cigenvalue is found to be

X =mp[—ia~b+-a:5{2p+t+l}] (59)

which leads to the resonance condition for the confoeal resonator with
i as the longitudinal mode number:
D=2ttt (60)
The field distribution of the modes inside and outside the confocal
resonator can be derived from the mode patterns on the reflectors hy
using Huygens' prineiple, az in Boyd and Gordon's paper. The field
distribution can of course be obtained from Goubau and Schwering's
work. Comparing Goubau and Schwering’s equation (5a) with Boyd
and Gordon'’s equation (20), one finds that the surfaces of constant
phase of a Cartesian TEM .., mode are identical with the surfaces of
constant phase of a eylindrical TEM ., mode if

m+n = 2p + L. (Gl

The fields and therefore the spot size of the fundamental TEMa,
Cartesian mode and the fields of the fundamental eylindrical mode
are identical throughout the resonator,

The resonance conditions and spot sizes of the modes of resonators
with large eircular apertures can therefore be deduced for noneonfocal
resonators and resonators with reflectors of unequal radii of curvature,
in exactly the same fashion as has been done for square apertures.

We do not propose to present this derivation again, but list as a
reference some characterigtic properties of the modes of resonators with
large vireular apertures, together with properties of the modes of reso-
nators with large square apertures. It may be worth repeating that an
aperture is considered “large” for a particular mode if the mode's
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energy, as caleulated from the approximations below, is well concen-
trated within the aperture. Ounly under this condition are the mode's
characteristies rensonably well deseribed by the formulae listed below.

Al Approrvimations for Resonators with Large Cireular Aperiures.

A system of cylindrical coordinates (r, ¢, z) 15 used, where the z-axis
coincides with the resonator's optical axis. The corresponding modes are

designated TEM 4, .

A l.l Noneonfocal Resonalors with Reflectors of Equal Radius of
Curvalure U and a Refleclor Spacing .

At the reflectors the spot size w,” of the fundamental TEMg, mode

is given by
: W da "
Wy V; (m) . '[h..:]

The relative field distribution {mode pattern) at the reflectors (2 =
+d/2) of o TEM,;, mode is given by

P ‘ ' 3 ’
b w.'lﬂ}'fl—?‘.{’! 2 . & Vﬁ’) Ly (2 1_:: &)‘!-'h’”"' “eoslp  (63)

where L, are the associated Laguerre polynomials. The mode resonates
at a wavelength given by

2d ! d :
T=u+£[£p+£+1}msl(l'~p)- (64)

A 1.2 Resonators with Reflectors of Unequal Radii of Curvalure b,
and by and a Reflector Spacing d.

The spots of the fundamental mode are in general of different size on
the two reflectors. We have a spot size wy on the reflector with radius of
curvature b, and viee versa. In (39) and (40) these gquantities have
been expressed in terms of A, o, by, and bs . The TEM i, mode patterns
on the reflectors are obtained from equation (63) by substituting for
w,’ the corresponding 1wy or ws .

The resonance condition is

2 g+ e+ 1+ D) cos” 1/(1-5)(1-&)- (65)
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A2 Approcimations for Resonalors with Large Square Apertures.

A system of Cartesian coordinates (r, g, z) is used with the z-axis
eoinciding with the resonator axis. The corresponding modes are desig:
nated TEM .., .

A2 Nonconfocal Resonalors of Kqual Radius of Curvalure ' and a
Reflector Spacing d.

The spot size w,” of the fundamental mode at the reflectors is again
given by (62). The mode pattern of a TEM ., mode at the reflectors
is given by

Ak y TAN i Ll
"ii[:_'r: ﬂl':l:da"rg.:l N Hm (‘E*\v’i-a) 'H.-, .‘Iplv’::)qg ¥ im, 2 [_E]'{!I.:'
-ﬂ'u w.l' w-
where the H,, are the Hermitian polynomials, The resonance condition
for this mode is given by (47 ).

A 22 Resonalors with Reflectors of Unequal Radii of Curvature by and
b and o Reflecior Spacing d.

The spot sizes wy and we of the fundamental mode at the two reflee-
tors are the same as those discussed in Seetion A.1.2. The mode patterns
of the TIEM ,,, mode at the corresponding reflectors are obtained by
substituting wy or ws for w,” in (66). The resonance econdition is given
by (46).
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