Lined Waveguide*

By H. G. UNGER

(Manuseript received October 19, 1961)

The existing approximale analysis of wave propagation in lined wave-
guide s, under practical conditions, limited to linings thinner than 0.025
per cent of the waveguide diameter, A more exact analysis is presented
here for the straight and curved waveguide and for all practical linings.
In the case of anisolropic or sandwiched linings, the boundary value problem
1§ formulated using wall impedances. The single isotropic lining is taken
as an example to prove this formulation useful for typical cases.

The exact analysis shows that neither the thickness nor the permittivity
of the lining can increase the phase difference between TM, and TEy
beyond a certain {imit. The curvature coupling between these two waves is
enhanced sltightly by the lining.

I. INTRODUCTION

Round waveguide with dielectric lining shows promise as a communi-
cation medium." The circular electric wave loss in perfectly straight
and round metallic waveguide decreases steadily with frequency. Any
deformations of the cross section or curvature of the guide axis degrade
these ideal transmission characteristies.

The TM,, waves in particular are coupled by curvature to TEy, ,
and since they propagate with nearly equal phase velocity, there will
be large mode conversion. A dielectric lining close to the wall changes
the TM,, waves appreciably with almost no change to TEy, . The phase
velocities are now different and, despite curvature coupling, mode con-
version stays small.

When the lining is made lossy it will serve still another purpose.’
Circular electric wave loss is increased only very little, while all other
waves suffer an effective dielectric loss. This mode filtering loss will
reduce the degrading effects of mode conversion and reconversion.

* This work was performed under a Letter Contract with Bell Telephone Labo-
ratories at the Institut fuer Hoechstfrequenztechnik, Technische Hochschule
Braunschweig.
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To serve both purposes best, the lining should he made anisotropic
or sandwiched from different materials.” The circular electric wave loss
will then remain very low, yet all other waves will suffer high loss and
also curvature loss will stay small.

Wave propagation in straight and curved lined waveguide has been
analyzed elsewhere."" Likewise, imperfections in the lining and cross-
sectional deformations have been calculated.”’ However, the lining was
always assumed to be very thin, and so far only a first-order approxi-
mation has been found.

On the other hand, it has been shown both theoretically and experi-
mentally that these approximations do not in general hold for any
practical linings." Linings which are designed optimally change wave
propagation much more than could be described by a first-order ap-
proximation.

An analysis of wave propagation in lined waveguide will be presented
here which is sufficiently general and accurate to hold for all practical
cases. Sandwiched and anisotropic linings will also be considered.

Cireular electric wave transmission is most strongly degraded in curved
waveguide. Therefore, the lined waveguide will be assumed to have
curvature. Cross-sectional deformations and imperfections of the
lining will be analyzed with corresponding accuracy in another paper.’

1I. NORMAL MODE FIELDS

Normal modes of straight round waveguide with a single isotropic
lining have been analyzed before." To adapt this analysis to an investi-

Fig. 1 — Lined waveguide with curvature.
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gation of bends in lined waveguide and of waveguides with an irregu-
lar lining, the boundary value problem will be repeated and generalized
here.

The waveguide structure to be considered is shown in Fig. 1. The
dielectric lining will later on be assumed to be heterogeneous or aniso-
tropic or irregular. At present, however, a single uniform and homo-
geneous lining is assumed.

The electromagnetic field in the waveguide can be derived from two
sets of scalar functions T, and T, given by:

T. = N, Jpy(x.r) sin po
for 0 <r<a (1)
T‘rr, = Nn Jp(x,,r) CO8s p(p

and

2 (2) n
T Xn . (Xﬂ ) - ('H (x" )
Tri = Nrix?allp(llﬂ) H (q)(""e) —cH (1](]‘ e) sin Py

for a <r<b (2)

2 2) (n
_ Xn . (XR r) - C [I (Xn r)
= N, o J,,(k,.) H B (ht) — H,D (k) Cos ppo.

The T functions satisfy the wave equation:

= ! e 01 e a7 .2 .
VT = €12 [au ({1 al() + BU (02 av)J = X T (6)

in a general orthogonal curvilinear coordinate-system (w,p,w), in which
the element of length is:

ds’ = edu’ + eldv® + edw’, (4)

The curved waveguide may be deseribed in these coordinates when,
according to IFig, 1:

w =r, Vo=, w =z (5)
e =1, e =, e =14 ¢ (6)

where
£ = cose. (7)

I
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The field components are written in terms of the field functions (1) and

(2)

aT. d aT,.’]
e,0U " eadv

r
B = V. [£ o «'ﬂ‘_]
n €90V elau

E, = ZVn[

aT h, aT,’ ®
H. = _EI" [egav = Iz elau] ¢
aT, htaT,
H, = EI I:e]au +d 2 esdv ]e'
Maxwell’s equations are:

1

— l:-— (esHw) — — (t’zr ):| —Jw.uuHu (9)
€9€3 d

ad .

! [— (efin) — — (t'aL ] —jopeH (10)
£3¢1 w

1

|: (esE,) — ]= — jwpoH (11)
ey | 0w

1 E(("H)-‘—((’H)—= jweeply (12)
Cat3 BU 3w Jw 241y _j J 044 u

1 [a 1. .
T[ (eH,) — — ((‘.sH ) = jueeld, (13)
1 d a ) , .
ge;[au (’zH ) al) (LlHn)— = jwee.}Lw . (14)

4o and e are permeability and permittivity of free space. e is the rela-
tive permittivity of the respective cross-sectional part of the waveguide.

Substituting from (8) into (11) and (14) and taking advantage of
(3) the longitudinal field components are obtained:

H, = jweeuz"an dn % T,

(15)
E, —jw#gEIe Xe .

where k = w\/eeoo is the intrinsic propagation constant of the medium
in a particular cross-sectional part of the guide. ¢ and & have constant
but different values for the different cross-sectional parts of the guide.
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In (8), this dependence on the cross-sectional part of the guide is
not only true for e and k, but until we learn more, also for d, .

The quantities d, , ¢, ¢’ and the separation constants x, and x," must
be chosen so that the boundary conditions of the lined waveguide are
satisfied.

These boundary conditions are, at the surface of the lining:

E  =E,f (16)
H,' =H,S (17)
ES =Ef (18)
H'=HS (19)
and at the metal surface
E,=0 (20)
E, =0. (21)

The superscrips 7 and e indicate the internal and external field com-
ponents at the surface of the lining.
To satisty (20):

. _ HP (k") (22)
. Hy(l)(pkne) -
where
b
= 9¢
p= (23)
and
Il‘fi = x"ﬂ'
. (24)
'r\'ul = Xnea-
To satisfy (21)
o H (k) (25)

- H,Y(pkyr)

The prime at the Bessel functions denotes differentiation with respect
to the argument.

The condition of %, being continuous across the surface of the lining

is satisfied by virtue of the formulation of the T-functions in (1) and
(2). To satisfy (17)

d,' = d,”.



750 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1962

d, is therefore independent of the cross-sectional area of the guide and
needs no superscript.
To satisfy (18)

et . @ ey _ S W (e
1 bk I:J,,(l\n)_kn H,” (k') = ¢'H, (kn)]. (26)

a. " pai(e — 1) LTp(kn)  kut H,®(ke) — H,W (ko)

The remaining condition (19) leads to the following ( characteristic)
equation of the lined waveguide:
[J,,'(kn) _ha HP (k) — c'H,,‘”'(kn“):I
J'P(k”) ky? HF(Z)(]‘:ne) - C’Hp“)(]ﬂ-nﬂ)
_ [J,,’(rc,.) _ ke Hy () — cH,,“"(kne)} (27)
J o (ki) kot H® (ko) — eHp®W (k)
) hn2a2k20"2

kl’i2]."l'le.‘ ’

=p'le — 1)
The characteristic equation (27), together with

kn2 (W250F0 - hll2)a2

Il

(28)

k,,"ﬂ = (wzeen,un - hHa

determines the separation constants k, and k.

The transverse field components of any two different modes are or-
thogonal to each other in that’

1
VnIm

f (B X Hin) dS
8
aT, T\ (0T b, aT..
B Le I:(elau + egav) (e;&u + on a2 egau) (29)

aT aT.\ (8T Fn” OT'
9in _ dn m m.o I,-,, -1 m dS — anm.
+ (egav elau) (egav O e e10u
The integration is to be extended over the entire cross section of the
guide. The quantity 8,. is the Kronecker delta. To satisfy (29) for
n = m requires N, to have a certain value, which is to be determined
from (29).

III. GENERALIZED TELEGRAPHIST'S EQUATIONS FOR CURVED WAVEGUIDE

All quantities in (8) and (15) have now been determined except the
current and voltage coefficients 7, and V, . To find relations for them,
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(8) is substituted for the field components into Maxwell’s equations.
Then

aT, hatoT,'\ .
- g, i %im ) ¢ times (9
“ (8261,' n T eldu) ¢ times (9)
is added to
AT, ha'oT.\ .
e (elau + d,, = egav) e times (10)

and the result is integrated over the cross section. Using the orthonor-
mality condition (29), the wave equation (3), and the boundary con-
ditions (16), (19), and (20), one obtains:

WV | he' il a
(d‘w + J ”E Im = JW,U(]EIH {f E x ‘Tul m db
2| 0T hEaT.\ [aT BT
— £ "o d,, fon OLn mo dm o -
fsE( [(ezav 2 (,_lau) (ezav 2 elﬂu—) (30)

T, R aT.\ (8T, ho' 0Ty
+ (01511’. + d,, .l." *;'8”) ((’16'& + dm F 200 )] dS}

v v !
—ey (6'1’,,, + d, ‘”—m) times (12)
eu e2dv

Similarly

is added to

—e3 (6T,,, d,, aT”') times (13)
ead 0

and the result is integrated over the cross section:

{E.I_.m + JWE[)V," = ]OJEUHVH {f EE d;,dm X Xm T Tm dS
aT, _ , T\ (7w aT,.
- - 'r = Um 1
f [(e,av clau-) (egav d elau) (31)

aT ar.\ (T AT
n d” n m d d
+ (elau. + egan) (elau, + e;ﬂv)] S}
Equations (30) and (31) are the generalized telegraphist’s equations
for the curved waveguide with a dielectric lining,.
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Introducing traveling waves

V'm = '\/K;(am + bm)

[ o= —L ( b (32)
m o '\/K;; Ay — Om
with
K, = Im
weg

the more convenient form in terms of amplitudes of forward (a..) and
backward (b,) traveling waves is obtained.

daw | . . + -

dw + Jh"’ﬂa'm - J?(Cmu ay + Cmn bn)

db (33)
“Um - . + _

dw Jh'mbm - JE(CWH bn + Conn an) .

The coupling coefficients in (33) are

ES
Cmn

Wi o€ f [T h.'aT ’) (BT,, hy' 8T )
= - “—ﬂ du Y . —_l m l -
+ 2\/ hohy Js e [(elau + k2 eqdv 10U +d k% eq00
aT,, b ot (a T k' aT,,.’)
T (egau d. 2 edu ) €90 dm K edu 8

Vel [ g, [(GT" + d, aT") (35' +d aT‘") (34)
S

219U exdv / \ewdu ™ esdv

aT., aT,\ (8T, _ , oT.
+ (Eﬁv d cﬁ) (egav o e )} s

w” oo f 2 X X
e 7.7, dS
W/ A

" 2 2
+ V'hah, f te dd, XX 1,1, dS.
2 s k2

To analyze circular electric wave propagation, it is sufficient to con-
sider only coupling between circular electric and other waves. Let m
denote the TE,, wave; then

Tw=20
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and (34) reduces to

N dh arT, hngaT;) arT,.’
Cimn = 4+ 2‘\/’],”1}]; 3 EE ( di"

e20 R e ) e
| — [ aT, aT,,’) arT,’ N
- b, Ao —d, —= ds !
+ 2 Vhah, d [ s fe (e-gav edu ) edu (35)
d,

O S ds].
W o€ VS

To find the z-dependence of the wave-amplitudes a,, and b, for cer-
tain initial conditions, requires the solution of the generalized tele-
graphist’s equations (33).

They are a system of simultaneous first-order and linear differential
equations and can be solved by standard methods. From this point of
view, (33) with (35) and all the preceding definitions represent the
formal solution to propagation of circular electric waves in round wave-
guide with a single uniform lining. But this formal solution is still to be
reduced to a practical form accessible for numerical evaluation. Also,
heterogeneous or anisotropic linings have yet to be considered.

1IV. A FIELD APPROXIMATION IN THE LINING

Before proceeding any further, an approximation will be made, which
is justified for all practical linings in round waveguide for circular elec-
tric wave transmission. In all practical cases, the lining is thin compared
to the radius of the guide

p— 1l=5<«1. (36)

[urthermore, it can be seen from (35) that there is only coupling be-
tween TE,,, waves and waves of first circumferential order, i.e. p = 1.
For these waves it may be safely assumed that

P K x,fzr'2 (37)
for all
a<r<b

within the lining, since | x,'r | 2 | k" | and, according to (28),

kS = kad [e - hk_]

Under conditions (36) and (37), the wave functions (2) for the lin-
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ing may be simplified, by replacing the Hankel-functions by their
asymptotic expressions. The result is:

L2 sin|lp — :—; k.S
T, = N, k"n J (k) m sin pe |
(38)
r e
) k2 cos\p — kn
Tn = Nn k"eﬂ Jp(tll'n) cos (p — l)r’c"e CcOos p(p.

The characteristic equation may now also be simplified to:
. hM*a
(yn - i tan & ]\';rc) (yn + £ cot & kr!‘_) =P (E - 1)2 Lf (39)
knL kne kn
where

gy (kn)

Yn = r’\‘,,.]p(k") . (40)

Likewise, using (39) and the simplified form of (26), the factor d, may
be written:

Tk, €
dn = m ]i— ('Otu 5 flu + Yn) - (41)

The orthonormality condition (29) determines the normalization
factor N, . Using the asymptotic expressions (38) for the field functions
within the lining, the integration in (29) results in:

gankuﬂJp2(kﬁ) {(1 + dn 2h?*2) (1 - + ’\ﬂ Jrc + QJI'I)

a0 4)- ()
d” ]‘m [(] + ]l""! ! + 6]\ ]‘n (42)

ket ( 20k, 4 sin 28k, qhJ 28k, — sin 23 Ia:,,‘) _ 1
2k," sin? 8 k,* "R cos? § k,° o

Tor eircular electric waves with p = 0, the integration results in:

aN,E d ke () % [1 + k'Y + 2Ym
(43)
+

I.,,. 28k, — sin 26 k" | _ 1
. 2 cos? § ke ’
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The asymptotic expressions (38) have also been used to calculate
the coupling coefficients (35) for circular electric waves. Instead of
Y. , another abbreviation

Jl(k’n)

Y = m (44)

has been used to facilitate numerical evaluation:

i = 5l B2 NN g1 ) B (1 +

hm
Amﬂ - An" ) 1 + d“

han

2 . 2 _ Xn
td hf( 2k, 1) L+ d b 4 b [1 2 A2:|
'nF E'— - - n

2 — km2 T knz - km2 .l,',.,

P ]“nﬂ lI\‘m 'l‘nq k ¢ tan k ¢ &
. 2., B Em” = B” () K m

dnlt\ri Tm + € k"('-‘ kﬂeﬂ _ ]\,,, (l ,lfmf fﬁan kn‘ 5
(45)

o2
— du k" [1 - ;';' 2:| tan k. 6 + d, ;: tan k. )

2 .
Xn h’m "n ]"'l—'r"L
+ ﬂ,-n ﬁ [(1 + — h“ I\m ) i‘__".- _ ’.‘m(?. }1," tan fnm 6

)
2 hm h K™
+ (/ & 1 ks ) t o (—" 1)”

Equations (39) to (45) reduce the problem to as simple analytical
expressions as seems to be possible at this time. Any further simplifica-
tion would only be brought about by replacing the trigonometric func-
tions and the Bessel-functions by their Taylor series expansions for
small arguments, respectively arguments k, close to the roots of Bessel-
functions for the empty guide. Such simplification, however, would
lead to a first-order approximation for very thin lining, which has been
studied in detail elsewhere.'

The present aim is for a better approximation. Therefore, numerical
methods starting with expressions (39) through (45) will have to do
the rest.

To this end the characteristic equation (39), which in implicit form
determines the separation-constant k,, will first have to be solved.
For a lossless or low-loss lining, the relative permittivity is real or may
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be assumed real. Then all the quantities in (39) are real. An iterative
procedure for this solution has been found earlier.'

For the sake of completeness it will be repeated here using the present
symbols, Equation (39) may be written as:

L F 1
cot 8k, —2(1:1:/‘/1—&-?2—-:) (46)

2p’h, k'’ _ kaya
€ ]i""l1 k"cz '

where

F L[H(e—l) (47)

" kaYn

A value for the relative permittivity e of the lining is now specified.

For a free-space propagation constant k = 2x/\, a wave propagation
constant A, is assumed and in calculating

2 2 2 2 2
k, = ka — h,a

48
kS = ek’a’ — h)'d’ (48)

for lack of knowing the true radius of the lining, a is replaced by b,
the radius of the guide. Using (47), a first approximation for the rela-
tive thickness is found. In general, according to the two signs of the
square root in (46), there will be two such values of relative thickness
which will lead to the same propagation constant A, .

The first approximation for & is used to correct the radius a of the
lining in (47) and (48). The calculation is then repeated. Since for
small values of 8, a change in § affects the right-hand side only slightly,
this method converges rapidly.

For typical values of b/x and e the phase constants of four normal
modes have been plotted in Fig. 2.* The modes shown in Fig. 2 de-
generate into TE,; TMy; TE;: and TM;, when the lining is very thin.
Of all the modes, these four are most strongly coupled to TEy by curva-
ture. The broken lines represent first-order approximations as they
have been found earlier.' Note that the first-order approximations
hold only for extremely thin linings. In the case of the TEy wave, in
particular, the lining should be less than 0.05 per cent of the wave-
guide radius. Here the first-order approximations are of no use what-
soever. '

Note also that the TM,, phase constant does not increase as expected
from the first-order approximation. The curve levels off, and eventually

* These and most of the other numerical results have been obtained by H. P.
Kindermann.®
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a heavier lining will not change the TM;, phase. According to Iig. 3,
at higher frequencies the TM;; phase levels off at even lower values.
Also, a higher permittivity will not change these relations.

This is, of course, very unfortunate since to reduce curvature losses
the T'M;; phase should differ most from the TE,, phase.

Having solved the characteristic equation, eurvature coupling is
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e 1':4.70‘7-\ | — | |
& \\\3/& =23 | |
E'— 0.4 — — ¢ L
iz | T
Ww | |
av | | | | |
x 03—+ g i
na ‘ b
§2 X-'-T.S?-‘.‘}\ ; |
o= 02— — N—tE=44
w . €=2.5
2 | |
T ot - rﬂ»—
-
w
& \ | l
0 Il
0 02 ©04 06 O08 10 12 {4 16 1.8 20 22 24

2.6

RELATIVE THICKNESS ¢ OF LINING IN PER CENT

Fig. 3 — The phase constant of TM,, is, over a wide range, nearly independent

of & and

€.
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obtained by substituting numerical values into (45). For the TEq
characteristics first-order approximations may be substituted. Even a
very heavy lining does not change these characteristics very much. For
example, with 8 = 0.03 and ¢ = 2.5 the relative change in phase con-
stant of TEy, according to this approximation is only:

ABw

m

= 2107,

The coefficients of curvature coupling between TEy and TE;; , TMy,
and TE,; are plotted in Fig. 4. Note again that any first-order approxi-
mations hold only for extremely thin linings.

The coupling between TEy and TMy, is at first increased by the lining
and then stays almost constant. The increase in TEg-TMy; coupling
disagrees with another first-order approximation.' The present result
has to be considered correct, however, since the corresponding shielded
helix waveguide curvature coupling is about equally enhanced.’

0 I
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Fig. 4 — Coeflicient of curvature coupling in lined waveguide b/x = 4.70, ¢ =
2.5 — solid line exact; broken line is wall impedance representation.
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Curvature coupling between TEy and TE,; decreases substantially
in lined waveguide as is shown by the solid line in Fig. 4. The broken
line will be referred to later. TEy-TE;, coupling is nearly independent
of the lining.

V. A WALL IMPEDANCE REPRESENTATION

The preceding analysis of lined waveguide considers only the simplest
case, of a single isotropic and uniform lining. Yet this analysis could
only be reduced to analytical expressions which are still quite involved
and require a lot of computation for numerical evaluation. It is éven
more difficult to analyze a waveguide with a more complicated lining
by the same methods. IFurther simplifications are necessary to facilitate
the analysis of anisotropic or heterogeneous linings.

Such simplifications are brought about when the effects of the lining
are described by wall impedances which the lining presents to the
waveguide interior. Looking in radial direction, two wall impedances
may be defined which are associated with the two different polarizations
of the fields:

B, B O (49)
Zw - E ’ Zl! - }Tw . . (50)

For a mode n represented by one term n of the series expansions (8)
and (15), these wall impedances ean be expressed by the field functions
(38):

g X 1
weey ks + d, .Tih’_'q (51)
ku‘ ke"
Z, = Jw-po I:tﬂ,n ka6 — P ] (52)
Xn" drx't"'ﬂE
For circular symmetric modes p = 0 and
Zwo = 7 X" tan k,° (53)
weey
Z,,(] = _]. w_,l‘.l:] tan ]1‘,,6 5 (54)
X n

The characteristic equation can be derived with these wall impedances.
Instead of satisfying the boundary conditions (16) through (19), the
two conditions (49) and (50) will now be substituted. The ratio
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—(E,/H,) and E,/H, of the field components in the waveguide inte-
rior adjacent to the lining will be required to be equal to the wall im-
pedances Z,, and Z, presented by the lining:

E, _ 1 iy
_I'T,, = ] D hn'.! = Ly (55)
Jwep a (yn —_ dﬂ E?‘ F
E, K P . .
He ™/ oen (?’" ) =P (36)

After the factor d, has been eliminated from (55) and (56) one equa-
tion, the characteristic equation, remains:

] .z, *h,t _
GN+MLL)@M+JMM)=EFP. (57)
This equation is still exact to the same order as are the wall impedances.
If expressions like (51) and (52) for the wall impedance were sub-

stituted, the same equation as before, that is (39), would result.
Instead of (51) and (52) wall impedance values for circular symmetric
modes as given by (53) and (54) will now be substituted into (57).
But for the rest, the circumferential index p will be kept general in

(57). One obtains:

L tan 6k, € cot sk, _ 5
Yn = o 080 O K Yn o cot 8 ki) =0y (58)

k”e n

-

This expression is quite similar to (39).
The left-hand sides of (58) and (39) are identical, and there is only
a small difference on the right-hand sides of these equations. The right-
hand side of (39), for example, may be written as:
R ‘#MG_ma% (59)
k*

All modes of interest are those which have nearly the same propaga-
tion constant A, as the circular electric wave. Since under practical
circumstances the circular electric wave propagates nearly as in free
space, h, will also be nearly equal to &. If under these circumstances the
right-hand side of (39) according to (59) is compared with the right-
hand side of (58), the difference is found to be very small indeed.

To determine the normal modes in a straight waveguide with a single
dielectric lining, it therefore seems well justified to use (58) as charac-
teristic equation instead of (39).
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As further confirmation, this approximation (58) has been solved
numerically and compared with solutions of (39).

Let &' be the thickness of the lining. Solving (58) will give a certain
phase constant for a particular mode. To obtain the same phasz constant
from (39), the thickness has to be §. Plotted in Fig. 5 for the three modes
is the relative error (8’ — §)/8 that results from using (58) instead of
the exact form (39).

An analytic expression for this error can be given for a very thin
lining, when the modes in lined waveguide may be considered first-order
perturbations of modes in metallic waveguide. Under these conditions
for TM modes

and for TE,, modes

5’—'5__ beno® .)_kLDE
& T (e — Dk RBa?

where J, (ko) = 0.

In the numerical example of I'ig. 5 the error is largest for the T,
mode and very thin lining. I'or the other two modes the error stays
generally below 1 per cent.

The wall impedance representation, therefore, holds for single iso-
tropic linings of any practical dimensions.
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RELATIVE THICKNESS ¢ OF LINING IN PER CENT

Fig. 5 — For the same phase constant, the thickness of the lining is § according
to (39) and 8" according to (58), b/A = 4.70, ¢ = 2.5,
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The characteristic equation (58) for the waveguide with a single
isotropic lining is not the only form to which the more general expres-
sion (57) can be reduced. It can be utilized in much more general cases.
As long as we are able to determine the wall impedance Z,, and Z, , we
can use (57) to determine the normal modes of the structure for any
lining such as anisotropic lining or heterogeneous linings.

The example of a single isotropic lining has taught us that it is suffi-
cient to use wall impedance values of the corresponding circular sym-
metric modes. It is relatively easy to find these wall impedances even
for quite complicated jacket structures. We will then be able to determine
the normal modes characteristics of waveguides with such complicated
jacket structures.

To make full use of the wall impedance representation in our analysis
of the curved waveguide, some approximations are necessary for the
coefficient of curvature coupling (35) and the normalization factor
N..

To obtain these two quantities, products of field components and other
functions had to be integrated over the total cross section. The range of
integration included the lining.

In our present representation we do not explicitly determine the field-
distributions within the lining, but the effect of the lining is taken into
account by only considering the input impedances as seen from the
waveguide interior. In this representation we therefore cannot calculate
the contributions to the various integrals by extending them over the
lining. We will consider the effect of neglecting these contributions.

Under practical circumstances, the area of the lining is always very
much smaller than the total cross section. The components of the mag-
netic field, since they are continuous across a dielectric boundary, are of
the same order of magnitude within the lining as in the empty space of
the waveguide. Except for a possible change of the order ¢, the same is
true for the components of the electric field.

In summary, then, the integrals of products of field components over
the area of the lining are always very much smaller than the correspond-
ing integrals over the total cross section. They consequently might be
neglected.

Under these circumstances, (42) reduces to

jul 2 2 2 (1 '.!hn2
TNER, (ln)-l:(l +d, T)

. . (60)
1 -2 .2 2) o fin_ P _
(1-Z+2m+h w) -2 (1 4 kﬂ) AR
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and (43) for circular electric waves to:

™ Nmz dmzl‘ ]U (}'m) (l + ()Jm + ’lm Ym ) = 1. (61,

For the coefficient of curvature coupling we get instead of (45)

- g\/md;]"_%lf )y (k) &
[ B ha (- 2k, 1
{(l * h,,) Lot dn (f—_,— ‘)
B2 A4kl (1 —9 7;2) ) i (62)
-\1+a. Y =~ dy k!

2 -
Xn . 2 h‘m . 2 . -lj; _ h‘,,,
+ dn _’]7 [("‘m + IT" ]‘n ) Tm £+ (‘]‘" 1) an-

The factor d, in all these equations can be determined from (55) or
(56). For example from (55) we get:

’\H k™ _] ‘
dn = p h"., (!jn + C:E(]CE_Z,_;) . (63)

After the characteristic equation (57) has been solved for a particular
combination of wall impedance values Z, and Z,, all the other quanti-
ties and eventually the coefficient of curvature coupling ¢,,” can be
found by straightforward evaluation of (60) to (63). The wall imped-
ances Z,, and Z, may of course be determined from the ecircular sym-
metric field components.

The approximations which have been made to obtain (60) to (63)
have been examined more closely by numerical evaluation, The coeffi-
cient of curvature coupling has been ecalculated using these equations
and compared with the plots in Fig. 4. For TM,-TE; and TE;-TEy,
coupling the differences are small enough not to show in I'ig. 4. The wall
impedance representation fails only for TE,-TE;, coupling and 8§ > 0.8
per cent. The corresponding coefficient of curvature coupling is shown
by the broken line in Fig. 4. Fortunately the coupling is then so small
and the phase constants of the waves differ so much that there is no
significant interaction between TEy, and TE), .
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The explanation of why the two methods of calculation result in
different values in just this case is as follows:

The TEy,; wave in round waveguide is most strongly modified by the
lining. Even in a thin lining, the TE,, field tends to be concentrated
within the lining. In the present numerical example, it takes only a
relative thickness of § = 0.4 per cent for the radial propagation constant
k, to become imaginary and consequently the TEy; fields to be evanes-
cent towards the center of the guide. When this happens because
of very weak TEy fields within the guide, the curvature coupling to
TEq will be very weak too.

The wall impedance representation fails for calculating the coupling,
because it entirely neglects any field interaction within the lining,
which is more and more significant for TE;; and a thick lining. This
phenomenon is limited to TEy; ; coupling to all other modes is accurately
described by the wall impedance representation.

VI. WALL IMPEDANCE OF ANISOTROPIC AND HETEROGENEOUS LININGS

It has now been established that the wall impedance representation
is a useful method in analyzing wave propagation in straight and curved
sections of lined waveguide. To use this method for waveguides with
anisotropie or heterogeneous linings we need to know the wall imped-
ances of these linings.

6.1 Anisotropic Lining

Flock coating shows promise as a lining for circular electric wave-
guide. Resistive fibers of the flock are parallel to the electric field of
unwanted modes but perpendicular to circular electric fields. A flock coat
is anisotropie, and in an (z,y,z) system identified by

=, av = i, w =z (64)

it may be described by the permittivity tensor

ez 0 0
lell =0 e 0Of. (65)
0 0 e

Wall impedances of circular symmetric modes are used in the wall
impedance representation. In our present system of coordinates, cir-
cular symmetry corresponds to d/dy = 0.
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. . — jh .
Assuming furthermore a z-dependence of ¢, Maxwell’s equations

may be written in the following form:

JhE, = jouH,

. , ak. .
—jh B, — Pyl —jopH,
K, .
= —jwuH.
ox ok (66)
66
JhH,=jwe ki,
_.th.z - a('ilz = jwezb’u
aa—[{” =juwe l,.

Eliminating the field components £, , &£, and H,, H, from (66) we
get:

9K,

b (wwe — K ZE =0 (67)
da® €
a(;ﬁz + (o' e — f!-g) H. =0 (68)

The general solution of these equations has the form
Ae’™ 4 Be ¥
where for (67)
/€ /.Ez ] P!
X = X “=/‘/—(_w1uez—h.)
€x

and for (68)
X = x: = Ve, — h?
are the propagation constants in .- or radial direction.
A wave traveling in positive a-direction or outwardly in the eylindrical
system is represented by the second term. For such waves
d
x

= —Jjx

Qs
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and we obtain from Maxwell’s equations and (67)

Jwel, = _J-X:ﬂ/‘/?ﬂu

(69)
z, = 2=
WV €€;
and from (68)
_'jw#‘ H. = _j Xz Eu
z, =2£, (70)
Xz

Z.and Z, are the wave impedances of an anisotropic medium. The wall
impedances of the anisotropic lining are input impedances of a radial
transmission line of length (b — a) short-circuited at the end. In our
present approximation:

Zw =] X2 _ tan Xz 1/6—‘ (b —a) (71)
w/ €€ €z
Z, =7 ? tan x. (b — a). (72)

To make Z, and Z, constants of the waveguide, independent of a par-
ticular mode, we consider only modes which are sufficiently far from

cutoff to propagate nearly as in free space. Then

_2r e
Xz 3 i
N (73)
aT €:
== pq/ -1
X )\ €

Tor circular electric waves only Z, enters the boundary condition.
Note that in (72) Z, is independent of e, . Resistive components in
the flock coat will cause a loss factor only of e.. Such resistive com-
ponents leave the circular electric wave loss unaffected.

6.2 Double Lining

A base layer of dissipative material and a top layer of low-loss ma-
terial provide mode filtering for TEy transmission and reduce TEy loss

in bends.”
Let the base lining have a relative permittivity e and thickness b — a,

the top lining ¢ and a; — a.
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Input impedances of the base lining are
Lo =7 X1 tan xi(b —a), Zy = _;f'w—'u tan x,(b — a)
WEREQ X1

where
x1 = k Ve — 1.

These input impedances are transformed by the second lining accord-
ing to ordinary transmission line theory
Ho ‘\/Ea —1eVe — Ltang, + & Ve — 1 tan g,
€ Eb\/eg—l—Ep\/eb—ltm]wbtango,
2, =4/ ks 1 Ve — ltang, + Ve — 1 tan ¢ (75)
@ Ve —1vVe —1— Ve — | tang, tan ¢,

7w = 7 (7'-")

where

b —a
¢Ph=27l' Véb—]. Ral

and

————— a —
()] 27 '\/Gt -1 !
A
IFor a thin base layer ¢, << 1 and
tan _tan g,

— —_— (h - ﬂ']) +
Ve -
=] /‘/m - (76)

— :)\E(_h — ay) \/e, — 1 tan ¢,

Note that in (76) Z, is independent of the permittivity in the base
layer. Any loss in the base layer will not significantly raise circular
clectriec wave loss.

VII. CONCLUSION

In previous first-order approximations, normal modes of lined wave-
guide were considered perturbed modes of plain waveguide, and coeffi-
cients of curvature couplings were assumed the same as in metallic
waveguide. In some respects these approximations hold only for ex-
tremely thin linings, thinner for example than 0.05 per cent of the
waveguide radius. The present more exact analysis shows that the
TE. wave has a phase constant much higher than would be expected
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from these approximations. Neither the thickness nor the permittivity
of the lining can increase the phase difference between TM,y; and TEq
beyond a certain limit. The phase difference eventually is almost inde-
pendent of § and e and is small for high frequency.

Curvature coupling between TEy and TEy, is substantially smaller
in lined waveguide than in plain waveguide, while it is nearly inde-
pendent of the lining between TE;2 and TEy, . Between TMy, and TEy, ,
however, it first increases and then stays constant.

Waveguides with sandwiched or anisotropic linings may be analyzed
by using a wall impedance representation. Wall impedances which the
lining presents to fields of circular symmetry may be used in this analy-
sis. They may easily be caleulated for flock coatings and double linings.
The wall impedance representation is found to be accurate for all typi-
cal cases.
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